Truncated Differential Analysis of Reduced-Round LBlock

Sareh Emami, Cameron McDonald, **Josef Pieprzyk and Ron Steinfeld**

Joint work between Macquarie University, Qualcomm Inc. Australia and Monash University

CANS 2013, Paraty, Brazil

- Preliminaries
- Truncated differential distribution
- Truncated differential analysis of LBlock
- Complexity Analysis
- Experiments
- Results

Our Contribution

Truncated differential analysis

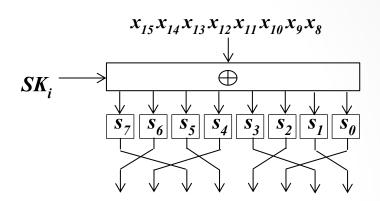
- Differential probability distributions
- Log-likelihood ratio (LLR) test

Presented framework

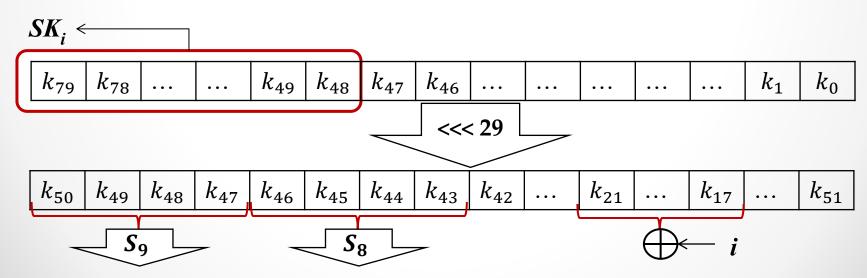
 Merges the truncated differential distributions with classical differential analysis

Application to LBlock

- Single-key attack 18 rounds
- Related-key attacks 21 rounds


LBlock

- Was submitted to ACNS 2011
- Lightweight block cipher
 - o 64-bit block
 - 80-bit secret key
- Balanced Feistel network
 - o 32-round



LBlock

SPN round function

- Key Schedule
 - o 32-bit sub-keys: SK_0 , SK_1 , ..., SK_{31}

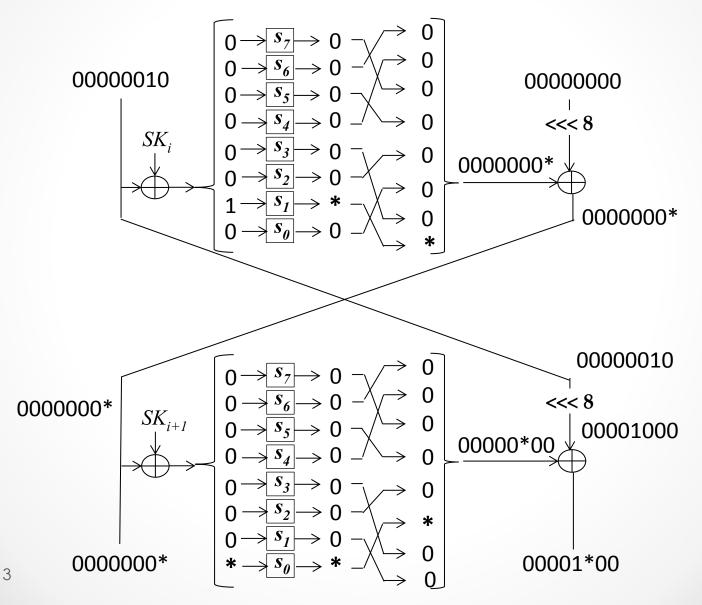
Likelihood test

- Statistical test which compares two distributions
- Let P and Q be two discrete probability distributions
- Kullback-Leibler (KL) divergence
 - Measures the distance between P and Q
- The log-likelihood ratio (LLR)
 - Empirical dataset x taken from N samples
 - Determines the probability distribution (P or Q) that the sample data x belongs to

