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Abstract. This paper proposes a way of incorporating fuzzy tempo-
ral reasoning within diagnostic reasoning. Disorders are described as an
evolving set of necessary and possible manifestations. Fuzzy intervals are
used to model ill-known moments in time (e.g. the beginning and end of
a manifestation) and intensity of manifestations (e.g. ”high” fever). The
paper discusses several measures of consistency between a disorder model
and the patient data, and defines when the manifestations presented by
the patient can be explained by a disorder.

1 Introduction

Temporal information and temporal reasoning are important aspects of diagnos-
tic reasoning [9, 8,2, 13], specially in some domains, such as, for example, the
diagnostics of infectious diseases.

That is the case, for instance, of the intoxication caused by ingestion of
poisonous mushrooms of the species Amanita phalloides, A. virosa, and A. verna
[10, Chap. 81]. It always causes abdominal cramps and nausea within 6 to 24 h
from ingestion, lasting for up to 24 h, followed by a period of 1 to 2 days of no
symptoms, finally followed by hepatic and renal failure (leading to death in 50%
of the cases). This is called the model of the disease.

Faced with a case in which the patient has ingested mushrooms, felt abdom-
inal cramps and nausea, but has not yet shown symptoms of renal and hepatic
failure, one should not rule out intoxication by the Amanita family without
verifying whether there has been enough time for those symptoms to develop.

The main goal of this paper is to answer the following questions:

— when is the model of a disease consistent with the case information and to
what degree. For example, can we state that the model of intoxication with
Amanita is consistent with the case of a patient who suffered from nausea
and abdominal cramps for three days and then showed signs of renal failure
and loss of sensation in the limbs two days later.



— when is the disease model categorically consistent the case information, that
is, have all necessary symptoms in the model occurred (provided that they
had had enough time to occur). If a patient had nausea and abdominal
cramps for one day, then showed signs of renal failure two days later, but
did not present signs of hepatic failure, can we consider that the model and
the case are categorically consistent.

— when is a single disorder capable of explaining all symptoms of the present in
the case. In the example of the patient that exhibited nausea and abdominal
cramps, followed by renal failure and loss of sensation on the limbs, and given
that the doctor had not made any test for hepatic failure, does poisoning by
Amanita explain all symptoms, or in other words, is poisoning by Amanita
a possible diagnostic.

— if we consider that a particular disease explains all the patient symptoms,
what else do we know about other manifestations that the patient may have
had, or will develop in the future.

In our model all temporal information is modeled by fuzzy sets, since most of
the time we are dealing with information furnished by human beings, which are
usually tainted with vagueness. For instance, a patient will normally tell that
the interval between ingestion and cramps was “around 4 to 5.5 hours”. On the
other hand, a doctor would hardly discard the hypothesis of ingestion of Amanita
if the patient has developed abdominal cramps exactly 25 hours after ingesting
some kind of mushroom, instead of the expected 24 hours.

The use of fuzzy sets allow us moreover to obtain a degree of consistency
between a model and a case. For instance, the 25 hours that elapsed between
ingestion and cramps, although beyond the specified 24 hours, is not too far
apart. But if it is known that this interval was precisely 36 hours, one is much
more inclined to state the inconsistency. Thus one would like to have a concept
of “degree of consistency,” such that if the elapsed time between ingestion and
cramps in the case is precisely known and is between 6 to 24 hours, then one
can fully state the consistency of case and model, and this degree decreases the
further away from the interval the case information is.

The next section brings definitions about fuzzy sets, defines what is the model
of a disease and what is the information for a case. Section 3 provides answers
to some of the questions raised above: when is the case temporally consistent
with the model, when is the case categorically consistent with the model, and
when is the model an explanation for the case. It also includes a subsection
on intensity consistency. Section 4 brings some current research material about
dealing with manifestations which have a known frequency of occurrence inside
a given disorder. Finally section 5 discusses the limits of the model proposed
and future work.



2 Basic Definitions

2.1 Fuzzy Intervals

A fuzzy set A in © [4] is characterized by a membership function p4 : © — [0, 1],
such that 3z € O,pa(x) = 1. The height of a fuzzy set A is calculated as
h(A) = sup,co ta(x), and A is said to be normalized when h(A) = 1.

