

ZK with Rubik's Cubes and Non-Abelian Groups

Emmanuel Volte - Valérie Nachef - Jacques Patarin

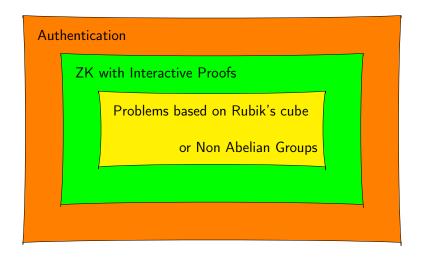
UNIVERSITÉ de Cergy-Pontoise

UNIVERSITÉ de Cergy-Pontoise

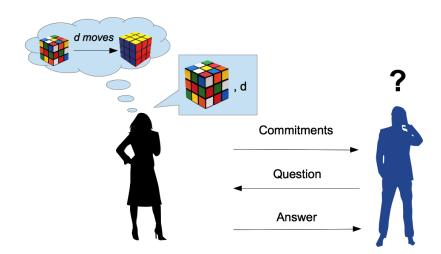
UNIVERSITÉ DE VERSAILLES

20 novembre 2013

Overview



ZK with Interactive Proofs



Main motivations

- 4 Authentication with new kind of problems.
- 2 Compact size (fit in a pocket).
- Hardware efficiency.

Outline

- 1 Problems of factorization in Non-Abelian Groups
 - Mathematical Notations
 - Some Difficult Problems in Non-Abelian Groups
- 2 Protocol of ZK with Rubik's Cube $3 \times 3 \times 3$
 - Example of ZK with IP: 3 colors
 - Repositioning Group
 - Protocol
- Generalizations
 - Rubik's Cube $5 \times 5 \times 5$
 - Any Set of Generators
 - Number of Moves Variable
 - S41

Mathematical Notations

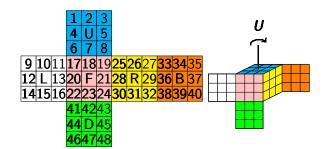
S_n , Generators

Symmetric Group :
$$S_X =$$
 group of permutation of a finite set X . If $X = \{1; 2; \ldots; n\}$ then $S_X = S_n$. $\forall \sigma, \sigma' \in S_X$, $\sigma \sigma' = \sigma' \circ \sigma$. $\langle \ldots \rangle$: G group, $(g_1, g_2, \ldots, g_\alpha) \in G^\alpha$ $\langle g_1, g_2, \ldots, g_\alpha \rangle = \bigcap_{\substack{H \text{ subgroup of } G \\ g_1, g_2, \ldots, g_\alpha \in H}} H$

Set of Generators : $\{g_1,\ldots,g_\alpha\}$ such that $\langle g_1,g_2,\ldots,g_\alpha\rangle=G$

Mathematical Notations

Group of the Rubik's Cube



Generators of the Rubik's Cube's Group

Generators

$$F = (17,19,24,22)(18,21,23,20)(6,25,43,16)(7,28,42,13)(8,30,41,11)$$

$$B = (33,35,40,38)(34,37,39,36)(3,9,46,32)(2,12,47,29)(1,14,48,27)$$

$$L = (9,11,16,14)(10,13,15,12)(1,17,41,40)(4,20,44,37)(6,22,46,35)$$

$$R = (25,27,32,30)(26,29,31,28)(3,38,43,19)(5,36,45,21)(8,33,48,24)$$

$$U = (1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34,26,18)(11,35,27,19)$$

$$D = (41,43,48,46)(42,45,47,44)(14,22,30,38)(15,23,31,39)(16,24,32,40)$$

Rubik's cube group

$$G_R = \langle F, B, L, R, U, D \rangle \subset S_{48}$$
.