CANS 2013 6/29

Related Work

- All-in-one approach to differential analysis of lightweight block ciphers
 - Albrecht and Leander (SAC 2012)
- Multiple differential cryptanalysis using the LLR and χ^2 tests
 - o Blondeau et. al. (SCN 2012)
- Both analyses work on ciphers with <u>small</u> block sizes


CANS 2013 7/29

- Preliminaries
- Truncated differential distribution
- Truncated differential analysis of LBlock
- Complexity Analysis
- Experiments
- Results

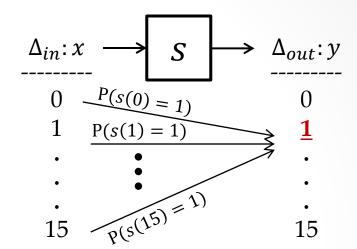
Truncated Differential Distribution (TDD)

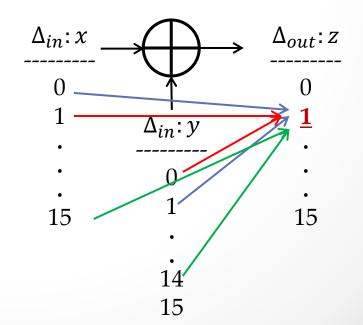
- Assumes the cipher follows the Marcov assumption
 - o The probability distribution of round r only depends on round r-1
- Finds the differential distribution for the state symbols
 - Nibbles in LBlock
- Starts from a fixed differential
 - \circ Propagates the differences through r rounds
 - Finds the probability of every difference for each nibble

Truncated Differential

CANS 2013

10/29


Computing TDD


S-box transformation

$$y^{i} = \sum_{j=0}^{15} x^{j} \cdot P(s(j) = i)$$

$$z^i = \sum_{j=0}^{15} x^j \cdot y^{i \oplus j}$$

Sample TDD

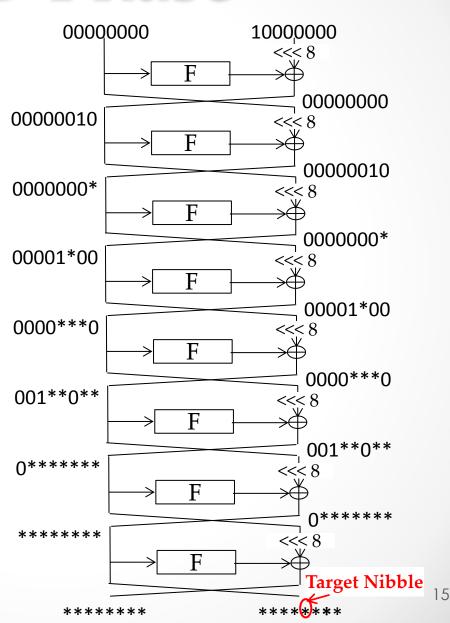
- Input difference: 00000000 10000000
- TDD is computed through 8 rounds of LBlock encryption
 - The right-hand half truncated differential distribution is:

KL-divergence (distance from the uniform distribution)