Let A and B be fuzzy sets in ©. The sum A @ B, the subtraction A © B and
the negation —A are respectively characterized by membership functions [4]:

- ,U/AGBB(Z) = Sup{(z,y)/z=w+y}m7in(:u/14(:E)J/J'B(y))a
- P’ASB(Z) = Sup{(:c,y)/z:z—y}mzn(/j’fl(m)a UB (y))
— p-a(2) = pa(=2).

In this work, a fuzzy set A such that p4 is convex will be called a fuzzy
interval. An interval will be positive if © is the real line, and Vz < 0, u(z) = 0.

In some cases we will assume that the fuzzy interval is trapezoidal, as in
figure 1. In that case, the interval will be represented by a 4-tuple (a, b, ¢, d).
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Fig. 1. A trapezoidal fuzzy interval

A fuzzy set A = (ay,as,a3,a4), such that a; = as and a3 = a4 is a convex
crisp set, and will sometimes be denoted by A = (a4, az), throughout this paper.
For a trapezoidal interval A = (a1, as, a3, as) the range [as, as], where p4(z) =
1, will be called core. The range [a;, a4], where pa(z) > 0, will be called support.

For two trapezoidal intervals A = (a1, a2, a3, a4), and B = (b1, ba, b3, bs), the
@ and © operations are simply A ® B = (a1 + b1, a2 + bz, as + bz, a4 + bs), and
ASB= (a1 —b4,a2 —b3,a3 — b2,(l4 —bl).

Throughout this paper, we shall make use of four particular fuzzy intervals.
Let 6 be a moment in ©. The fuzzy intervals describing the possibility of an
event occurring at any time, exactly at 0, after 6, and before § are respectively
defined as:

— ILanytime = 4, such that Vz € O, pa(z) =1,

— I_p = A, such that pa(z) =1,in z = 6, and pa(z) = 0, otherwise.

— I>g = A, such that Vo € O, if x > 0, pa(x) =1, and pa(x) = 0, otherwise.
— I<y = A, such that Vo € O, if x <0, pua(x) =1, and pa(x) = 0, otherwise.



We also use 6y to denote the present moment, and define Ijeforenow = I<g, and
Iafternow = -[290-

Finally, we will define that an interval A is tighter than an interval B (or,
informally narrower) if pa(z) < pg(z) for all z € @. If A and B are trapezoidal,
then A = (al,aQ,ag,a4) is tighter than B = <b1,b2,b3,b4>, iff al Z bl, as Z bg,
as S b3, and ag S b4.

2.2 The Knowledge Base

The knowledge base for a fuzzy temporal/categorical diagnostic problem is the
information about disorders and how they evolve. The knowledge base is given
by the tuple {©,D, M, N, P,V,T) where:

— O is a time scale.

— D is the set of disorders.

— M the set of manifestations.

— N is the necessary effects function that associates to each disorder d; a set
M, C M of manifestations that d; necessarily causes. That is, if N(d;) =
{m4, ms,m7} then it is not possible to have the disorder d; without having
eventually the symptoms m4, ms and ms.

— P is the possible effects function that associates to each disorder d; a set
My, C M of manifestations that d; may causes.

— We will define the derived function E, effects of a disorder, as E(d) = N(d)U
P(d).

— V associates to each disorder a set of (instantaneous) events. These events
will be used to describe the evolution of the disorder. Among the events in
V(d;) it must be included events that correspond to the beginning of all
manifestations in E(d;). Furthermore, V(d;) can include events that corre-
spond to the end of some of the manifestations in E(d;) and can also include
other, non-observable events. For example, a common non-observable event
in infectious diseases is the infection itself.

— T is a function that associates to some pairs of events e;,e; € V(d;) a fuzzy
temporal interval 7 (d;)(e;, e;) = m which states that (according to the model
for the disorder d;) the elapsed time between the event represented by e; and
the event represented by e; must be within the fuzzy temporal interval .

Together, V(d;) and T (d;) can be better understood in terms of a graph of
events. The events in V(d;) are the nodes of the graph and if 7(d;) is defined
for the pair of events (e;, e;) then there is a directed arc from e; to e; and the
value in the arc is 7 (d;)(e;, e;). We will call such interpretation as the temporal
graph of the disorder.