General Notations for the Problems

- G: Non-Abelian Group
- ullet $\mathcal{F}\subset \mathcal{G}$: set of generators.

$$\mathcal{F} = \{f_1; f_2; \dots; f_\alpha\}, \ \alpha \ge 2$$

• $id \in G$: initial position

Two Difficult Problems

Problem 1 : solve the puzzle. (not difficult)

Given
$$x_0 \in X$$
, find $d \in \mathbb{N}^*$, and $(i_1, i_2, \dots, i_d) \in \{1, 2, \dots, \alpha\}^d$

so that
$$x_0 f_{i_1} f_{i_2} \dots f_{i_d} = id$$

Problem 2 : solved the puzzle with a fixed number of moves.

Given
$$d \in \mathbb{N}^*$$
, $x_0 \in X$, find $(i_1, i_2, \dots, i_d) \in \{1, 2, \dots, \alpha\}^d$

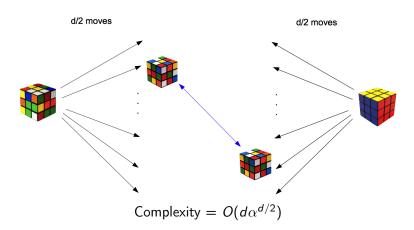
so that
$$x_0 f_{i_1} f_{i_2} \dots f_{i_d} = id$$

Problem 3 : go from one position to another with a fixed number of moves.

Given
$$d \in \mathbb{N}^*$$
, $(x_0, x_d) \in X^2$, find $(i_1, i_2, ..., i_d) \in \{1, 2, ..., \alpha\}^d$

so that
$$x_0 f_{i_1} f_{i_2} \dots f_{i_d} = x_d$$

Complexity of problem 2



How to choose d

Rubik's $3 \times 3 \times 3$

- God's number : 20 moves to unscramble from any position.
- $|G_R| \approx 2^{61}$.
- $\alpha = 6$ and d = 24 since $6^{24} \approx 2^{60} \Rightarrow$ security in about 2^{30} computations.

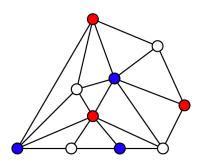
General case

We want $d\alpha^{d/2} \approx 2^{80}$ and $\alpha^d \leq |G|$.

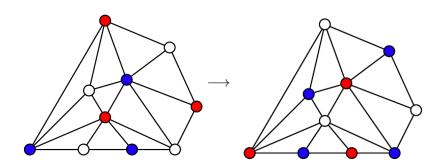
	1										9240 (<i>S</i> 41)
d	146	74	58	50	46	42	40	38	28	24	12

Alice's Secret

Alice knows how to color a graph with 3 colors.



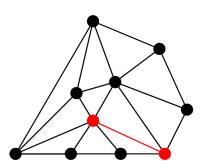
Melting Colors at Random



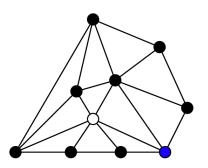
Hiding Colors with Commitments



Bob's question



Alice's answer



Example of ZK with IP: 3 colors ZK Principes

Correctness

A legitimate prover is always accepted.

Statistically Zero Knowledge

There exists an efficient simulating algorithm U such that for every feasible Verifier strategy V, the distributions produced by the simulator and the proof protocol are statistically indistinguishable.

Proof of zero knowledge with error knowledge α

There is a knowledge extractor K and a polynomial Q such that : p = probability that K finds a valid witness for x using its access to a prover P^* ,

 p_x = probability that P^* convinces the honest verifier on x, if $p_x > \alpha$, then $p \ge Q(p_x - \alpha)$.

Conjugation

Definition

Let G be a group.

•
$$\forall (\sigma, \tau) \in G^2$$
, $\sigma^{\tau} \stackrel{\text{def}}{=} \tau^{-1} \sigma \tau$

•
$$\sigma^G \stackrel{def}{=} \{ \sigma^g | g \in G \}.$$

Proposition

$$\forall (\sigma, \sigma', \tau, \tau') \in \mathsf{G}^4, \quad (\sigma^\tau)^{\tau'} = \sigma^{\tau\tau'}, \quad \sigma^\tau \sigma'^\tau = (\sigma\sigma')^\tau$$

Repositioning Group

Definition

Let $\mathcal{F} = \{f_1, \dots, f_{\alpha}\} \subset G$, where G is a group. Any subgroup H such that

$$f_1^H = \{h^{-1}f_1h \mid h \in H\} = \mathcal{F}$$

is called a **repositioning** group of \mathcal{F} .

