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Abstract. In this work we propose a temporal extension to the Parsimo-
nious Covering Theory (PCT). PCT provides a theoretical foundation for
the diagnostic reasoning process as an abductive reasoning based associ-
ations between causes with their consequences. Our temporal extension
of PCT allows one to associate to a disease a temporal evolution of its
symptoms.

The elimination of temporally inconsistent hypotheses minimizes one of
the greatest problems of PCT: the solution for a particular diagnsotic
problem may include a large number of alternative hypotheses. Further-
more, the inclusion of temporal aspects to an extension of PCT that
includes probabilistic information also eliminates the problems of incor-
rectly rejecting hypotheses if a necessary symptom has not yet occurred.

1 Introduction

Diagnostic reasoning, that is, finding causes that explain observed symptoms,
is one of the major application areas for knowledge-based systems. In some
domains, time is an important aspect of the diagnostic reasoning itself: knowing
when a symptom occurred may be as an important information as knowing just
that the symptom did occur. In some medical diagnostic applications, temporal
information about the occurrence of the symptoms s vital for a correct diagnostic
and some “second generation medical expert systems” [Con89, Ham87] tried to
deal with this aspect.

On the other hand, the diagnostic reasoning itself, independently of temporal
considerations, does not have an agree upon theoretical foundation. [Pen90] pro-
posed such a theoretical foundation under the name of Parsimonious Covering
Theory (PCT). But PCT is still a theory of reasoning about static symptoms,
in the following sense. PCT is based on a model that associates to each disease
a set of symptoms it may cause. Thus, PCT assumes that, at the moment of
diagnostic, all symptoms are observable and that the order of occurrence of these
symptoms is irrelevant for the diagnostic.

This work extends the PCT model in such a way that to each disease one
associates evolutions of symptoms (or sets of possible histories of symptoms).
Thus, at diagnostic time, one will not just describe the symptoms present, as
one would in a static diagnostic system, but describe the whole evolution of the
symptoms. Even symptoms that are no longer present may be relevant for the
diagnostic process.



This paper is organized as follows: section 2 briefly defines the simplest ver-
sion of PCT. Section 3 extends this theory to incorporate temporal knowledge.
Section 4 presents the solution of the problems that may arise when probabilistic
knowledge is incorporated into PCT. Finally, section 5 presents the conclusions
and the limitations of proposed temporal reasoning.

2 Basics of Parsimonious Covering Theory

First we will briefly introduce the PCT. In the basic version of PCT [Pen90],
one uses two finite sets to define the scope of diagnostic problems (see Figure 1).
They are the set D, representing all possible disorders d; that can occur, and
the set M, representing all possible manifestations m; that may occur when
one or more disorders are present.

Fig. 1. Causal network of a diagnostic knowledge base KB = (D, M, C).

To capture the intuitive notion of causation, one uses the relation C', from D
to M, that associates to each individual disorder its manifestations. An associa-
tion (d;, m;) in C' means that d; may directly cause m;; it does not mean that d;
necessarily causes m;. The sets D, M, and C together are the knowledge base
(K B) of a diagnostic problem.

To complete the problem formulation we need a particular diagnostic case.
We use M T, a subset of M, to denote the set of observations, that is, mani-
festations that are present in the case. The set M T does not necessarily have to
be specified all at once at the beginning of problem-solving; it can be gradually
obtained from the answers to questions asked by the diagnostic system.

Definition1. A diagnostic problem P is a pair (KB, Ca) where:

— KB = (D, M,C) is the knowledge base, composed of
e D={dy,dy, ... d,}isafinite, non-empty set of objects, called disorders;
o M = {my,ma,...,my} is a finite, non-empty set of objects, called man-
ifestations;



e ' C D x M is a relation called causation
— Ca = (M) is the case, and M+ C M is the set of observations.

For a diagnostic problem P, it is convenient and useful to define the following
sets of functions based on relation C':

Definition 2. For any d; € D and m; € M in a diagnostic problem P

— effects(dr) = {m;|(di, m;) € C}, the set of manifestation directly caused
by di;

— causes(my) = {di|{(di, m;) € C}, the set of diseases which can directly cause
mj.

The set ef fects(d;) represents all manifestations that may be caused by disorder
d;, and causes(m;) represent all disorders that may cause manifestation m;.
These functions can be easily generalized to have sets as their arguments.

