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Introduction

Given an unlabeled dataset with N samples xi ∈ Rn,
i = 1, 2, . . . ,N, where n� 3.

Direct visualization is impossible, so dimensionality reduction from
x ∈ Rn to z ∈ Rd , d � n, is needed to:

I visualize the structure of the data and its PDF, when
d ∈ {2, 3}, for better understanding and user interaction, and

I uncover latent structure of the data for more effective
processing and analysis.

However, how does dimensionality reduction impact the PDF
transformation from p(x) to p(z)?
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Agenda

I Linear methods:

I PCA: Maximizes variance preservation.

I MDS: Preserves pairwise distances.

I Non-linear methods:

I t-SNE: Preserves local neighborhoods.

I UMAP: Preserves topological structure.

Methods based on neural networks are left to other lectures.
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PCA: Principal Component Analysis

Let X ∈ RN×n be the data matrix, with each row containing a
sample xi ∈ Rn. Its sample mean vector µ ∈ Rn, centered data
matrix Xc ∈ RN×n, and sample covariance matrix Σ ∈ Rn×n are
defined as

µ =
1

N

N∑
i=1

xi =
1

N
XT1N ,

Xc = X− 1Nµ
T , and

Σ =
1

N − 1
XT
c Xc ,

where 1N =


1
1
...
1

 ∈ RN×1.



PCA: Principal Component Analysis

PCA finds the optimal subspace Rd that maximizes the preserved
variance through data centralization, rotation, and projection.
Objective:

maximize

∑d
i=1 λi∑n
i=1 λi

= fraction of variance explained.

Method: Eigenvalue decomposition of covariance matrix
Σ = VΛVT and projection

Z = XcVd ∈ RN×d

where

I Λ = diag(λ1, λ2, . . . , λn) with λ1 ≥ λ2 ≥ · · · ≥ λn,

I V = [v1, v2, . . . , vn] contains the eigenvectors on each column,

I Vd = [v1, v2, . . . , vd ] contains the first d principal
components.



PCA: Distribution of Projected Data
Given X ∼ N (µ,Σ), after centering:

Xc = X− 1Nµ
T ∼ N (0,Σ).

Distribution of projected data:

Z = XcVd ∼ N (0,Λd),

where Λd = diag(λ1, λ2, . . . , λd).
Key properties:

I Independent components: Zi ∼ N (0, λi ), Cov(Zi ,Zj) = 0
for i 6= j .

I Exact Gaussian preservation:

pZ(z) =
1

(2π)d/2
√

det(Λd)
exp

(
−1

2
zTΛ−1d z

)
.

Result: For Gaussian data, PCA achieves perfect distributional
preservation!



PCA: Non-Gaussian Distributions
Linear transformation preserves

I first two moments: E[Z] = 0, Cov(Z) = Λd .

I orthogonality: Cov(Zi ,Zj) = 0.

What is NOT preserved.

I Higher-order moments: Skewness, kurtosis may change.

I Multimodal structure: Modes may be merged.

I Non-linear dependencies: Complex relationships are lost.

I pZ(z) 6= simple transformation of pX(x).

Central Limit Effect:

Zi = vTi Xc =
n∑

j=1

vijXcj (linear combination)

Projected components may become more Gaussian-like, but
original distributional structure can be significantly distorted.



MDS: Multidimensional Scaling

MDS finds coordinates in Rd that preserve pairwise distances
through distance matrix analysis and coordinate reconstruction.

Objective:

minimize
∑
i<j

(dij − ‖zi − zj‖)2

where dij = ‖xi − xj‖ are original distances.

Classical MDS: Eigenvalue decomposition of Gram matrix
G = VΛVT and embedding

Z = VdΛ
1/2
d ∈ RN×d

where Z contains the reconstructed coordinates of samples in
d-dimensional space.

In MDS, the dimension d may be <, >, or =
to the original dimension n.
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MDS: Multidimensional Scaling
I G = −1

2HD2H is the double-centered Gram matrix.

I H = IN − 1
N 1N1TN is the centering matrix, centering D2 by

subtracting row means and column means, and IN is the
N × N identity matrix.

I D2 contains squared distances: D2
ij = d2

ij .

I Λ = diag(λ1, λ2, . . . , λN) with λ1 ≥ λ2 ≥ · · · ≥ λN .

