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Abstract

This paper presents a way of construct-
ing a multi-agent nonmonotonic logic from
any propositional preference logic (the base
logic). The multi-agent logic will “correctly”
extend the base logic for each agent, that is,
each agent will reason in the base logic, and
the reasoning of each agent is independent of
each other. If the base logic is propositional
circumscription then the extended logic will
also correctly deal with default formulas that
mix the knowledge of more than one agent.
Some of the properties of the extended logics
and an example of nonmonotonic multi-agent
reasoning are presented.

1 Introduction

The term agent is frequently used in the area of knowl-
edge representation and reasoning. Several different
systems have been proposed to model an agent rea-
soning about its environment, an environment that in
many applications includes other agents. Thus, some
logics have been proposed to deal with the knowledge
of more than one agent [HM92, FHV91], but these
logics are monotonic and hence have a very limited
capacity of modeling interesting behaviors and com-
munications among the agents.

There has been some multi-agent nonmonotonic logics
developed in the last years based on autoepistemic log-
ics [Mor90, Lak93, HM93, PJ95]. This paper we will
develop a preference-based nonmonotonic logic for rea-
soning about the beliefs of many agents.

More specifically, this work proposes a way of defining
a multi-agent preferential logic based on a proposi-
tional preference relation in such a way that whatever
is captured by the propositional preference relation is
carried over “correctly” to the multi-agent logic. Con-
ceptually, if £ is a propositional logic, one can define
a preferential logic L< based on a preference relation
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< on the models of £. On the other hand one can de-
fine a multi-agent logic £* based on £, which includes
modal operators to represent the beliefs of n agents.
This paper proposes a way of defining a preference re-
lation < among models of £* in order to define the
multi-agent preference logic L£%.

The next section describes preference logics and the
semantics of the £* logic. Section 3 describes how
to construct the < preference relation based on the
< relation. The other section describes some of the
properties of the £% logic. Section 5 describe some
examples of using the logic.

2 Background

2.1 Preference Logics

This work is based on the model-theoretic approach
to constructing nonmonotonic logics proposed by
Shoham [Sho87]. The main idea behind preferential
logics is that the meaning of a formula is not given by
the set of all of its models, as in classical logics, but
by some preferred subset of those models, called mini-
mal models. Many different preference criteria can be
adopted according to one’s needs, resulting in different
nonmonotonic logic.

Formally, let £ be a standard (monotonic) proposi-
tional logic and < a pre-order on interpretations for
L. If M; and M5 are two interpretations for £, then
M; < M, means that the interpretation M; is as pre-
ferred as the interpretation Ms. £ and < define a
preference logic L<. The language of L« is the same
of that of £ and its semantics is defined as follows.

Definition 1 Given an interpretation M of £ and « a
sentence of L, then M preferentially satisfies o (writ-
ten M E< a) if M |E «, and if there is no other
interpretation M’ such that M' < M and M' = «. In
this case we say that M s a preferred model of cv.

Definition 2 « is preferentially satisfiable if there ex-
ists an M such that M =< a.



Definition 3 « preferentially entails [ (written
a =< B) if for any M, if M =< « then M | S,
or equivalently, if the models of 3 are a superset of the
preferred models of .

This framework is general enough to capture the
details of many nonmonotonic reasoning systems.
Among the minimal model approaches, we can men-
tion circumscription [McC80, McC86], and many pro-
posals for logics that reason about time and change

[Sho88, Bak91, Sha95].

In this paper we will be restricted to propositional log-
ics, and we will develop examples of default reasoning
(as opposed to, say, temporal reasoning). There is a
trivial simplification of circumscription that allows one
to represent and reasoning about defaults in a proposi-
tional language. We call it propositional circumscrip-
tion. Default formulas of the kind « then normally 3
are represented as:

a A —-abny — 3

The preference criteria is the one that tries to falsify
abny. That is: My < M, iff

e for all propositional symbols p in the language
other than abn; M, | p iff Ms | p.

o My E —abn; and My |= abny

All the standard circumscription variations: priority
among abnormal predicates, formula circumscription
and allowing predicates to vary, can be implemented
in propositional circumscription.

