it Joint
:cture,”
v, New

dordan,

ctions,”
nuary),
el come-

K. Van
\nnual
¢ 13-16,

port for
947,

3.D. La
. 1999
‘CD99,

ruments
1en Uni-
ne ¢54x
alta.com
-11 fam-

architec-

m of the
e (June),

company
“all Joint

ecture of

hitecture

«. Tromp,
n [1999],
r Design
586-592,
' York.

Tex.. SA

Exercises 161

Wiecek. C.[1982]. A case study of the VAX 11 instruction set usage for compiler execu-

ton.” Proc. Sympositm on A hitectural Support for Pro » Languages and
Clperafing Svstents (March), IEEE/ACM, Palo Alto, Calif
Wull, W. [1981]. “Compilers and compuler arc hitecture,” Comy
Exercises
Solutions to the “starred™ exercises appear in Appendix B.

2.1 |10/15] <2.2> For the following assumc that values A, B, C, D, and E reside in
memory. Also assume that instruction operation codes are represented in 8 bits,
memory addresses are 64 bits, and register addresses are 6 bits
a. [10] <2.2> For each instruction sel architecture shown in Figure 2.2, how

many addresses, or names, appear in each instruction for the code to compute
C = A + B. and what is the total code size?

b. [15] <2.2> Some of the instruction set architectures in Figure 2.2 destroy
operands in the course of computation. This loss of data values from proces-
sor internal storage has performance consequences For each architecture n
Figure 2.2, write the code sequence to compute C=A + B followed by D =
A — E. In your code, mark each operand that is destroyed during execution
and mark each “overhead™ nstruction that is included just to overcome this
loss of data from processor internal storage. What 1s the total code size, the
number of bytes of instructions and data moved to or from memory, the num-
ber of overhead instructions, and the number of ov erhead data bytes for each
of your code sequences?

& 2.2 |15] <2.2> Some operations on two operands (subtraction, for example) are nol
commutative. What are the advantages and disadvantages of the stack, accumula
tor. and load-store architectures when executing noncommutative operations?

2.3 <23 The value represented by the hexadecimal number 434F
is to be stored in an aligned 64-bit double word

a. |15] <2.3> Using the physical arrangement of the first row in Figure 2.5,

write the value to be stored using Big Endian byte order. Next, interpret each

byte as an ASCII character and below each byte write the corresponding char-
acter, forming the character string as it would be stored in Big Endian order
b. [15] <2.3> Using the same physical arrangement as in part {a). write the value

(o be stored using Little Endian byte order and below each byte write the cor-
responding ASCII character.

[10] <2.3> What are the hexadecimal values of all misaligned 2-byte words

¢
that can be read from the given 64-bit double word when stored in Big Endian
byte order?

d. [10] <2.3> What are the hexadecimal values of all misaligned 4-byte words

that can be read from the given 64-bit double word when stored in Little

Endian byte order?

162

Chapter Two Instruction Set Princiy /

2.4 [20/15/15/20] <2.2. 2.3, 2.10> Your task is to compare the memory efficiencyi§
four different styles of instruction set architectures. The architecture styles a
1. Accumilator—All operations occur between a single register and a memes
location.

2. Memon rv—All instruction addresses reference only memory locations

3. Stack—All operations occur on top of the stack. Push and pop are the 66§
instructions that access memory;: all others remove their operands from 88
stack and replace them with the result. The implementation uses a hardyig
stack for only the top two stack entries. which keeps the processor circuitve
small and low cost. Additional stack positions are kept in memory locatio
and accesses to these stack positions require memory references.

4. Load-store—All operations occur in registers, and register-to-register insi

tions have three register names per instruction.

To measure memory efficiency, make the following assumptions about all

instruction sets:

m All instructions are an integral number of bytes in length.
m The opcode is always | byte (8 bits).

® Memory accesses use direct, or absolute, addressing.

m The variables A, B, C, and D are initially in memory.

Dk a. [20] <2.2.2.3> Invent your own assembly language mnemonics (FigureZ¥
provides a useful sample to generalize), and for each architecture write #
best equivalent assembly language code for this high-level language co

sequence!