Proposition

If \mathcal{F} has a repositioning group H then for $\tau \in_R H$,

$$\forall (i,j) \in \{1;\ldots;\alpha\}^2, \quad P(f_i^{\tau} = f_j) = \frac{1}{\alpha}.$$

Repositioning Group of the Rubik's Cube

Definition

Let
$$H = \langle h_1, h_2 \rangle$$
 where

$$h_1 = RL^{-1}(2,39,42,18)(7,34,47,23)$$

 $h_2 = UD^{-1}(13,37,29,21)(12,36,28,20)$

Proposition

If $f \in_R \mathcal{F}$ and $\tau \in_R H$, then f^{τ} is a random uniform variable in \mathcal{F} .

$$\begin{array}{ccc} x_0 & \xrightarrow{f} & x_1 \\ \tau \downarrow & & \tau \downarrow \\ x_0 \tau & \xrightarrow{f^{\tau}} & x_1 \tau \end{array}$$

Protocol (notations)

Public:

- A group G.
- A set $\mathcal{F} = \{f_1, \dots, f_{\alpha}\} \subset G$ of generators of G_R
- A repositioning group $H \subset G$ such that $f_1^H = \mathcal{F}$.
- $d \in \mathbb{N}$, $d \ge 3$
- G' subgroup of G generated by \mathcal{F} and H. $G' = \langle \mathcal{F}, H \rangle$.
- *K* a set of keys, $|K| \ge 2^{80}$.

Secret key : $i_1, i_2, \dots, i_d \in \{1, 2, \dots, \alpha\}$.

Public key : $x_0 = (f_{i_1} f_{i_2} \dots f_{i_d})^{-1}$

Protocol (first phase):

Prover Picks $\tau \in_R H$, $\sigma_0 \in_R G'$, $k_*, k_0, k_1, \ldots, k_d \in_R K$ Computes $\forall i \in \{1,\ldots,d\},\$ $\sigma_i = (f_{i_i}^{\tau})^{-1} \sigma_{i-1}$ $c_0 = Com_{k_*}(\tau)$ $\forall i \in \{0, \ldots d\},\$ $s_i = Com_{k_i}(\sigma_i)$

 $c_0, s_0, \ldots, s_d \longrightarrow$

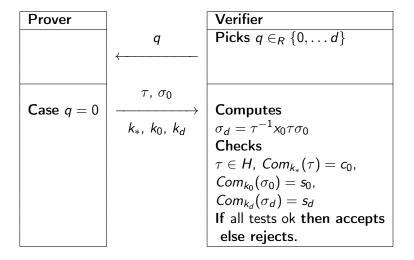
Illustration

$$x_{0} \xrightarrow{f_{i_{1}}} x_{1} \xrightarrow{f_{i_{2}}} \dots x_{d-1} \xrightarrow{f_{i_{d}}} x_{d} = id$$

$$\tau \downarrow \qquad \tau \downarrow \qquad \tau \downarrow \qquad \tau \downarrow$$

$$x_{0}\tau \xrightarrow{f_{i_{1}}^{\tau}} x_{1}\tau \xrightarrow{f_{i_{2}}^{\tau}} \dots x_{d-1}\tau \xrightarrow{f_{i_{d}}^{\tau}} \tau$$

Protocol (second and third phase, q = 0):



Partial Verifications

Protocol (second and third phase, $q \neq 0$):

Prover		Verifier
	q	Picks $q \in_R \{0, \dots d\}$
		
	$f_{i_q}^{\ \ au}$, σ_q	
Case $q \neq 0$		Computes
	k_{q-1} , k_q	$\sigma_{q-1} = f_{i_q}{}^{\tau}\sigma_q$
		Checks
		$\mid f_{i_q}^{\ \ au} \in \mathcal{F}$,
		$s_{q-1} = Com_{k_{q-1}}(\sigma_{q-1})$
		$s_q = Com_{k_q}(\sigma_q)$
		If all tests ok then accepts
		else rejects.