2.2 The £* logic

In this section we describe how to extend a monotonic
base logic £ to a monotonic multi-agent logic £*. The
language of £* is the same of £, augmented with a set
of new modal operators {Bj, ..., By} to represent the
beliefs of each of the agents 1 ..., n. That is, if ¢ is a
well-formed formula of the language of £, then it is also
a well-formed formula of £*, and if « is a well-formed
formula of £* so is B;a for i € {1,...,n}.

To model the states of belief of the agents we use the
belief structures introduced by Fagin, Halpern and
Vardi [FHV91]. The idea of possible worlds is em-
ployed here in a lightly different way of that of tradi-
tional Kripke structures. The worlds are defined in-
ductively:

Definition 4 ' A 0th-order belief assignment, fy is
a truth assignment to the primitive propositions. We
call (fo) a I-ary world, (since its “length” is 1).

!The definition of belief-world is similar to the one pre-
sented in [FHV91] with the exception of restriction 1. This
change yields a logic in which each B; follows the axioms
of KD45 (for belief) instead of [FHV91]’s S5 axioms (for
knowledge).

Assume inductively that k-ary worlds (or k-worlds, for
short) have been defined. Let Wy be the set of all k-
worlds. A k-th-order belief assignment is a func-
tion fr : A — 2% where A is the set of agents. A
(k+1)-sequence of belief assignment is a sequence
(fo, ..., fr), where f; is a i-th-order belief assignment.

A (k41)-world is a (k+1)-sequence of belief assign-
ments that satisfy the following restrictions for each
agent 1:

1. fr(i) is nonempty if k > 1.

2. If (90, s95-1) € fu(@) and k > 1, then
gr-1(1) = fr—1(2).

3. (90, .-y gr—2) € fr—1(3) iff there is a (k-1)st-order
belief assignment gp_1 such that (go,...,95-1) €
foli) , if k> 1,

Intuitively, a 1-ary world is a description of reality and
a belief assignment fj, associates with each agent a set
of “possible k-worlds”; that is, the worlds in f;(7) are
the k-worlds that agent ¢ thinks are possible descrip-
tions of the reality (as described by k-worlds).

The belief structures are defined based on these k-
worlds.

Definition 5 An infinite sequence (fo, f1,...) is
called a belief structure if each prefix (fo,..., fr) is
a k-world, for each k.

Thus a k-world describes beliefs of depth k& — 1, where
the depth of a formula is roughly the number of nested
belief operators in the formula. A belief structure de-
scribes beliefs of arbitrary depth.

For a formula «, the worlds that have the information
needed to evaluate it are the k-worlds such that & >
depth(a).

Definition 6 A (k + 1)-world {fo, ..., fr) satisfies a
formula o, written (fo,..., fx) E « if k > depth(a)

and:
o (fo,....fr) E o iff fo E « for o a propositional
formula.
° <f0a"':fk ':"CY Zﬁ(-foaafk) b&a;

JJr) E o« and
<f0a"':fk ':61

o (fo,..., fr) E Bia iff for each {go,...
fk(l)7 <g0:"'

But it suffices to consider the depth(a)-worlds.

)
. <fo,...,fk§ E aABiff (fo,...
)

agk—1> S
agk—1> ': (87

Proposition 1 Assume that depth(a) = r and k > r.
Then, <f0:"'afk> ':O[ iﬁ(an"':fT> IZ .

In view of the last result the notion of satisfiability of
a formula is captured by the following definition:



Definition 7 We say that the belief structure f =

(fo, f1,...) satisfies o, written f = o, if (fo,..., fr) E
a, where r = depth(a).