D=A-B;

b. [15] <2.3> Label each instance in your assembly codes for part (a) whes
value is loaded from memory after having been loaded once. Also label e
instance in your code where the result of one instruction is passed to anoie
mstruction as an operand, and further classify these events as involving s

age within the processor or storage in memory

c. [15] <2.10> Assume the given code sequence is from a small, embedds

computer application, such as a microwave oven controller, that uses 1658
memory addresses and data operands. If a load-store architecture is used
assume it has 16 general-purpose registers. For each architecture answer i
following questions: How many instruction bytes are fetched? How masg
bytes of data are transferred from/to memory? Which architecture 15 mos
efficient as measured by code size? Which architecture is most efficient &

measured by total memory traffic (code + data)?

uc-

our

T
b3

he
de

d. [20] <2.10> Now assume a processor with 64-bit memory addresses and data

: O part (¢) How have

perands. For each architecture

QOr e chosen i

for a load-store archi

enoths for branches and memaory

i + 1 il Y -
el iengin n o

ure with full opt

VIIPS [rom the ave

e 2.32. Assume that the misce

Number of offset
magnitude bits Cumulative data references Cumulative branches

(1 (i 0
R} 2 ol
)
{y () LN
(]
1 g |
()4 1
G6Y 25
I 6 i
|
1
| o
GG ()
H.h fy
8] vy A
1 0S|
|5 (W) noNt
164 Wl 18]
110 T
| 100} g

Figure 2.42 The second and third columns contain the cumulative percentage of
; that can be accommodated with the

the data references and branches, respectiv
g number of bits of magnitude in the displacement. The

164

hapter Two fnst

a. |20] <2.3

including the sign bit. What is the ax

Suppose offsets are permit

> (). 8, 16, or 24 bits in e

1 OF an exe ed instruct

14

D. [20] <2.3= Suppose 1

want a hixed-length instruction and we chose

nstruction length (for everything, including ALL mstructions). For every

set of longer than § bits, additional instruction(s) arc required. Determing g

:s fetehed in this machine with fixed instructios

number of nstr

tion by
!'_

versus those fetched with a byte-variable sized instruction as defined 8

part (a)

) -~y 2 " : 'l { 3] 1
€. |20] <2.3> Now suppose we use a fixed offset length of 24 bits so thats

additional instruction is ever required. How many i iction hytes wouldi

required? Compare this result to your answer to part (b)

23> Several researchers have sug

M
il

ted that adding a register-mems

address

» mode 1o a load-store machine might be useful. The ic

L 1S 10 repis

sequences ol

LOAD

Assume the new instruction will cause the clock cycle to increase by 5%, Ul

mstruction frequencies for the gee benchmark * maching

the load-s

LOTE

Fieure 2.32. The

instruction attects only the clock cycle and not the CPI

ol the loads must be climinated for the m chie

at least the same performance?

) |-'|i
11t .

2.3> Show a situation in a multiple instruction sequence

of R1 followed immediately by a use ol R1 (with sor

type of opcode) coulé

not be replaced by a sn

¢ instruction of the form proposed, assumine e

the same opci e exisis.

2.7 [25] <2.2-2.5> Find an instruction set manual for some older machine (libre

bookshel

and privi

s are good places to look)

1he mstruction s

with the discriminating characteristics used in | iz

ires 2.3 and 2.4. Write the ool

juence for this machine

the statements in 1(b). The size of 8

data need not be the same as in Exercise 2. 1(b) if the word size is small

older machine

-
s
()
oo
b}
-)

Assume that A and B are an

s ot 64-bit integers. and C and 1 are

Assume that all data values and their addresses are kep

I memory (at address

0. 5000, 1500, and 2000 for A, B. C. and 1. respectively)

except whe

operated on. Assume that values in registers are lost een iterations

the loop.

th,

bit
ft-
he
Le
in

79
2.10
.11

Exercises 165

Write the code for MIPS. How many instructions are required dvnamically” How

many memory-data references will be executed? What is the code size i bytes!
[20] <2.2. 2.12> For this question use the code sequence of Exercise 2.8, but pul
the scalar data—the value of 1. the value of C. and the addresses of the array
variables (but not the actual array)—in registers and keep them there whenever
possible

Write the code for MIPS. How many instructions are required dynamically? How
many memory-data references will be executed? What is the code size n bytes?