2.1 Solution for Diagnostic Problems

In order to formally characterize the solution of a diagnostic problem one needs
to define the notion of “cover”, based on the causal relation C', to define the
criterion for parsimony, and to define the concept of an explanation (explanatory
hypothesis).

Definition 3. The set D; C D is said to be a cover of M; C M if M; C
effects(Dr).

Definition4. A set £ C D is said to be an explanation of M1 for a diagnostic
problem iff £ covers M1, and satisfies a given parsimony criterion.

In the following definition we present the possible parsimony criteria:

Definition 5.

(1) A cover Dy, of My is said to be minimum if its cardinality is the smallest
among all covers of M.

(2) A cover Dy, of My is said to be irredundant if none of its proper subsets
is also a cover of My; it is redundant otherwise.

(3) A cover D of My is said to be relevant if it is a subset of causes(My); it
is irrelevant otherwise.

[Pen90] uses irredundancy as the preferable choice for the parsimonious crite-
ria and in this paper we follow that choice. Acording to the authors, minimality,
which is another usual criteria of parsimony, should be seen more as a domain
specific heurisic than a general criteria.

In many diagnostic problems, one is generally interested in knowing all plau-
sible explanations for a case rather than just a single explanation because they,
as alternatives, can somehow affect the course of actions taken by the diagnos-
tician. This leads to the following definition of the problem solution:



Definition6. The solution of a diagnostic problem P=(K B, Ca), designated
Sol(P), is the set of all explanations of M*.

Ezample 1. In the Figure 1, {d1}, {d2}, {ds,ds}, and {d4, dg} are the only plau-
sible explanations (i.e. irredundant covers) for M+ = {m;, m4}, and therefore
they are the solution of the problem.

2.2 Algorithms and Problems of PCT

[Pen90] presents the algorithm bipartite which incrementally and construc-
tively compute the set of solutions of a diagnostic problem P. The algorithm
processes one observation (m;) from M7 at a time, and incorporates causes(m; )
to the set of explanations it has computed so far.

The main problem with the basic version of PCT is that the solution of a
problem tends to have many alternative explanations. The reason is that irre-
dundancy is too weak a criteria to significantly reduce the number of alternative
explanations. For most practical applications a further processing to filter out
some of the explanations based on domain specific heuristics or at least to or-
der the set of explanations so that more “plausible” explanations are presented
before less “plausible” ones.

A more complex version of PCT (called probabilistic causal model) is also
presented in [Pen90] which incorporates probabilities to the links between a
disease and its manifestations, that is, the probability that the manifestation
will occur provided that the disease is present. This probabilistic information
allow one to rank the explanations. Furthermore, this probabilistic information
allows one to filter from the set of all explanation those that contain a disease
for which a necessary manifestation was not present in the case. If a disease d;
necessarily causes a manifestation m;, that is, the probability that m; is present
given d; is 1, then if m; is known not to be among the observations of the
case, then one can remove explanations that contain that disease. This is called
categorical rejection.

3 Parsimonious Covering Theory and Time

The aim of this research is to extend PCT so that instead of associating to each
disease a set of manifestation, one could associate an evolution of manifesta-
tions. Thus, the database could state that disease d; causes first m; which will
last between 2 and 5 days, followed in 2 to 3 days by ms which may last an unde-
termined amount of time, and so on. We accomplish this temporal representation
using a graph, where vertices are manifestations and directed arcs between ver-
tices represent temporal precedence. If there is quantitative information about
the duration of the manifestation, it is associated with the corresponding node;
if there is quantitative information about the elapsed time between the start
of two manifestations, it is associated with the corresponding arc. Furthermore,



quantitative information are not represented as a single number, but as an in-
terval. Therefore one can state that a manifestation will follow another in 2 to
3 days. To each disease one associates one such temporal graph.

3.1 Dynamic Diagnostic Problem Formulation

Time points will be primitive objects to represent temporal information. Intervals
are defined as non-empty convex sets of time points (points on the time line),
represented by I = [I=,I%] such that I~ and It are the extreme points of
interval I, respectively (obviously I~ < IT; I~ > I* indicates an empty interval
I). We use the following notations for operations on intervals:

— I+ J=[I"+J It +J*];
— INJ =[max(I~,J7),min(IT, J1)];
— I <p= IT < p, where p is a time point.