Definition 8 We say that a formula « is valid, writ-

ten |« if f |E « for each belief structure f.

The logic £* just defined has the following properties.
Proposition 2

o All substitution instances of the tautologies are
valid.

e E Bia — —B;—a.

o | Bia — B B;a.

¢ E—-B;a — B;—B;«.

e = BiaABi(a — ) — B;fj.

Thus, each of B; satisfy the requirements of the logic
KD45, which are the most accepted logic for belief.

3 The logic £

3.1 The < preference relation

Given the monotonic multi-agent logic £*, if we define
a preference relation < on the set of belief structures
of £*, then we would have a multi-agent preference
logic. This section describes how to define a preference
relation < based on a preference relation < defined on
the set of propositional interpretation of L.

We would like to use the inductive definition of k-
worlds to define a preference relation among them.
Clearly, < is exactly the preference relation defined
for 1-worlds (which are just a propositional assign-
ment). The difficulty is that a 2-world attributes to
each agent, a set of 1-worlds. Thus we have to define
a preference relation among sets of 1-worlds, given that
there is a preference < among l-worlds. Or in general,
given a pre-order < on a set A, we must define a pre-
order C on the set 24.

We will follow idea of elementary improvement dis-
cussed in [Wai93]. The set A; is an elementary im-
provement (C.) over the set Ag, if they agree in all
worlds, except for a worlds in A; which is better (un-
der the < order) than its correspondent in As. More
formally, 41 C. Ay, if A1 = AU{a;} and A3 = AU{a2}
and a; < as; or Ay = Ay U {as} and there is a a; in
Ay such that a; < as?.

We are interested in the transitive, reflexive closure of
the C. relation, which has a rather simple formulation:

2This last case corresponds to the situation where the
world that “got better” in the passage from A, to A;
“landed” on a world that was “already there”.

Definition 9 Let < a pre-order defined on a set A.
We define the relation T on the set 24 as: A; T Ay
iff for all a € Ay there is b € As such that a < b and
for all b € Ay there is a € Ay such that a < b.

It can be shown that C is a pre-order in 24.

Now we can inductively define the pre-order <3 among

k-worlds.

Definition 10 Let < be a pre-order defined on the set
of propositional interpretations, then one can induc-
twely define <p as a pre-order on the set of k-worlds
as:

¢ 1=<.

o if < has been defined on the set of k-worlds, then
<k+1 15 defined on the set of k + 1-worlds as:

oo i) <ewr (Fh o f1) if]

(fo, - s Joe1) =k (fb,..., Ji_q) and for each i
such that 1 < ¢ < n, fr(i) Cp fr(i), where Cy
s defined from <, as in definition 9.

And finally we can define the preference relation <
among belief structures:

Definition 11 Let < a pre-order on a set of proposi-
tional interpretations. If f and [’ are belief structures,
then f < f' iff for each prefix (fo,..., fr—1) of f and
for each prefiz (fy, ..., fi_q) of ', {(fo,. ., fo=1) =&
(f(/)a RS fllc—1>'

L* together with the pre-order < defines a multi-agent
preferential logic £% that allows one to model the be-
liefs of agents that can reason non-monotonically.

4 Properties of the logic L%

The logic L% defined above have some interesting

properties. The proofs of the theorems in this section
and the next can be found at [Mon96].

The first important and potentially controversial prop-
erty of the logic is that all agents have the same rea-
soning power. In particular, when reasoning about for-
mulas that do not contain modal operators, all agents
use the preference logic defined by <. Section 4.2 dis-
cusses the implications of this theorem, and shows that
the assumption that all agents reason with the same
preference does not limit the applicability of the logic

% in a multi-agent situation.

Theorem 1 If a and 3 are propositional formulas

then « IZS ﬁ ZﬁBZ(X IZj Blﬁ

The next theorem states that it is common knowledge
that all agents reason (about the world) based on the
same propositional preference:



Theorem 2 If o < [ then B;, ..
B;, ... B; B, whenever r > 0.

