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Introduction

Given an unlabeled dataset with N samples x; € R",
i=1,2,...,N, where n>> 3.

Direct visualization is impossible, so dimensionality reduction from
x € R"tozc RY d < n, is needed to:

» visualize the structure of the data and its PDF, when
d € {2, 3}, for better understanding and user interaction, and

» uncover latent structure of the data for more effective
processing and analysis.
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However, how does dimensionality reduction impact the PDF
transformation from p(x) to p(z)?



Agenda

» Linear methods:

» PCA: Maximizes variance preservation.

» MDS: Preserves pairwise distances.

» Non-linear methods:

» t-SNE: Preserves local neighborhoods.

> UMAP: Preserves topological structure.
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» Non-linear methods:

» t-SNE: Preserves local neighborhoods.
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Methods based on neural networks are left to other lectures.



PCA: Principal Component Analysis

Let X € RV*" be the data matrix, with each row containing a
sample x; € R". Its sample mean vector u € R"”, centered data
matrix X € RN*" and sample covariance matrix X € R"™*" are

defined as
N
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PCA: Principal Component Analysis

PCA finds the optimal subspace RY that maximizes the preserved
variance through data centralization, rotation, and projection.
Objective:

d
Zi:l Ai
27:1 Aj

Method: Eigenvalue decomposition of covariance matrix
> = VAV and projection

maximize = fraction of variance explained.

Z =X V4 € RV*

where
> A =diag(A1, A2, ..., Ap) with Ay > Mo > -+ > A\,
» V = [vi,Va,...,V,] contains the eigenvectors on each column,
» Vg4 = [v1,Va,...,Vq] contains the first d principal

components.



PCA: Distribution of Projected Data
Given X ~ N (p, X), after centering:

Xe=X—1yu" ~N(0, ).
Distribution of projected data:
Z=X\Ng~N(0,Ay),

where Ay = diag(A1, A2, ..., Ag).
Key properties:
> Independent components: Z; ~ N (0, \;), Cov(Z;, Z;) =0
for i # .
> Exact Gaussian preservation:
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Result: For Gaussian data, PCA achieves perfect distributional
preservation!

pz(z) =



PCA: Non-Gaussian Distributions
Linear transformation preserves
» first two moments: E[Z] =0, Cov(Z) = Ay.
> orthogonality: Cov(Z;,Z;) =0.

What is NOT preserved.
» Higher-order moments: Skewness, kurtosis may change.
» Multimodal structure: Modes may be merged.
» Non-linear dependencies: Complex relationships are lost.

» pz(z) # simple transformation of px(x).

Central Limit Effect:

n
Zi=v]Xc =) vjXg (linear combination)
Jj=1
Projected components may become more Gaussian-like, but
original distributional structure can be significantly distorted.



MDS: Multidimensional Scaling

MDS finds coordinates in RY that preserve pairwise distances
through distance matrix analysis and coordinate reconstruction.

Objective:
minimize Z(du —lzi — z|)?
i<j
where djj = ||x; — x;|| are original distances.

Classical MDS: Eigenvalue decomposition of Gram matrix
G = VAV and embedding

Z=Vg4AL? e RN¥d

where Z contains the reconstructed coordinates of samples in
d-dimensional space.
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where Z contains the reconstructed coordinates of samples in
d-dimensional space.In MDS, the dimension d may be <, >, or =
to the original dimension n.



MDS: Multidimensional Scaling

>

>

G= —%HD2H is the double-centered Gram matrix.
H=Iy— %1,\/15 is the centering matrix, centering D? by

subtracting row means and column means, and Iy is the
N x N identity matrix.

D? contains squared distances: D2 d2
A= diag()\l,/\z, .. .,)\N) with Ay > Ao > -+ > Apn.

Stress measures embedding quality:

Zl<j(dU IJ)
ZI<_] d2

where dj; are original distances and C?u are embedding
distances. Lower stress indicates better distance preservation.

