Exercises

4.2-1

Use a recursion tree to determine a good asymptotic upper bound on the recurrence $T(n)=3 T(\lfloor n / 2\rfloor)+n$. Use the substitution method to verify your answer.

4.2-2

Argue that the solution to the recurrence $T(n)=T(n / 3)+T(2 n / 3)+c n$, where c is a constant, is $\Omega(n \lg n)$ by appealing to a recursion tree.

4.2-3

Draw the recursion tree for $T(n)=4 T(\lfloor n / 2\rfloor)+c n$, where c is a constant, and provide a tight asymptotic bound on its solution. Verify your bound by the substitution method.

4.2-4

Use a recursion tree to give an asymptotically tight solution to the recurrence $T(n)=T(n-a)+T(a)+c n$, where $a \geq 1$ and $c>0$ are constants.

4.2-5

Use a recursion tree to give an asymptotically tight solution to the recurrence $T(n)=T(\alpha n)+T((1-\alpha) n)+c n$, where α is a constant in the range $0<\alpha<1$ and $c>0$ is also a constant.

Exercises

4.3-1

Use the master method to give tight asymptotic bounds for the following recurrences.
a. $T(n)=4 T(n / 2)+n$.
b. $\quad T(n)=4 T(n / 2)+n^{2}$.
c. $T(n)=4 T(n / 2)+n^{3}$.

4.3-2

The recurrence $T(n)=7 T(n / 2)+n^{2}$ describes the running time of an algorithm A. A competing algorithm A^{\prime} has a running time of $T^{\prime}(n)=a T^{\prime}(n / 4)+n^{2}$. What is the largest integer value for a such that A^{\prime} is asymptotically faster than A ?

4.3-3

Use the master method to show that the solution to the binary-search recurrence $T(n)=T(n / 2)+\Theta(1)$ is $T(n)=\Theta(\lg n)$

4-1 Recurrence examples

Give asymptotic upper and lower bounds for $T(n)$ in each of the following recurrences. Assume that $T(n)$ is constant for $n \leq 2$. Make your bounds as tight as possible, and justify your answers.
a. $T(n)=2 T(n / 2)+n^{3}$.
b. $\quad T(n)=T(9 n / 10)+n$.
c. $T(n)=16 T(n / 4)+n^{2}$.
d. $T(n)=7 T(n / 3)+n^{2}$.
e. $T(n)=7 T(n / 2)+n^{2}$.
f. $\quad T(n)=2 T(n / 4)+\sqrt{n}$.
g. $T(n)=T(n-1)+n$.
h. $T(n)=T(\sqrt{n})+1$.

4-4 More recurrence examples

Give asymptotic upper and lower bounds for $T(n)$ in each of the following recurrences. Assume that $T(n)$ is constant for sufficiently small n. Make your bounds as tight as possible, and justify your answers.
a. $T(n)=3 T(n / 2)+n \lg n$.
b. $T(n)=5 T(n / 5)+n / \lg n$.
c. $T(n)=4 T(n / 2)+n^{2} \sqrt{n}$.
d. $T(n)=3 T(n / 3+5)+n / 2$.
e. $T(n)=2 T(n / 2)+n / \lg n$.
f. $\quad T(n)=T(n / 2)+T(n / 4)+T(n / 8)+n$.
g. $T(n)=T(n-1)+1 / n$.
h. $T(n)=T(n-1)+\lg n$.
i. $\quad T(n)=T(n-2)+2 \lg n$.
j. $\quad T(n)=\sqrt{n} T(\sqrt{n})+n$.