.BZ'TCY ':<

Another result is related to the independence of the
reasoning performed within different belief contexts.

Theorem 3 If a =< § and v E< 6 then Bja A
Bjy ':j BB N B;é if i +3.

This states that inferences that could be performed
independently in £« can still be performed if they are
in different belief contexts. In particular, it could be
the case that in £L<, @ and v could interfere with each
other, for example a Ay =< =3, but that interference
is prevented by the different belief contexts.

Theorem 3 can be extended to arbitrary belief con-
texts. To state the extended theorem we need to define
a syntactic operation on sequences of B; operators: @
is a operation that substitutes in @) all subsequences
of adjacent B; by a single B;. For example:

B3B3 By By By BoBa By = B3 By By By

Theorem 4 If o =< [ and v =< 6 then Q.o A
Qv F< QaBAQy6 where Q, and Qy are any sequence
of B; operators, provided that Qq, # Q.

The intuition for the restriction on ¢}, and @} is that
if @, = @ then Q. is equivalent to Q.

4.1 Mixed defaults

The theorems above state generic properties of the £%
logic, independently of the < base preference relation.
We will now show that if the base logic is propositional
circumscription then default rules that combine sub-
formulas with and without the modal operators are
correctly dealt with. We call such default rules as
mixed defaults.

If <, is the preference that minimizes the propositional
symbol abny, and if <, is the corresponding preference
for the £* models, then the following results are true:

¢ Bia A (Bija A—abny — B) =<, 0.
o aA(aA-abny — Bif) <, Bif.
o aA(aA-abny — B ) A Bi(—8) <., Bif

In fact, results above hold when B; is substituted by
any sequence B, B, ...B; for r > 0. The first two
examples show that if the modal sub-formula is ei-
ther the antecedent or the consequent of a default rule,
and the antecedent is true, then the default consequent
would be inferred. The last example shows that the
logic when determining if a default consequence can be
consistently asserted, will take into consideration the
logic of the B; operators.

4.2 Discussion

We must address now the question brought up by the-
orem 1 which states that all agents reason proposition-
ally using the same preference <. This may seems too
strict, and one could think that this assumption would
limit the usefulness of the logic for multi-agent appli-
cations. The underlying question is: if all the agents
reason with the same preference then it is not the case
that they are all the “same” agent.

First we would like to point out that the use of the
term preference in this paper refers to a pre-order re-
lation among models, and not a relation among propo-
sitions. Thus the logic presented here does not model
statements like “Agent 1 prefers to have a toothache
than to go to the dentist,” which one would certainly
not want to be the same for all agents. The preference
relation in this paper is the implementation of a form
of nonmonotonic reasoning. It is not a form of repre-
senting this preference aspect of the mental model of
agents ([WD91, Wai94] are attempts to represent this
mental aspect).

As for the fact that all the agents reason based on the
same preference, one should notice that either there
is a single preference relation for all the agents, or
there is an infinite number of them. It is not just
that agent 1 could use a different preference than agent
2, but also that agent 1 could attribute to agent 2 a
different preference, which could be also different than
the preference agent 1 thinks agent 2 thinks agent 1
uses, and so on. In other words, one would need a
preference to reason within the context of a single By,
possibly another for reasoning within the context of
By Bs, possibly another to reason within the context
of By BsB1, and so on.

There are applications of preference logic, specially
temporal reasoning [Sho88, Bak91, Sha95], for which
it would be acceptable to propose that a single gen-
eral preference relation that apply to all agents. For
temporal reasoning in particular, these logics usually
propose a particular preference relation that minimizes
“meaningful” predicates or formulasin such a way that
reasoning about time and change can be correctly per-
formed. If that particular preference relation is the
essence of common-sense reasoning about time and
change it is very acceptable to assume that all agents
use that same preference to reason about time and
change.