Stress =



MDS: Distribution Effects

What is preserved:
> Pairwise distances: ||z; — zj|| = dj;.
> Relative positions: Neighborhood structure maintained.

» Global geometry: Overall shape preserved when possible.

What changes in the PDF:

» Local density distortion: Volume elements
stretched /compressed non-uniformly.

» Boundary effects: Edge regions may show artificial density
patterns.

» Dimensionality effects:

» If d < n: Information loss, potential mode merging.
» If d > n: Volume expansion, density spreading.

Unlike PCA, the relationship between px(x) and pz(z) cannot be
expressed analytically - it must be studied empirically.



t-SNE: t-Distributed Stochastic Neighbor Embedding

t-SNE finds coordinates in R, d < n, that preserve local
neighborhoods through probabilistic similarity matching.
Objective: Minimize KL divergence between p;; and gj;.

Pij
C= Y pyiog
% i

High-dimensional similarities (Gaussian):

pi = — &=l —xjl%/20%)
=
T Y exp(=lbx —xi?/207)

Low-dimensional similarities (t-distribution):

g = L+ Jzi =z "
y — —
’ Dokt (L4 2k — z/]12)

where o; is determined by a given perplexity parameter.




t-SNE: Finding o, for given perplexity

Goal: For each x;, find o; by binary search such that the effective
number of neighbors equals the target perplexity.

1. Input: Target perplexity Perp, tolerance tol < 107>.
2. Initialize: ™" «+ 0, oM «— +00, 0; + 1.
3. Repeat until convergence:

» Compute conditional probabilities:

exp(—|lxi —x;[[/207)
2ieri ¥P(=lIxi = xul[2/207)

Pili <

» Compute entropy: H; <+ — Z#i pj|i log, pjji-

» Compute current perplexity: Perp; < 2/

» If |Perp; — Perp| < tol: stop.

> Else if Perp; > Perp: o™ < o}, 0; + (0; + o™")/2.
» Else: U,’-“i" — 0j, 0 + (i + o) /2.



t-SNE: Complete Algorithm

Input: Data X € RVX" perplexity, learning rate 7, iterations T.

Step 1: Compute high-dimensional similarities
» For each i: find o; using binary search (previous slide).

exp(—|Ixi—xjl?/202)

» Compute conditional probabilities: p;; = S oo i 2207
k e i

_ Pijitpij
- 2N

Step 2: Initialize low-dimensional embedding

» Random initialization: z; ~ N(0,107%1) for i = 1,..., N.
Step 3: Gradient descent optimization

> Fort=1,...,T:

1. Compute low-dim similarities: q; =

» Symmetrize: pj;

(+lzi=z )7}
k(I lz=z?) =1~
2. Compute gradient:

5 = 4, (py — a)(z — )1 + 1z — 7).
3. Update: z; + z; — ng—g.

Output: Embedding Z € RV*9,



t-SNE: Distribution Effects
What is preserved:

> Local neighborhoods: Similar samples stay close.

» Cluster structure: Well-separated groups enhanced.

» Relative similarities: pj; relationships maintained locally.
What changes in the PDF:

» Heavy-tailed distribution: t-distribution creates more space
for distant samples.

> Enhanced cluster separation: Between-cluster distances
artificially inflated.

» Compressed within-cluster density: Samples within clusters
pulled together.

» Global structure lost: Large-scale relationships distorted.
» Non-metric embedding: Distances in RY not meaningful.

Like MDS, the relationship between px(x) and pz(z) cannot be
expressed analytically and depends heavily on perplexity choice.



UMAP: Uniform Manifold Approximation and Projection

UMAP finds coordinates in RY that preserve topological structure.
Objective: Minimize cross-entropy between fuzzy set
memberships.

Wij 1—wj
C:ZW;jlog —< )+ (1= wy)log [ —7 .
7 Vij 1—vj;

High-dimensional fuzzy membership:

0,djj — pi

wjj = exp (_max( -y p,)> .
g

Low-dimensional membership (uniform distribution):

1
Vi = 1+ a||z,- — ZJ'H2b’

where djj = ||x; — X;||, p;i is distance to nearest neighbor, o;
controls local connectivity, and (a, b) are fitted to uniform
distribution model.