[5] <2.12> When designing memory systems it becomes useful to know the

Ire
quency of memory reads versus writes and also accesses for instructions versus
those for data. Using the average instruction mix information for MIPS in Figure

2,32, tind

percentage of all memory accesses for data

m the|

m the percentage of data accesses that are reads
B the percentage of all memory accesses that are reads
Ignore the size of a datum when counting accesses

[18] <2.12> Compute the effective CPI for MIPS using Figure 2.32. Suppose we

have made the following measurements of average CP1 tor instructions:

Instruction Clock cycles
AITALU instructions 1.0
| cads-stores 1.4

Conditional branches

laken S0
Not taken .5

lumps

branches are taken and that all instructions in

Assume that 60% of the conditiona
the “other” category of Figure 2.32 are ALU instructions. Average the mstruction
frequencies of gap and gee to obtain the instruction mix.

B | e

[20/10] <2.3 2> Consider adding a new index addressing mode to MIPS. The
addressing mode adds two registers and an 11-bit signed offset to get the effective

iIil\lIL“"‘-.

will be changed so that code sequences of the form

Our compi

R1, RZ
100(R1) (or store)

will be replaced with a load (or store) using the new addressing mode. Use the

overall average instruction frequencies from Figure 2.32 in cvaluating this

addition.

2

- J

w 2.14
) [

< J

d 2 | <

| 20] -

hat the addressing mode can be used for 10% of e

displacement loads and stores (accounting for both the frequency of this ty

ol address calculation and the shorter offset). What is the ratio of instruct

count on the enhanced MIPS comp nal MIPS?

D, [10]<2.3, 2.12> If the new addressing mode lengthens the ¢l i
which machine will be Faster and by how much?
W[<2.7> Many computer manufacturers now include tools or simulators t

allow you to measure the instruction set usace of a4 user

Among

methods in use are machine simulation. hardware-supported trapping. and acog

piler technique that instruments the object code module by inserting coun

ind a processor available to vou that includes such a ol. Use it to measure e

mstruction sct mix tor one of the SPEC CPU2000 benchmarks reported on in

chapter. Compare the results to those shown in this chapter.

> One use of saturating arithmetic 1s for real-time applications (i

may fail their response time constraints if processor effort is diverted to ha

T

rithmetic exceptions. Another benefit is that the result mav be more desiral

3

. or example, an image array of 24-bit picture elements (pixels), each cos
prised of three 8-bit unsigned integers. representing red. ereen. and blue col
]

ghiness, that represent an imag arger values are brighter

[10] <2.8> Brighten the two pixels ESFID7 and AAC4DE by adding

each color component using unsigned arithmetic and ignoring over

maintain a hixed total instruction-processing time. The values are

hexadecimal. What are the res

ulting pixel values? Are tl

* pixels brightened

D > Repeat part () but use saturating arithmetic instead. What are §
pixel values? Are the pixels brightened?

20] <2.9=> A condition code is a bit of processor state updated each time cerae

ALU operation(s) execute to reflect some aspect of the execution. For example

a subtract instruction may set a bit if the result is negative and reset it for a posi

tive result. A later operation can refer

» this specilic “result sign™ conditios

code bit to glean information about the subtract resullt. provided no ot

tion of the set that updates the result sien condition code has executed in (he

meantime. The concept of dedicated condition codes can be generalized to @

ol general-purpose conditi

n bits. An instruction is encoded to use any op 1

1eral-purpose condition bits, as selected by the compiler. What ar

dvantages and disadvantages of a collection of cenerul-p > condition bits
as compared to those of dedicated condition codes (see Figure 2.21)? !
25/15] <2.7. 2.11> Find a C compiler and compile the code shown in Exercis

rone ol the machines covered in this book Compile the code both optt
mized and unoptimized

211> Find the nstruction count. dynamic instruction bytes fefe

and data accesses done for both the optimized and unoptimized versions,

t the
type
tion

that
the
om-
lers.
the
this

that
ling
ble.
am-

lon

) to

1o

the

ain
le,
18-
10N
uc-
the

an
me
the
NS

L
¥

2.17

]
~
o e)

Ny
2.20

2.21

Exercises 167

b. |15]<2.7.2.11>Try to improve the code by hand and compute the same mea
sures as in part (a) for your hand-optimized version.