Other applications of preference logic, such as taxo-
nomic reasoning and default reasoning, which is the
main interest of this work, could possibly benefit from
multiple preferences. The crucial difference is that
preference logics are used as an implementation of de-
fault or taxonomic reasoning. One minimizes “mean-
ingless” or arbitrary propositional symbols and thus
there is no claim that the preference is unique. For
example a A mabn; — [ implements the default rule



that if « then normally 3, if the preference relation
minimizes abny. But so does a A —abny — [, if the
preference relation minimizes abnsy. Since the prefer-
ence relation is in some way arbitrary, it is unreason-
able to expect that all agents use the same one.

Surprisingly, the logic £% can deal with a finite number
of multiple preference relations. This is done by bring-
ing this finite set of these preferences into the base-
logic preference relation <, provided that the prefer-
ences are not contradictory. For example, let us sup-
pose that agent 1 reasons by minimizing the propo-
sitional symbol abni, and he believes agent 2 reasons
by minimizing the preference abn, and that he thinks
agent 2 thinks he reasons by minimizing abns. One can
construct a propositional preference relation < that si-
multaneously minimizes abni, abny, and abng. If all
formulas within the scope of a single B; do not con-
tain either abns or abng, then reasoning based on the
< relation would derive the correct conclusions for the
beliefs of agent 1. Similarly if all formulas within the
scope of B By do not contain either abn; or abng then
again all reasoning performed in that belief context
would be the same as having a particular preference of
minimizing abny applied for only that context.

Finally, an important part of default reasoning using
preference logic, in particular circumscription, is defin-
ing the circumscription policy, that is, which predi-
cates are allow to vary in the minimization process
and so on. In a propositional preference logic, circum-
scription policy is restricted to setting up the priority
among the propositional symbols that will be mini-
mized. By “bringing” all these preferences into the <
relation, one is able to set different priorities for each
“particular preference” as to allow the correct chaining
of inferences across beliefs contexts, as the example 2
discussed in the section below illustrates, which would
not be possible if all preferences were isolated.

5 Examples

Example 1. In order to illustrate an example of
multi-agent preferential reasoning, let us assume the
following situation. Agent 1 are sitting with a friend
(agent 2) in a cafe and waiting for third friend (agent
3). If agent 3 leaves work at 5 (which we will abbrevi-
ate as [5) she will normally arrive at the cafe at 6 (af),
but not so if there is a traffic jam (¢j). Furthermore,
let assume that all agents know these facts.

The first problem the logic developed herein solves is a
representational problem. One can represent, using a
preference logic, the default rule that leaving at 5 will
normally entail arriving at 6 as:

5 A —abny — ab (1)

if the preferential logic is based on the preference re-
lation <, that circumscribes the propositional symbol
abni. But it is not clear how to represent that agent 1,

or agent 2 believes (1) in such a way that the default
would work correctly. The main result of this work
is that one can develop a multi-agent preference logic
based on an already understood propositional prefer-
ence logic, and one of the results is that each agent
in the society will reason (about the real world) using
the propositional preference logic. In the logic £% ,
where the preference relation <, is derived from <,
one can represent the fact that agent 2 believes (1), as
one would expect:

By (15 A —abny — ab)
and this representation works correctly, that is

32(15) A 32(15 A _|(1b7’Ll — (16) ':jm Bg(a6)

Example 1 (cont). Now let us suppose that agent 3
left at 5 and all the agents know it. Agent 2 believes
that there is a traffic jam, and he believes that 3 does
not know it. On the other hand, agent 1 believes that
there is no traffic jam. From this situation one can
conclude that

o agent 1 believes agent 3 will arrive at six,
e agent 2 believes agent 3 will not
e agent 2 also believes that agent 3 thinks she will

arrive at six .

This reasoning can be captured by the logic ﬁ*jz.