A temporal graph is a direct, acyclic, transitive, and not necessarily connected
graph. The existence of an arc from m; and m; in a temporal graph denotes the
fact that the beginning of the occurrence of manifestation m; must precede the
beginning of the occurrence of m;.

The temporal distance between manifestations and the duration of a man-
ifestation are represented by functions on the graph, denoted by DIST and
DU R, respectively. The temporal distance function DIST associates an interval
R = [R™,R"] to each arc of a temporal graph G;. DIST(G/,(m;,m;)) = R
for (m;, m;) € A;, which we will abbreviate as DISTi(m;, m;) = R, states that
the difference between the time of the beginning of m; and the beginning of
m; in the temporal graph G; of d; must be within the interval R. The duration
function DU R associates to each vertex m; of a temporal graph G; em G an
interval J, that specifies that the duration of m; must be within the interval J.

The transitivity of the temporal graph must be consistently carried over to
the DIST function: if DIST;(m;, m;) = Ry and DISTi(mj, my) = Ry then
DIST;(mZ, mk) = R+ R-.

Figure 2 illustrates the temporal information about the disorders ds and dg
of the diagnostic problem shown in Figure 1.

Definition 7. The temporal graph of a disorder d; € D, G; = (Wi, A1), is a
direct, transitive and acyclic graph defined as:

— Vi C M = set of objects directly caused by d;, and
— A; ={(m;, m;)| the beginning of m; occurs before the beginning of m; when
the disorder d; is said to be present}.

Definition 8. The knowledge base of a dynamic diagnostic problem is the
tuple KB = (D, M, G, DIST, DUR) where D and M are defined as before, G is
a set of temporal graph, each one associated with one disease of D, DIST and
DUR are the temporal information functions defined above.
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DISTg(m4, 'ITL5) = [1, 3] DISTg(mQ, m5) = [2,5]
DIST3(7n5,m6) = [2,5] DURQ(?TLQ) = [10,15]
DISTg(m4,m6 = [3,8] DURg(m5) = [7,13]
DURg(mG) = [1, 2]

Fig. 2. Temporal graphs of the disorders dg and dg with their temporal distance
functions and duration functions.

In order to represent the case, we will need the set of observations M T, as
before, and the temporal information about these observations. The function
BEGT associates an interval to some of the observations in M. BEGT (m;) =
I, mj € M, states that m; started at any time within interval /. Similarly, the
function DU Rt associates to some of the observations in M+ an interval, such
that the duration of the observation was anything within that interval.

Definition9. A dynamic diagnostic problem P is a pair (KB, Ca) where
K B is defined as before, and Ca = (M*+, BEG*, DURTY) is the case.

One can define the ef fects and causes functions in a similar way to def-
inition 2. For example causes(m;) = {dilm; € Vi, for any temporal graph
Gr1 = (Vi, A1) € G}, represents the set of diseases that may cause m;.

It is important to notice that the temporal model allows for many forms
of uncertainty and incompleteness of information both at the case and at the
knowledge base. For example, temporal information about the case need not to
be precise but can be stated as an interval, or can be ommited althogether. In
the knowledge base, not all manifestations need to be temporally related to the
others: the graph need not to be connected, nor do all arcs need to have intervals
associated with them. The theory uses the temporal information if it is available,
otherwise it behaves as the basic PCT.

3.2 Solutions for Dynamic Diagnostic Problems

In order to define a solution for a diagnostic problem, we need to define a set of
concepts about temporal inconsistency. This will eventually allow one to remove
the explanations that contain diseases in which the evolution of manifestations
contradicts the evolution of the observations in the case. For example, if for a
certain disease mj precedes mgy but in the case, the occurrence of m; started
after the occurrence of ms, then one can disregard all explanations that contain
such disease, since it contradicts with the temporal information in the case.

Definition10. For a dynamic diagnostic problem P let G; = (Vi, 4) € G,
(m;,mj) € A, DISTi(m;,m;) = R, m;,mj € M+t BEG*(m;) = I, and



BEG™*(mj) = I,;. The arc (m;, m;) is temporally inconsistent with re-
spect to the case iff (1,,,, + R) N I, = 0.