2.3 Case Information

For a particular diagnostics problem, one needs, besides the knowledge base
about the disorders, a particular case. The case information should describe the



manifestations that the patient is suffering and have suffered from, temporal
information about those when those symptoms started and ended, and informa-
tion about manifestations that the diagnostician knows are not present in the
patient.

Information about a given case is modeled by a tuple Ca = (M+, M~
EVT, TIME™, 6,), where

— M is the set of manifestations known to be or to have been present in the
case.

— M~ is the set of manifestations known to be absent from the case.

— EV™ is a set of events for which one has temporal information. Among the
events in EV™T are the ones that represent the beginning of each manifesta-
tion in M*. Events representing the end of the manifestations in M+ may
also belong to the set EVT.

— TIMET is a function that associates to each event e € EV™T a fuzzy temporal
interval that represents the possible moments in which that event happened.

— 6y is the moment of the diagnosis.

For instance, in our example, we could have a piece of information such as
”the patient had nausea (m2), starting 24 hours before the consultation, which
lasted for about 2 or 3 hours, and he is sure he did not have abdominal cramps
(m1)”. We would then have M+ = {my}, M~ = {m;} and EV" = {m} , m§}. If
we consider that the consultation happened at time 0, the temporal information
above would be translated as TIME™ (m}) = (—24,—24) and TIME' (m$) =
(—=22,—21). Of course, all the temporal information can be given in terms of
fuzzy intervals.

3 Consistency Between a Model and a Case

3.1 Minimal Network

Before discussing measures of consistency between a disorder model and a patient
case we will present the concept of a minimal network [11]. Given a set of intervals
among some events, the minimal network is way to compute the intervals between
any two of those events, so that those computed intervals are as tight as possible.

The minimal network for each disorder d; can be computed by the algorithm
below, the Floyd-Warshall algorithm, which computes the shortest path for every
pair of nodes [3, Chap.26]. We assume that the events in V(d;) are arbitrarily
numbered, and that |V (d;)| = n. The algorithm computes the values ¢;; with
is the interval between events e; and e; in the minimal network for a particular
disorder d;.

fori =1tondo
for j=1tondo
if i :J then t“ = I:O
else if T (d;)(e;, ;) is defined then t;; = T (d;)(e;, €;)
else if T(d;)(ej,e;) is defined then ¢;; = =T (d;)(e;, €;)

U W N~



6 else tij = Ianytime

7 for k =1 tondo

8 fori=1tondo

9 for j=1tondo

10 ti; = t;; N (tix, ® tkj)

We will define a function 7*(d;)(e;,e;) which returns the value of ¢;; in the
minimal network for disorder d;. We will abbreviate 7*(d;)(e;, e;) as m(es, €j),
and if the disorder is clear by the context, we will not use the superscript.

In terms of the graph analogy of V' and 7, the minimal network computes
the transitive closure of the graph, considering that if there is an arc from e;
to e; with value 7(e;, e;), then there should be an arc from e; to e; with value
—m(ei, e;) (line 5 in the algorithm).

3.2 Temporal consistency

In evaluating the temporal consistency between the case and the model, one
needs to compare the elapsed time between the events in the case (the events in
EV™) and the corresponding fuzzy intervals as specified in the model.

The fuzzy temporal distance between the real occurrences of any two events
e; and e; is computed as DIST (e;, e;) = TIME* (e;) © TIME™ (e;).

In order to verify how well these two events fit with the model of a particular
disorder d; we must compare DISTT (e;,e;) with m(e;,e;) if both e; and e;
belong to that disorder model. The temporal distance between two events e;
and e;, taking into account both the model and the case information is given by
DIST" (e, e;) = DISTY (e;, €;) N mi(e;, e;). The degree of consistency between d;
and the case information in relation to the pair of events e; and e; is then the
height of DIST(e;, e;), i.e. h(DIST!(e;, €;)).