[30/30] <2.7. 2.11> Small synthetic benchmarks can be very misleading when

used for measuring instruction mixes. This is particularly true when these bench-

marks are optimized. In this exercise, we want to explore these differences. This

programming exercise can be done with any load-store machine.

a. Compile Whetstone with optimization. Compute the instruction mix for the
top 20 most frequently executed nstructions. How do the optimized and
unoptimized mixes compare? How does the optimized mix compare to the
mix for 171.swim from SPEC2000 on the same or a similar machine?

b. |30] <2.7. 2.1 1> Follow the same guidelines as for part (a). but this time use

Dhrystone and compare it with gcc

[10] <2.11> Consider this high-level language code sequence of three statements:

A=B+C(;
B=A+C;
D=A-8B;

Use the technique of copy propagation (see Figure 2.25) to transform the code
sequence to the point where no operand is a computed value. Note the instances
in which the transformation has reduced the computational work ol a statement
and those cases where the work has increased. What does this suggest about the
technical challenge faced in trying to satisfy the desire for optimizing compilers?
[20] <2.2, 2.10, 2.12> The design of MIPS provides for 32 general-purpose regis
ters and 32 floating-point registers. If registers are good. are more registers bet
ter? List and discuss as many trade-offs as you can that should be considered by
instruction set architecture designers examining whether to. and how much to.
increase the numbers of MIPS registers.

]

[30] <2.3, 2.10, 2.12> MIPS has only a three-address format for its R-tvpe
register-register instructions. Many operations might use the same destination
register as one of the sources. We could introduce a new instruction format into
MIPS called R, that has only two addresses and is a total of 24 bits in length. By
using this instruction type whenever an operation had only two different register
operands, we could reduce the instruction bandwidth required for a program
Modity the MIPS simulator to count the frequency of register-register operations
with only two different register operands. Using the benchmarks that come with
the simulator, determine how much more instruction bandwidth MIPS requires
than MIPS with the R, formal

[40] <2.2-2.12> Very long instruction word (VLIW) computers are discussed in
Chapter 4. but increasingly DSPs and media processors are adopting this style of
instruction set architecture. One example is the TI TMS320C6203. See if you can
compare code size of VLIW to more traditional computers. One attempt would

be to code a common kernel across several machines. Another would be 1o get

168

Chapter Two Instruct

2.23

m Set Pring 1ples and | Xampies

access to compilers for each machine and compare code sizes. Based on your
data, is VLIW an appropriate architecture for embedded applications? Why g
why not?

[35] <2.2-2.8> GCC targets most modern instruction set architectures (s

if). Create a version of gee for several archilee

tures that you have access to, such as 80x86. Alpha. MIPS, PowerPC, i

SPARC. Then compile a subset of SPEC CPU2000) integer benchmarks and cre
ate a table of code sizes. Which architecture is best for each program?

[25] <App. C> How much do the instruction set variations among the RISC
machines discussed in Appendix C affect performance! Choose al least three
small programs (e.g., a sorting routine), and code these programs i MIPS and
two other assembly languages. What is the resulting difference in instructiog

count?

[Discussion] <2.2-2.12> Where do instruction sets come from? Since the earliest
computers date from just after World War 11, it should be possible to derive the
ancestry of the instructions in modern computers. This project will take a good
deal of delving into libraries and perhaps contacting pioneers, but see if vou ca
derive the ancestry of the instructions in, say, MIPS

[Discussion] <2.2-2.15> What are the economic arguments (1.¢., more machines
sold) for and against changing instruction set architecture in desktop and server
markets? What about embedded markets?

[Discussion] <1, 2> As we shall see in C hapter 3, many desktop microprocessas
have a microinstruction set architecture (internal) that is different from the
instruction set architecture (external) that software uses. For most such Mmicropro-
cessors, hardware translates each external instruction to internal instruction(s)
when the instruction is fetched. However, at least one micr YPrOCEsSor Uses an
interpreter to translate instructions one at a time for the hardware and, whei i
detects frequently used code segments, invokes a compiler on the fly to compik
those segments into optimized hardware instruction sequences and saves the
compiled segments for reuse. List the pros and cons of each approach, comment
Ing on at least the following issues: impact on clock cycle time, die size, code
size. CPI, software compatibility, and execution time of the prograim.