The resulting interval of operation (I, + R) corresponds to a set of valid
values for the beginning of m;. Thus if the intersection of this interval and Iy,
(“real” valid interval for the beginning of m;) is empty, then the arc (m;, m;) is
temporally inconsistent with the case. The inconsistency criterion defined above
is equivalent to one described in [Con93].

Definition11. For a dynamic diagnostic problem P let G; = (Wi, A1) € G
the temporal graph of a disorder d; € D. The disorder d; is temporally
inconsistent with the case Ca = (M*, BEGY, DUR"Y) iff

— exist at least one arc (m;, m;) € A; temporally inconsistent with respect to
the case , or

— exist at least a vertex m; € Vi, such that, m; € M+ and DUR;(m;) N
DUR+(m]') = (b

Finally, based on the above definitions, we formalize the notions of temporally
consistent explanation and temporally consistent solution.

Definition12. A set £ C D is said to be a temporally consistent explana-
tion of the case for a dynamic diagnostic problem P iff

— E covers M T, and
— E satisfies a given parsimony criterion, and

— for any d; € E, d; is not temporally inconsistent with the case.

Definition13. The temporally consistent solution of a dynamic diagnos-
tic problem P=((D,M,G,DIST, DUR),(M* , BEG*, DUR")), designated by
Sol(P), is the set of all temporally consistent explanations of the case (M+, BEG*, DURY).

Algorithm Solution: Basic Ideas We implemented an algorithm that solves
a temporal diagnostic problem. Due to space limitations, we will only present the
basic ideas of the algorithm and briefly discuss an example. The full algorithm
can be found in [Rez96]. The important aspect of the algorithm is that temporal
consistency is not implemented as a filter, that is, it is not applied after the
original bipartite algorithm has generated the solutions, but it is incorporated
very early into the process of merging the causes on the “new” observation into
the set of current explanations. Thus the algorithm has to deal with smaller sets
of explanations.

At the beginning of a new cycle, after a new observation has been entered, the
disorders evoked by the new observation are checked for temporal consistency
with the case information so far. Then hypotheses that contain the temporally
inconsistent disorders are eliminated from the set of current hypotheses and
the new temporally consistent evoked disorders are used to update the set of
hypothesis.



The example below illustrates the basic ideas of the algorithm. For example
in Figure 1, we have that Sy = {{d1}, {d2}, {ds,ds}, {d4,ds}} is the set of all
explanations (irredundant covers) of M+ = {m;, m4} temporally consistent with
BEG*(m4) = [10,10] and DUR™* = 0. Each time a new observation is discov-
ered and temporal information is available for it, the system verifies the temporal
consistency of the hypotheses in Sy, and update the hypotheses in the correct
way. Thus, consider ms new observation of M+, and BEGY(ms) = [16, 18]
and DUR*(ms) = [2,3]. First, we obtain the disorders evoked by ms (i.e.
causes(ms) = {dr,dg,ds}) that are temporally inconsistent with BEGY(ms)
and DUR+(m5). As an illustration, consider dg and dg in Figure 2. Disorder
ds is temporally inconsistent because the arc (mg,ms) with label [1,3] is in-
consistent with BEG™*(m4) and BEGT(ms). On the other hand, disorder dy is
temporally inconsistent because the duration of ms in dy is inconsistent with
DUR?*(ms). In the next step, we remove all explanations in S; that contain
these temporally inconsistent disorders. Thus, Sy = {{d1}, {d2}} is the set of all
explanations that are not inconsistent with this new information. Finally, the
consistent disorders (only d7 in this case) are used to update the current expla-
nations. Ss = {{d1, d7}, {d2,d7}} is thus the set of all explanations temporally
consistent with the case (with ms added). If no other manifestation is present
than Sz represents the temporally consistent solution.

4 Categorical Dynamic Diagnostic Problems

We mentioned that the basic PCT can be extended so that probabilities can
be associated to each manifestation in a disease. This allows one to eliminate
a disease in the absence of an observation if that manifestation is necessary
for the disease. But when time is added, this categorical rejection may pose
some problems. It may happen that a necessary manifestation was not observed
because there was not enough time for it to occur. Thus, some form of temporal
reasoning must be performed in order to ascertain whether a disease can be
categorically rejected.