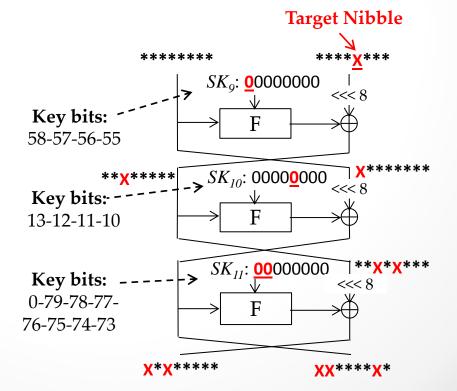
Diff\Nibble	$oldsymbol{arGamma}_7$	$arGamma_6$	$oldsymbol{arGamma}_5$	$arGamma_4$	$oldsymbol{arGamma}_3$	$oldsymbol{arGamma}_2$	$oldsymbol{arGamma}_1$	$oldsymbol{arGamma}_0$
0	0.0610	0.0654	0.0000	0.0000	0.0667	0.0667	0.0000	0.0000
1	0.0000	0.0592	0.0312	0.0693	0.0625	0.0625	0.0625	0.0645
2	0.0649	0.0620	0.1562	0.0732	0.0626	0.0624	0.0312	0.0635
3	0.0649	0.0619	0.0312	0.0684	0.0623	0.0626	0.0938	0.0649
4	0.0610	0.0608	0.0469	0.0698	0.0620	0.0625	0.0625	0.0654
5	0.0732	0.0646	0.0469	0.0610	0.0626	0.0625	0.0625	0.0664
6	0.0703	0.0657	0.0781	0.0649	0.0622	0.0624	0.1250	0.0654
7	0.0684	0.0604	0.1094	0.0698	0.0625	0.0625	0.0625	0.0688
8	0.0703	0.0588	0.0625	0.0635	0.0617	0.0646	0.0625	0.0649
9	0.0679	0.0663	0.0625	0.0649	0.0618	0.0583	0.0625	0.0757
A	0.0659	0.0627	0.0469	0.0635	0.0623	0.0604	0.0312	0.0659
В	0.0649	0.0626	0.0469	0.0728	0.0619	0.0626	0.0312	0.0684
C	0.0615	0.0615	0.0781	0.0659	0.0621	0.0646	0.0625	0.0649
D	0.0679	0.0634	0.1094	0.0654	0.0619	0.0583	0.0625	0.0728
E	0.0693	0.0591	0.0625	0.0620	0.0626	0.0645	0.1250	0.0630
F	0.0684	0.0656	0.0312	0.0654	0.0623	0.0626	0.0625	0.0654
D(P U)	6.59e-2	7.37e-4	1.81e-1	6.59 e-2	1.55e-4	5.6e-4	1.46e-1	6.57e-2

- Preliminaries
- Truncated differential distribution
- Truncated differential analysis of LBlock
- Complexity Analysis
- Experiments
- Results

LBlock Attack

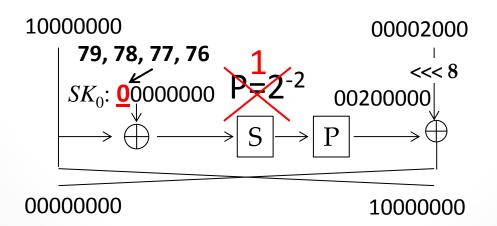

- The TDD is extended on both sides
 - Benefits from the key schedule properties
- The attack model
 - Standard differential phase (SD)
 - Truncated differential distribution phase (TDD)
 - Partial-key recovery phase (PKR)

CANS 2013 14/29


TDD Phase

- 8-round truncated differential distribution
- Target nibble
 - Its distribution has a relatively high distance from the uniform

PKR Phase


- Additional rounds added to the end of TDD rounds
- Partially decrypt the ciphertexts
 - Finds the differential distribution for the target nibble
- LLR test
- Example 3 rounds

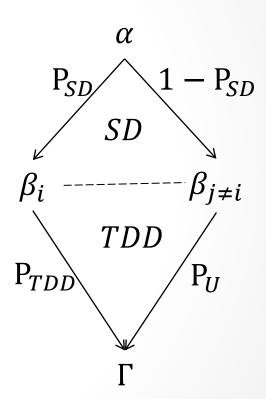
SD Phase

- High probability differential characteristic
 - Assume we know some key-bits
- Example 1-round differential:

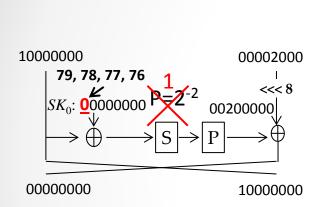
 $(10000000\ 00002000) \rightarrow (00000000\ 10000000)$