UMAP: Finding o;, a, and b.
For each x;, o; is obtained by binary search, such that
Zjek—neighors Wij = |Og2(k)
1. Input: n_neighbors k, tolerance tol = 107>.
2. Initialize: oM™ + 0, 0™ + +o0, 0; « 1.
3. Repeat until convergence:
x(0,d;j—pi
> Compute: S =3, rcighbors ©XP (—%j’m).
> If |S — log,(k)| < tol: stop.
> Else if S > log,(k): o™ < oy, 0; < (0; + ™M) /2.
> Else: oM" < o, 0; + (0; + o™)/2.
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The parameters a and b require to solve

/mindist 1 +o0o 1
b e / _ v
0 1+ ax2b mindist 1+ ax2b

by Levenberg-Marquardt curve fitting, where v(x) =
for distance x = min_dist between z; and z;.

1

1+4ax?2b

=05



UMAP: Parameter Estimation for a and b

Problem: Find (a, b) such that v(d) = Haﬁ matches uniform
distribution behavior.
Curve Fitting Approach:

1. Construct target curve ¢(x) based on min_dist and spread
2. Generate sample points (x;, ¢(x;))

3. Minimize nonlinear least squares:

E o)

a,b - 1+ ax,.2b
Typical values: For min_dist = 0.1, spread = 1.0:
a~ 1576, b=0.895

Physical interpretation:
» a: controls attraction/repulsion balance

» b: controls decay rate (transition sharpness)



UMAP: Complete Algorithm

Input: Data X € RNxn n_neighbors k, min_dist, learning rate a.
Step 1: Construct high-dimensional fuzzy simplicial set.
» For each x;: find k-nearest neighbors and their distancep;.

> Find o such that 3 cpeignpors &P (—"2%5=2)) — logy().

J oi
__max(0,d;j—pi) )

» Compute: wjj = exp ( o

> Symmetrize: wjj <— wj; + wji — wj; - wj; (fuzzy set union).
Step 2: Optimize low-dimensional representation

» Find (a, b) through Levenberg-Marquardt curve fitting.

» Initialize: z; using spectral embedding (eigenvectors of the

fuzzy simplicial set).
» For each epoch: sample edges (/,/) and optimize
1

T T4l P

Vij
Update z; using gradient descent optimization.

Output: Embedding Z € RN*¢



UMAP: Distribution Effects

What is preserved:

» Local neighborhoods: Similar samples stay close (like
t-SNE).

» Global structure: Better than t-SNE due to topological
approach - connected components, holes preserved.

> Relative distances: More meaningful than in t-SNE.

What changes in the PDF:

» Uniform density assumption: UMAP constructs the
low-dimensional similarities based on a uniform distribution
model in dimension n.

> Better distance preservation and smoother density
transitions: Less distortion than t-SNE.

» Parameter-dependent structure: n_neighbors and min_dist
affect density patterns.

Like t-SNE and MDS, the relationship between px(x) and pz(z)
cannot be expressed analytically.



Complementary literature

From webspace.science.uu.nl/~telea001/uploads/PAPERS,
read papers:

» VVAST16/paper.pdf (Visualizing the Hidden Activity of Artificial
Neural Networks).

» CCIS21/paper.pdf (Improving Deep Learning Projections by
Neighborhood Analysis).

» Inf23/paper.pdf (Quantitative and Qualitative Comparison of 2D
and 3D Projection Techniques for High-Dimensional Data).

» CAG23/paper.pdf (Measuring the Quality of Projections of
High-dimensional Labeled Data).

» SN23/paper4.pdf (Stabilizing and Simplifying Sharpened
Dimensionality Reduction Using Deep Learning).


webspace.science.uu.nl/~telea001/uploads/PAPERS

