Programme:

1. Review of concepts
 - Computational Models
 - Analysis of an algorithm
 - Cost analysis (time, space, etc)
 - Lower bound of a problem
 - Examples: search in a sorted array, input/output

 - Function Growing and Asymptotic Notation
 - Recurrence relations: asymptotic and exact solutions

3. Design of algorithms by induction
 - Mathematical Induction and Design of algorithms by induction
 - Design by Simple and by Strong Induction
 - Design by Divide-and-Conquer

4. Search, sorting and order statistics
 - Binary Search. Optional: Variations of Binary Search
 - Divide-and-conquer paradigm (mergesort, binary search, median)
 - Conquer may precede division (quicksort)
 - Average case analysis of quicksort
 - Computing the median and the k-th order statistics through quicksort partition
 - Linear worst-case algorithm for selecting the median and the k-th order statistics
 - Advantages of choosing a suitable data structure for the design of efficient algorithms
 - Lower bound for search in a sorted array, sorting, and median selection
 - Linear algorithms for sorting

5. Dynamic Programming
 - Description of the method
 - Applications of the method. Suggested examples:
 - Matrix chain multiplication
 - Longest Common Subsequence

6. Greedy Algorithms
 - Description of the method
 - Applications of the method. Suggested examples:
 - Activity-selection problem
- Huffman codes