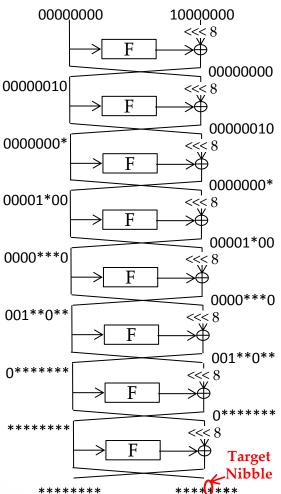
CANS 2013 17/29

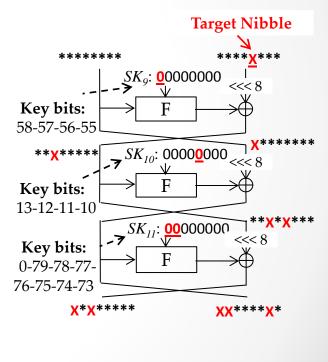
Merging Phase


Assume

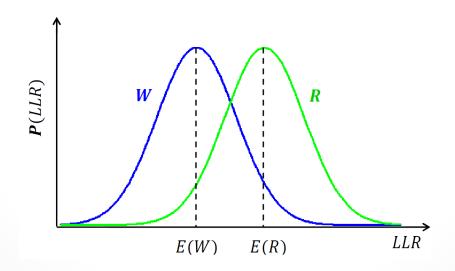
$$\circ P_{SD} = P(\alpha \to \beta_i)$$


$$\circ P_{TDD} = P (\beta_i \to \Gamma)$$


 \circ P_U is the random probability


$$P(\alpha \to \Gamma) = P_{SD} \cdot P_{TDD} + (1 - P_{SD}) \cdot P_{U}$$

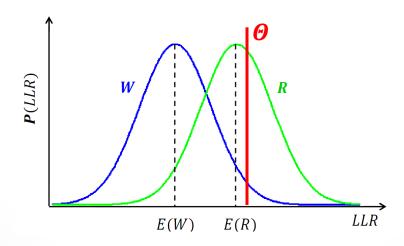
12-Round Example



- Preliminaries
- Truncated differential distribution
- Truncated differential analysis of LBlock
- Complexity Analysis
- Experiments
- Results

CANS 2013 20/29

LLR Distributions


- W is a random variable for the LLR of the wrong keys
 - Wrong key randomization hypothesis
- R is a random variable for the LLR of the right key
 - Is a binomial distribution

CANS 2013 21/29

Complexity Analysis

- Cumulative distribution function (CDF)
 - o Probability of X falling into the interval $[x, \infty)$:
- - Success rate : $P(R \ge \Theta)$
 - Probability of a wrong key LLR becomes higher than Θ : $P(W \ge \Theta)$

CANS 2013 22/29

Complexity

Number of wrong keys ranked higher than Θ

$$N_{WK} = N_K \cdot P(W \ge \Theta)$$

- We have to adjust Θ and N (number of samples)
 - Compromise between the success rate and the complexity

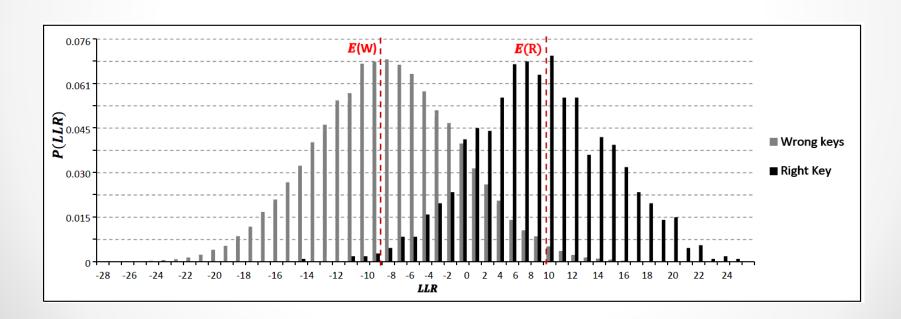
Complexity of the full key-recovery

$$C = N2^b + (N_{wk} + 1)2^{80-b}$$

- Preliminaries
- Truncated differential distribution
- Truncated differential analysis of LBlock
- Complexity Analysis
- Experiments
- Results