4.1 Problem Formulation and its Solutions

In this paper we are not interested in a general probabilistic (numeric) informa-
tion relating manifestations and disorders, but just some information whether the
disorder necessarily causes the manifestation, or whether the causation is only
possible. Thus, in the knowledge base KB we have to add a function POSS
that attributes to each vertex of each temporal graph either the label N, for
necessary, or the label P, for possible. Thus, POSS(Gi, m;) = N, abbreviated
as POSSi(m;) = N, states that disorder d; necessarily causes the manifestation
m;.

For categorical diagnostic problems, one is interested in manifestations known
to be absent in the case, called negative observations. Thus we add, M~ the
set of negative observations, and 1,4, the time point that represents the moment
of diagnosis, to M T, BEGT, DUR?T as the components of the case Ca.



Definition14. Let P=(K B,Ca) be an open dynamic diagnostic problem and
G1 = (Vi, Ai) € G. The disorder d; is categorically inconsistent with the
case iff

— exist an arc (mj,my) in A;, such that, POSS;(m;) = N, mj € M~ e
mp € MT, or

— exist an arc (m;, m;) in A;, such that, POSSi(m;) = N, mj € M~, m; €
M* and BEG'm;) + DIST(m;, m;) < Inow.

The definition above has two conditions. For both of them, the disorder d; is
categorically inconsistent due to the combination of two factors: a necessary
manifestation is not present (POSS;(m;) = N and m; € M~) and there has
been enough time for it to happen. In the first condition the second factor is
warranted because a later manifestation has already occurred ((mj;, my) in A;
and my € MT). In the second one, this factor is warranted because all values
of a set of valid values (time points) for the beginning m; are lower or equal
than the actual instant (BEG™(m;) + DIST;(m;, mj) < Iow). The categoric
rejection problem occurs when one considers only the first factor above as a
sufficient condition to classify a disorder as categorically inconsistent with the
case.

Finally, we define an explanation of a categorical dynamic diagnostic prob-
lem.

Definition15. A set £ C D is said to be a consistent explanation of the
case for an open dynamic diagnostic problem P = (K B, Ca) iff

— E covers M, and
— I satisfies a given parsimony criterion, and
— for any d; € E, d; is not temporally inconsistent, and

— for any d; € E, d; is not categorically inconsistent.

As with the basic PCT plus time, we developed an algorithm that solves cate-
gorical dynamic diagnostic problems. It can be found in [Rez96].

5 Conclusion

This paper presented temporal and categorical extensions of the parsimonious
cover theory which could serve as the core of a diagnostic system specially for
problems where the temporal evolution of the manifestations is an important
aspect.

5.1 Implementation

We developed a small example of a medical diagnostic system as a test for the
theory developed herein. This diagnostic system deals with food-borne diseases
[Man90] which is a domain of application where temporal information is very im-
portant. The domain included 28 diseases and 60 different symptoms. Because of



the simplicity of the PCT model of diagnostic, in which no heuristic information
needs to be included into the knowledge base, the whole diagnostic system was
developed in two days, mainly from textbook information [Man90], with only
one consultation to a specialist to resolve ambiguities in the text. The results of
diagnostic cases were also verified by the specialist.

With the introduction of the temporal and categorical extension there was
a significant reduction on both the number of hypotesis in the solution and the
time to compute them, as compared to the basic PCT. In a particular case, the
number of hypothesis in the solution was reduced from 73 to 2, and the time to
compute the solution was reduced by 70 %.

5.2 Limits of the extension of PCT

The main limitation of the theory refers to multiple simultaneous disorders. The
PCT assumes that multiple disorders that cause the same manifestation do not
interfere with each other. That is, if both d; and d; cause mj then they can
both be part of an hypothesis that explains the observation my. Unfortunately,
in the presence of temporal information is very unlikely that two disorders will
not interfere with each other. As an example, let us suppose that d; causes my
with duration I and d; causes m; with duration J. Then certainly the presence
of both disorders simultaneously will cause some change on the duration of my
(the same can be true for the temporal relation of my with other manifestations
in both d; and d;). This has been documented in the area of medical diagnostics
[Pat81]. PCT, and therefore our extension to it, cannot represent and deal with
this interference.
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