@techreport{TR-IC-PFG-16-02, number = {IC-PFG-16-02}, author = {William Tustumi and Helio Pedrini}, title = {{Skin Lesion Classification in Dermoscopy Images}}, month = {December}, year = {2016}, institution = {Institute of Computing, University of Campinas}, note = {In Eglish, 10 pages. \par\selectlanguage{brazil}\textbf{Resumo} Melanoma \'e um dos tipos mais agressivos de cancer de pele. O sucesso do tratamento \'e dependente do diagn\'ostico prematuro. Esse projeto procura estudar e desenvolver uma ferramenta autom\'atica para assitir o diagn\'ostico de les\~oes de pele. Inicialmentem, as imagens de fer\'idas cut\^anias s\~ao segmentadas atrav\'es de algor\'itmos utilizados em an\'alise de imagens, como Otsu's threshold, Chan-Vese and Statistical Region Merging. Depois, caracte\'irsticas s\~ao extra\'idas atrav\'es das regras ABCD e rela\c{c}\~oes de segunda ordem da imagem. A partir dessas caracter\'isticas, uma decis\~ao \'e feita utilizando a combina\c{c}\~ao, atrav\'es do m\'etodo de voto, dos classificadores Extra Tree, Decision Tree, AdaBoost, Linear Discrimination e Random Forest. Os resultados das classifica\c{c}\~oes atingiram uma taxa de acerto de 77\% usando a base de dados ISIC, que \'e compar\'avel ao sucesso de dermatologistas especialistas que apenas fizeram o exame dermatol\'ogico e inspecionaram o hist\'orico do paciente. \par\selectlanguage{english}\textbf{Abstract} Melanoma is one of the most aggressive types of skin-cancer. The success of the treatment is very reliant on early diagnosis. This project aims to study and develop an automatic tool to help physicians diagnose skin lesions. Initially, skin lesion images are segmented through well known image analysis algorithms, such as Otsu, Chan-Vese and Statistical Region Merging. Then, features are extracted by following the ABCD rule and second order image characteristics. From these features, a decision is made by means of a voting strategy combining Extra Tree, Decision Tree, AdaBoost, Linear Discrimination and Random Forest classifiers. Classification results achieved a success rate of 77\% on the ISIC dataset, which is comparable to expert dermatologists that only had access to dermatology exams and patient history. } }