
72 Chapter 4 Recurrences

T (n) ≤ T (n/3) + T (2n/3) + cn

≤ d(n/3) lg(n/3) + d(2n/3) lg(2n/3) + cn

= (d(n/3) lg n − d(n/3) lg 3)

+ (d(2n/3) lg n − d(2n/3) lg(3/2)) + cn
= dn lg n − d((n/3) lg 3 + (2n/3) lg(3/2)) + cn

= dn lg n − d((n/3) lg 3 + (2n/3) lg 3− (2n/3) lg 2) + cn

= dn lg n − dn(lg 3− 2/3) + cn

≤ dn lg n ,

as long as d ≥ c/(lg 3− (2/3)). Thus, we did not have to perform a more accurate
accounting of costs in the recursion tree.

Exercises

4.2-1
Use a recursion tree to determine a good asymptotic upper bound on the recurrence
T (n) = 3T (⌊n/2⌋) + n. Use the substitution method to verify your answer.

4.2-2
Argue that the solution to the recurrence T (n) = T (n/3)+ T (2n/3)+ cn, where c
is a constant, is !(n lg n) by appealing to a recursion tree.

4.2-3
Draw the recursion tree for T (n) = 4T (⌊n/2⌋)+cn, where c is a constant, and pro-
vide a tight asymptotic bound on its solution. Verify your bound by the substitution
method.

4.2-4
Use a recursion tree to give an asymptotically tight solution to the recurrence
T (n) = T (n − a) + T (a) + cn, where a ≥ 1 and c > 0 are constants.

4.2-5
Use a recursion tree to give an asymptotically tight solution to the recurrence
T (n) = T (αn) + T ((1− α)n) + cn, where α is a constant in the range 0 < α < 1
and c > 0 is also a constant.



4.3 The master method 75

ity condition holds for f (n). For sufficiently large n, a f (n/b) = 3(n/4) lg(n/4) ≤
(3/4)n lg n = c f (n) for c = 3/4. Consequently, by case 3, the solution to the
recurrence is T (n) = !(n lg n).

The master method does not apply to the recurrence

T (n) = 2T (n/2) + n lg n ,

even though it has the proper form: a = 2, b = 2, f (n) = n lg n, and nlogb a = n.
It might seem that case 3 should apply, since f (n) = n lg n is asymptotically
larger than nlogb a = n. The problem is that it is not polynomially larger. The ratio
f (n)/nlogb a = (n lg n)/n = lg n is asymptotically less than nϵ for any positive
constant ϵ. Consequently, the recurrence falls into the gap between case 2 and
case 3. (See Exercise 4.4-2 for a solution.)

Exercises

4.3-1
Use the master method to give tight asymptotic bounds for the following recur-
rences.

a. T (n) = 4T (n/2) + n.

b. T (n) = 4T (n/2) + n2.

c. T (n) = 4T (n/2) + n3.

4.3-2
The recurrence T (n) = 7T (n/2)+n2 describes the running time of an algorithm A.
A competing algorithm A′ has a running time of T ′(n) = aT ′(n/4) + n2. What is
the largest integer value for a such that A′ is asymptotically faster than A?

4.3-3
Use the master method to show that the solution to the binary-search recurrence
T (n) = T (n/2) + !(1) is T (n) = !(lg n). (See Exercise 2.3-5 for a description
of binary search.)

4.3-4
Can the master method be applied to the recurrence T (n) = 4T (n/2) + n2 lg n?
Why or why not? Give an asymptotic upper bound for this recurrence.

4.3-5 ⋆
Consider the regularity condition a f (n/b) ≤ c f (n) for some constant c < 1, which
is part of case 3 of the master theorem. Give an example of constants a ≥ 1
and b > 1 and a function f (n) that satisfies all the conditions in case 3 of the
master theorem except the regularity condition.



Problems for Chapter 4 85

Problems

4-1 Recurrence examples
Give asymptotic upper and lower bounds for T (n) in each of the following recur-
rences. Assume that T (n) is constant for n ≤ 2. Make your bounds as tight as
possible, and justify your answers.

a. T (n) = 2T (n/2) + n3.

b. T (n) = T (9n/10) + n.

c. T (n) = 16T (n/4) + n2.

d. T (n) = 7T (n/3) + n2.

e. T (n) = 7T (n/2) + n2.

f. T (n) = 2T (n/4) +√n.

g. T (n) = T (n − 1) + n.

h. T (n) = T (
√

n) + 1.

4-2 Finding the missing integer
An array A[1 . . n] contains all the integers from 0 to n except one. It would be easy
to determine the missing integer in O(n) time by using an auxiliary array B[0 . . n]
to record which numbers appear in A. In this problem, however, we cannot access
an entire integer in A with a single operation. The elements of A are represented
in binary, and the only operation we can use to access them is “fetch the j th bit
of A[i],” which takes constant time.

Show that if we use only this operation, we can still determine the missing inte-
ger in O(n) time.

4-3 Parameter-passing costs
Throughout this book, we assume that parameter passing during procedure calls
takes constant time, even if an N -element array is being passed. This assumption
is valid in most systems because a pointer to the array is passed, not the array itself.
This problem examines the implications of three parameter-passing strategies:



86 Chapter 4 Recurrences

1. An array is passed by pointer. Time = !(1).

2. An array is passed by copying. Time = !(N), where N is the size of the array.

3. An array is passed by copying only the subrange that might be accessed by the
called procedure. Time = !(q − p + 1) if the subarray A[p . . q] is passed.

a. Consider the recursive binary search algorithm for finding a number in a sorted
array (see Exercise 2.3-5). Give recurrences for the worst-case running times
of binary search when arrays are passed using each of the three methods above,
and give good upper bounds on the solutions of the recurrences. Let N be the
size of the original problem and n be the size of a subproblem.

b. Redo part (a) for the MERGE-SORT algorithm from Section 2.3.1.

4-4 More recurrence examples
Give asymptotic upper and lower bounds for T (n) in each of the following recur-
rences. Assume that T (n) is constant for sufficiently small n. Make your bounds
as tight as possible, and justify your answers.

a. T (n) = 3T (n/2) + n lg n.

b. T (n) = 5T (n/5) + n/ lg n.

c. T (n) = 4T (n/2) + n2√n.

d. T (n) = 3T (n/3 + 5) + n/2.

e. T (n) = 2T (n/2) + n/ lg n.

f. T (n) = T (n/2) + T (n/4) + T (n/8) + n.

g. T (n) = T (n − 1) + 1/n.

h. T (n) = T (n − 1) + lg n.

i. T (n) = T (n − 2) + 2 lg n.

j. T (n) = √nT (
√

n) + n.

4-5 Fibonacci numbers
This problem develops properties of the Fibonacci numbers, which are defined
by recurrence (3.21). We shall use the technique of generating functions to solve