I Stress measures embedding quality:

Stress =

√√√√∑i<j(dij − d̂ij)2∑
i<j d

2
ij

where dij are original distances and d̂ij are embedding
distances. Lower stress indicates better distance preservation.



MDS: Distribution Effects

What is preserved:

I Pairwise distances: ‖zi − zj‖ ≈ dij .

I Relative positions: Neighborhood structure maintained.

I Global geometry: Overall shape preserved when possible.

What changes in the PDF:

I Local density distortion: Volume elements
stretched/compressed non-uniformly.

I Boundary effects: Edge regions may show artificial density
patterns.

I Dimensionality effects:
I If d < n: Information loss, potential mode merging.
I If d > n: Volume expansion, density spreading.

Unlike PCA, the relationship between pX (x) and pZ (z) cannot be
expressed analytically - it must be studied empirically.



t-SNE: t-Distributed Stochastic Neighbor Embedding

t-SNE finds coordinates in Rd , d < n, that preserve local
neighborhoods through probabilistic similarity matching.
Objective: Minimize KL divergence between pij and qij .

C =
∑
i 6=j

pij log
pij
qij

High-dimensional similarities (Gaussian):

pij =
exp(−‖xi − xj‖2/2σ2i )∑
k 6=l exp(−‖xk − xl‖2/2σ2l )

Low-dimensional similarities (t-distribution):

qij =
(1 + ‖zi − zj‖2)−1∑
k 6=l(1 + ‖zk − zl‖2)−1

where σi is determined by a given perplexity parameter.



t-SNE: Finding σi for given perplexity

Goal: For each xi , find σi by binary search such that the effective
number of neighbors equals the target perplexity.

1. Input: Target perplexity Perp, tolerance tol← 10−5.

2. Initialize: σmin
i ← 0, σmax

i ← +∞, σi ← 1.

3. Repeat until convergence:
I Compute conditional probabilities:

pj|i ←
exp(−‖xi − xj‖2/2σ2

i )∑
k 6=i exp(−‖xi − xk‖2/2σ2

i )
.

I Compute entropy: Hi ← −
∑

j 6=i pj|i log2 pj|i .
I Compute current perplexity: Perpi ← 2Hi .
I If |Perpi − Perp| < tol: stop.
I Else if Perpi > Perp: σmax

i ← σi , σi ← (σi + σmin
i )/2.

I Else: σmin
i ← σi , σi ← (σi + σmax

i )/2.



t-SNE: Complete Algorithm

Input: Data X ∈ RN×n, perplexity, learning rate η, iterations T .

Step 1: Compute high-dimensional similarities

I For each i : find σi using binary search (previous slide).

I Compute conditional probabilities: pj |i =
exp(−‖xi−xj‖2/2σ2

i )∑
k exp(−‖xi−xk‖2/2σ2

i )
.

I Symmetrize: pij =
pj|i+pi|j

2N .

Step 2: Initialize low-dimensional embedding

I Random initialization: zi ∼ N (0, 10−4I) for i = 1, . . . ,N.

Step 3: Gradient descent optimization
I For t = 1, . . . ,T :

1. Compute low-dim similarities: qij =
(1+‖zi−zj‖2)−1∑
k 6=l (1+‖zk−zl‖2)−1 .

2. Compute gradient:
∂C
∂zi

= 4
∑

j(pij − qij)(zi − zj)(1 + ‖zi − zj‖2)−1.

3. Update: zi ← zi − η ∂C∂zi .

Output: Embedding Z ∈ RN×d .



t-SNE: Distribution Effects

What is preserved:

I Local neighborhoods: Similar samples stay close.

I Cluster structure: Well-separated groups enhanced.

I Relative similarities: pij relationships maintained locally.

What changes in the PDF:

I Heavy-tailed distribution: t-distribution creates more space
for distant samples.

I Enhanced cluster separation: Between-cluster distances
artificially inflated.

I Compressed within-cluster density: Samples within clusters
pulled together.

I Global structure lost: Large-scale relationships distorted.

I Non-metric embedding: Distances in Rd not meaningful.

Like MDS, the relationship between pX (x) and pZ (z) cannot be
expressed analytically and depends heavily on perplexity choice.



UMAP: Uniform Manifold Approximation and Projection
UMAP finds coordinates in Rd that preserve topological structure.
Objective: Minimize cross-entropy between fuzzy set
memberships.