Protocol

Proof: Correctness and ZK

Correctness

Obvious.

ZK with error knowledge $\frac{d}{d+1}$

d+1 possible questions.

All answers correct \Rightarrow we can extract a solution.

So, a false prover can at most answer correctly to d questions.

Proof: statistically ZK

- We can build a simulator with a distribution close to a legitimate prover's one.
- The simulator can answer to all questions but one (we choose this one).

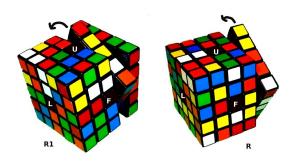
Choice of *r* (number of rounds)

$$\left(\frac{d}{d+1}\right)^r \approx 2^{-30}$$

α	$6 (3 \times 3 \times 3)$	$12 (5 \times 5 \times 5)$	9240 (<i>S</i> 41)
d	24 (*)	48	12
r	500	988	261

(*) security in 2³⁰ computations only.

Non-existence of a repositioning group



$$G_R \approx 2^{247}$$
, $\mathcal{F} = \{U, D, F, B, R, L, U_1, D_1, F_1, B_1, R_1, L_1\}$.

U and U_1 are not conjugate!

One solution

Extension group

- Duplicate the cube.
- Consider $\mathcal{F} = \{(U, U_1), (D, D_1), \dots, (L_1, L)\}$ and $G_R = \langle \mathcal{F} \rangle \subset G_R \times G_R$. $|G_R| \approx 2^{364}$.
- $H = \langle (h_1, h_1), (h_2, h_2), e \rangle$ where e exchange the cubes.

Any set of generators

What we have

- G group
- $\mathcal{F} = \{f_1, f_2 \dots, f_n\}$ set of generators : $\langle \mathcal{F} \rangle = G$

Construction of a repositioning group

We work first with G^{α} . Let $f_i = (f_i, f_{i+1}, \dots, f_{\alpha}, f_1, \dots, f_{i-1})$ and

$$\mathcal{F} = \{\mathbf{f_1}, \dots, \mathbf{f_{\alpha}}\}$$

We define $h \notin G^{\alpha}$ such that

$$\forall (a_1,\ldots,a_{\alpha}) \in \mathcal{G}^{\alpha}, \quad (a_1,\ldots,a_{\alpha})^h = (a_2,\ldots,a_{\alpha},a_1)$$

Let
$$G = \langle h, f_1, \dots, f_{\alpha} \rangle$$
.

Then $H = \langle h \rangle$ is a repositioning group of \mathcal{F} in G.

Finite factorisation

Problem 4: solve the puzzle with a maximum number of moves

Given
$$d \in \mathbb{N}^*$$
, $x_0 \in X$, find $d' \leq d$ and $(i_1, i_2, \dots, i_{d'}) \in \{1; 2; \dots; \alpha\}^{d'}$ so that

$$x_0 f_{i_1} f_{i_2} \dots f_{i_{d'}} = id$$

Solution

We add $f_0 = id$ in \mathcal{F} and we use precedent construction!

A new puzzle called S41

In S_{41} we set :

$$f_1 = (1, 11, 31, 6, 17, 34, 25, 24, 22, 12, 4, 28, 3, 14, 5, 27, 32, 13, 26, 8, 23, 2, 20, 41, 19, 10, 40, 15, 38, 16, 37, 39, 35, 21, 18) $(7, 29, 36)(9, 30).$$$

Then $H = \langle h \rangle$ is a natural repositioning group of $\mathcal{F} = f_1^H$.

Obrigado pela sua atenção!