CANS 2013 24/29

Experiments


- 12-round sample attack
 - \circ $N = 2^{16}$ samples
 - The attack is repeated 100 times

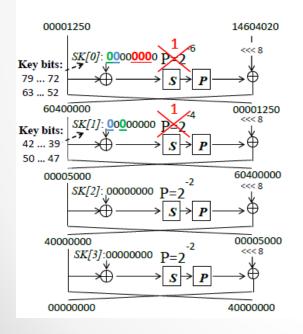
Θ	$P(R \ge \Theta)$	$P(W \ge \Theta)$	N_{wk}	Empirical $P(R \ge \Theta)$	Average empirical N_{wk}
2.6189	0.95	0.0021	143	0.94	154.07
5.6610	0.84	0.0002	14	0.87	15.16
7.1821	0.74	5.25e-05	4	0.73	3.68
8.7032	0.63	1.21e-05	0.79	0.61	0.92
10.2242	0.5	2.51e-06	0.16	0.45	0.19

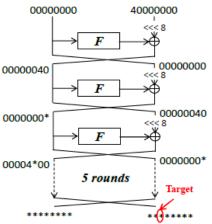
CANS 2013 25/29

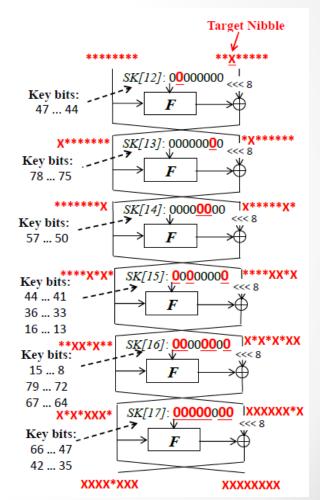
Experiments

- The attack is repeated 1000 times
 - LLR distribution of the right key
 - The average LLR distribution of the wrong keys

CANS 2013 26/29

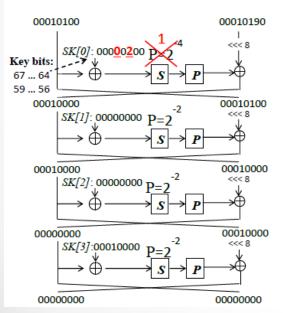

- Preliminaries
- Truncated differential distribution
- Truncated differential analysis of LBlock
- Complexity Analysis
- Experiments
- Results

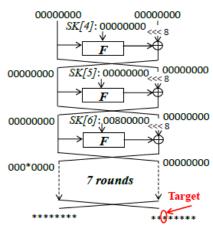

Results

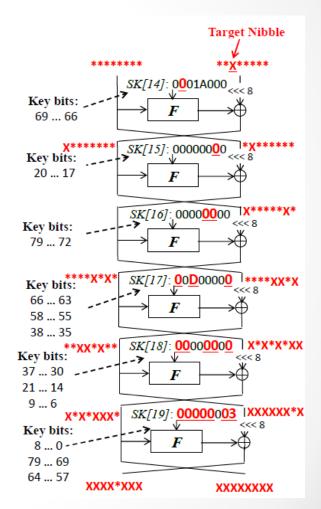

18-round single key attack

Data: 2²³ plaintext/ciphertext pairs

○ Time: 2^{68.71} encryptions




Results


Related-key attacks

 \circ 20 rounds: Data: 2^{27} , time: $2^{74.55}$

21 rounds: Data: 2³⁰, time: 2^{77.56}

Thank you for your attention