Finally, the temporal consistency degree of the disorder d; is defined as:

— a(dy) = inf h(DIST? (e;, e;
ald)=_ b M (eise5))

3.3 Categorical Consistency

Categorical consistency between model and case refers to the fact that a nec-
essary manifestation of a disorder must happen, if the patient is suffering from
that disorder. If the case does not have a manifestation then no disorder that
considers that manifestation necessary can be a possible diagnostic, or be part of
a possible diagnostic. But categorical inconsistency is tightly bound with tempo-
ral reasoning. In fact we can only state that a case is categorically inconsistent
with the model if a necessary manifestation has not occurred and there has been
enough time for it to happen.

One can say that a manifestation m; had had enough time to occur in d; if

— there exists an event e;, which was supposed to happen after the start of
m;, and that event has already occurred;



— or there exists an event e;, which was supposed to happen before the start of
m;, and that event did happen as expected, but the expected elapsed time
between the event and the start of m; has already expired.

Categorical consistency can be calculated as temporal consistency if we as-
sume that all necessary manifestations that have not yet occurred will start
sometime after the moment of consultation. If, because of either the two reasons
above, there is other temporal information that states that this event should
have already started, the temporal consistency index of the disorder will reflect
it. Thus, with the initialization

- VYm; €M N N(dl),TIME+ (mf) = lafternow>

the temporal consistency index a(d;), will reflect both the temporal and the cat-
egorical consistency. We will call this combined temporal and categorical index
as ac(dy).

3.4 Intensity Consistency

In some disorders, it is important to quantify the intensity with which some of its
manifestations occur. For instance, let us suppose a given disease is characterized
by strong fever at some time during its development; in this case, it is reasonable
to suppose that that disorder will be the less plausible, the lower the temperature
of the patient.

We use a fuzzy set Sy, /q, to model the intensity with which m; is expected
to occur in d;. Each fuzzy set S, /q, is defined on its particular domain (2,,,.
For manifestations m; for which intensity is not a relevant matter in d;, Sy,, /q, is
constructed as Vo € 2, , pis,,. (z) = 1. When the intensity can be quantified
by a precise constant x* in (2, Sp,/q, is constructed as K, a, () = 1, if
T =1%, ps,,, 4 (€) = 0, otherwise.

In the same way, the case information contains for each node m; € M* a
fuzzy set S}, defined in (2,,,, describing the intensity with which that manifes-
tation occurred in that particular case.

The consistency of the intensity of a manifestation m;, in relation to a dis-
order dy, is quantified as follows: B(m;, d;) = h(Sp,/a, N S, ).

Finally, for a disorder d its intensity consistency is given by

Bldi) = g};f(dl) B(mi, dy).

i

3.5 Diagnostic Explanation

In this paper we assume that every explanation, or better diagnostic explanation,
is a single disorder that is temporal, categorical, and intensity consistent with the
symptoms and explains all symptoms present in the case. Thus d; is a diagnostic
for the case Ca = (M+, M~ EV*', TIME", 6y, INT™"), if

— Ot (dl) > 0

— B(d)) >0
— for all m; € M+, m; € E(dy).



4 Possibilistic Vertices

So far, we have assumed that experts can give positive opinion about a mani-
festation m; being necessary or only possible in the context of a given disorder,
denoted as m; € N and m; € P respectively. Let us now suppose that for some
of the possible, but not necessary manifestations, the expert is also capable of
giving a frequency with which it occurs in the disorder.

For instance, he may say that “when the patient is suffering from d;, m;
occurs 10% of the time”, which is a way of saying that it is possible for m;
to occur in d;, but that this is rarely the case. Or else, he may say that “
occurs 90% of the time”, which means that m; is not only possible but is very
frequentely present in d;. In the following we outline how our framework could
be extended to deal with this kind of information.

Let f, .+ Ja € [0,1] denote the frequency with which m; is present when
disorder dlzoccurs. The frequency with which m; is absent given that d; occurs,
is denoted by fm;/dl =1- fmjr/d,'

When m; € N for a given d;, ie m; is necessary in d;, we have fmj Ja = 1. On
the other hand, when m; € P for a given d;, ie m; is possible but not necessary in
dy, we have 0 < f, + +/d4 < 1. If a manifestation m; is considered to be impossible
to happen in d; then we have fon- 7 =1.