C =
∑
ij

wij log

(
wij

vij

)
+ (1− wij) log

(
1− wij

1− vij

)
.

High-dimensional fuzzy membership:

wij = exp

(
−

max(0, dij − ρi )
σi

)
.

Low-dimensional membership (uniform distribution):

vij =
1

1 + a‖zi − zj‖2b
,

where dij = ‖xi − xj‖, ρi is distance to nearest neighbor, σi
controls local connectivity, and (a, b) are fitted to uniform
distribution model.



UMAP: Finding σi , a, and b.

For each xi , σi is obtained by binary search, such that∑
j∈k-neighors wij = log2(k).

1. Input: n neighbors k , tolerance tol = 10−5.

2. Initialize: σmin
i ← 0, σmax

i ← +∞, σi ← 1.

3. Repeat until convergence:

I Compute: S =
∑

j∈k-neighbors exp
(
−max(0,dij−ρi )

σi

)
.

I If |S − log2(k)| < tol: stop.
I Else if S > log2(k): σmax

i ← σi , σi ← (σi + σmin
i )/2.

I Else: σmin
i ← σi , σi ← (σi + σmax

i )/2.

The parameters a and b require to solve∫ min dist

0

1

1 + ax2b
dx =

∫ +∞

min dist

1

1 + ax2b
dx

by Levenberg-Marquardt curve fitting, where v(x) = 1
1+ax2b

= 0.5
for distance x = min dist between zi and zj .
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UMAP: Parameter Estimation for a and b
Problem: Find (a, b) such that v(d) = 1

1+ad2b matches uniform
distribution behavior.
Curve Fitting Approach:

1. Construct target curve φ(x) based on min dist and spread

2. Generate sample points (xi , φ(xi ))

3. Minimize nonlinear least squares:

min
a,b

∑
i

[
1

1 + ax2bi
− φ(xi )

]2
Typical values: For min dist = 0.1, spread = 1.0:

a ≈ 1.576, b ≈ 0.895

Physical interpretation:

I a: controls attraction/repulsion balance

I b: controls decay rate (transition sharpness)



UMAP: Complete Algorithm
Input: Data X ∈ RN×n, n neighbors k , min dist, learning rate α.
Step 1: Construct high-dimensional fuzzy simplicial set.
I For each xi : find k-nearest neighbors and their distanceρi .

I Find σi such that
∑

j∈neighbors exp
(
−max(0,dij−ρi )

σi

)
= log2(k).

I Compute: wij = exp
(
−max(0,dij−ρi )

σi

)
.

I Symmetrize: wij ← wij + wji − wij · wji (fuzzy set union).

Step 2: Optimize low-dimensional representation
I Find (a, b) through Levenberg-Marquardt curve fitting.
I Initialize: zi using spectral embedding (eigenvectors of the

fuzzy simplicial set).
I For each epoch: sample edges (i , j) and optimize

vij =
1

1 + a‖zi − zj‖2b

Update zi using gradient descent optimization.

Output: Embedding Z ∈ RN×d



UMAP: Distribution Effects
What is preserved:

I Local neighborhoods: Similar samples stay close (like
t-SNE).

I Global structure: Better than t-SNE due to topological
approach - connected components, holes preserved.

I Relative distances: More meaningful than in t-SNE.

What changes in the PDF:

I Uniform density assumption: UMAP constructs the
low-dimensional similarities based on a uniform distribution
model in dimension n.

I Better distance preservation and smoother density
transitions: Less distortion than t-SNE.

I Parameter-dependent structure: n neighbors and min dist
affect density patterns.

Like t-SNE and MDS, the relationship between pX (x) and pZ (z)
cannot be expressed analytically.



Complementary literature

From webspace.science.uu.nl/~telea001/uploads/PAPERS,
read papers:

I VAST16/paper.pdf (Visualizing the Hidden Activity of Artificial
Neural Networks).

I CCIS21/paper.pdf (Improving Deep Learning Projections by
Neighborhood Analysis).

I Inf23/paper.pdf (Quantitative and Qualitative Comparison of 2D
and 3D Projection Techniques for High-Dimensional Data).

I CAG23/paper.pdf (Measuring the Quality of Projections of
High-dimensional Labeled Data).

I SN23/paper4.pdf (Stabilizing and Simplifying Sharpened
Dimensionality Reduction Using Deep Learning).

webspace.science.uu.nl/~telea001/uploads/PAPERS