Let Tt Ja, € [0,1] (respec. m,,- 4, € [0, 1]) denote the possibility degree that
m; is present (respec. absent) when disorder d; occurs. These values are such
that max(wm? Jd Tm= 4,) = 1 and are obtained using the following procedure,
adapted for the dichotomic case from [7]:

iffmj'/dl > fm,-_/dl then {ij/dl = 177Tm,v_/dl =2*fm,_/dl}
else {ij/d, = z*fm?/dl’ﬂ-mi_/dz = ].}

For instance, when m; is always present whenever d; occurs, we have m,_ + +rd = 1
and 7 _ - S = = 0, whereas when m; never happens in d;, we have 7 + J = =0
and 7, - “Ja = = 1. In the example given above, in which m; happens in 90% of
the cases in d;, we have 7 mF/d = =1landm, - 4 = .2. Alternatively, when m;
happens in 10% of the cases in d;, we have « mijq, = -2and m -y =1

Now, we have to compare this information with the patient data, given by
M™ and M~. Also this kind of information could be uncertain, although not
frequentist in nature. For instance, a patient may believe that m; happened
rather than the other way around. We will however assume here that the patient
data is still supplied in terms of M+ and M~

Using M+ and M~ provided by the patient, for each m; in d;, we obtain the
possibility of manifestation having or not occurred, denoted by =, + and 7, -,
in the following manner: ' ’

if mi€M+ then {7Tm-'§-=1,7rm'— =0}
else if m; € M~ then {7+ =0,7, - =1}



else {r,+=1m, - =1}

The compatibility of the occurrence of m; in d; is given by
— (my,dy) = max[min(wm?/dl,Wm:r),min(ﬂ'mi— /dz’ﬂ-mi_)]
and the overall occurrence compatibility of d; is given by:

— P(dy) = infyn,em (M, dy)

Therefore a disorder will have low occurrence compatibility degree when the
patient presents manifestations considered to be rare in d;, and also when if he
does not present manifestations considered to be frequent in d;. This scheme is
equivalent to that presented in [6].

Using the original M+, M~, N and P, the other indices (temporal, categori-
cal...) remain unchanged, and ¥ (d;) can be seen as only an additional information
for the physician. However, they could be used to affect the other indices, but
this remain an issue for future investigation.

5 Conclusions and future work

This work presented a model to include fuzzy temporal information, categorical
information, and (fuzzy) intensity information within a diagnostic framework.
We provided answers to the following questions: when is the temporal informa-
tion in the case consistent with a disorder model, when is the case categorically
consistent with the model, and how information about intensity can be included.
We have also outlined how to treat “fuzzy” categorical information, making it
possible to model pieces of information furnished by a medical expert such as
“in disorder d;, manifestation m; is very likely to occur” or “in disorder d;, m;
will seldom occur”.

In this paper we are not concerned on how the temporal information about
the disorder model (7(d;)) is obtained (see [1] for details about this problem).
Also, we are not concerned on how the temporal information about the case
(TIME™") is obtained, and assume here that the information about the case
is internally consistent. [11] discusses this problem, and proposes a method to
evaluate the consistency of the information and the most precise intervals for the
occurrence of the events using minimal networks. Other researchers have also
discussed similar issues [5]. The approach presented here yields only possibilistic
compatibility degrees, but could be modified to obtain also entailment degrees,
as in [11,12].

This work extends a previous work by the authors [14]. In [14] it is assumed
that the temporal graph of the disorder is a tree. In order to calculate the tempo-
ral consistency of the case and the model, the case information was propagated
towards the root; any temporal inconsistency would result in conflicting intervals
for the root. We have also been studying, once a diagnostic has been made, how
can one make forecasts about future manifestations, past manifestations that



have not been tested for, and so on, based not only on what the disorder model
predicts but also based on how fast the case is progressing [15].

In the future, we intend to exploit the case in which the set of all manifesta-
tions presented by the patient can only be explained by a set of disorders, rather
than by a single disorder, as addressed here. When all disorders in an explana-
tion do not have any common manifestations, it seems that the theory above
could be generalized by calculating the consistency indices for each disorder and
attributing global consistency indices to the explanation as the minimum of the
disorder’s indices. However, it is not yet clear what should be done when a set
of disorders explaining the manifestations have manifestations in common.
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