Let us make the following abbreviation where « is the
knowledge that if agent 3 leaves at 5, she would usually
arrive by 6, unless there is a traffic jam.

(15 A —abny — ab) A (I5 Atj — —ab)

Then, the situation above is captured by:

I5A I5A 15 A
B | —tin |ABy| tjin /\3233<a )
8% 83

I:jz Bl(a6) A BQ("CL6) A Bng(a6)

« =

The example above illustrate that defaults that are
contained within a B; operator work as expected.

Example 1 (another solution). The solution above
uses the same abnormal symbol for all belief context,
or in other words, all agents use the same prefer-
ence, the one that minimizes abn;. Let us develop
another solution, where each agent uses its own ab-
normal propositional symbol and its “own” preference.
Let us use the following abbreviations:

a = (I5A-abny — ab) A(I5At] — —ab)
o' = (I5A—abny — ab) A(I5Atj — —ab)
o = (I5A—abng — ab) A (15 Atj — —ab)

Now the situation described in the second part of Ex-
ample 1 is represented as:

5 A 5 A 5 A
B, =ty A A Bs tj A A B3 Bsg < 7 ) (2)
o o “



In order to define a multi-agent preference logic, one
need to bring those three preferences (minimizing abn
in the belief context B;, minimizing abns in the con-
text By and abng in the context BsBsg) into a single
propositional preference. This is done by defining the
propositional preference <, which minimizes in par-
allel (that is with the same priority) abni, abns, and
abnz. That is, M; <, M, iff:

e for all propositional symbols p in the language
other than abny, abns, abng,

mbox M, = piff Ms | p.

e there is no i such that M, = abn; and My
—abn;

Once <, is defined, the logic Eiy would allow one to
derive the correct conclusions from (2), that is:

(2) ':jy Bl(aﬁ) A BQ("Cl6) A Bng(CL6)

Example 2. Let us see now that mixed defaults also
work as expected. Let us add to the common knowl-
edge the fact that if it is raining (ra) then usually there
is a traffic jam, and the fact that if it is raining then
agent 2 knows it (because he hears the noise).

We will use the same scheme as the first solution to
example 1, that is to use the same abnormal proposi-
tional function in all contexts where it is appropriate.
Let us make the following abbreviations:

a = (I5A-abng — ab) A(I5At5 — —ab)
B = (raA-abny — tj)
v = (raA-abnz — Bara)

o is the statement that leaving at 5 normally results
in arriving at 6, unless there is a traffic jam, 3 states
that if it is raining then normally there is a traffic jam,
and ~y states that it it is raining then normally agent
2 will know it.

Let us now suppose that agent 1 believes (or sees) that
it is raining, then

e he concludes that agent 2 knows it (by 7)

e he concludes that agent 2 believes there is a traffic
jam (by £)

e he concludes that agent 2 believes that agent 3
will not arrive at six.

For the reasoning above to work one needs that de-
faults represented by # and v to be stronger than the
competing default «. But it is important also to notice
that these defaults will be operating in different belief
contexts: v is used inside the B; operator and § and
« are used inside the B; Bz sequence of operators.

If one had a preference for each belief context, it is not
clear how to set up the priorities among the defaults.
But in our approach these preferences are brought to-
gether at the < preference relation. If one wants vy

and [ to be stronger than «, one defines a preference
relation <, where the propositional symbols abn, and
abng are minimized with higher priority than abn;.
The logic that extends the relation <, will yield the
correct deductions:

Bira A Bi(ra A ~abng — Bara) A
B1Bs(15) A By Bo(f)
<. BiBa(—ab)

This example illustrates a form of chaining across be-
lief contexts: defaults in the Bj’s belief space (ra A
(ra A —abng — Bara)) trigger defaults in agent 2 be-
lief space (Ba(I5 A ). In agent 2 belief space the
default that [5 normally entail a6 is disabled by the
higher priority of the default that if ra then —a6.

6 Conclusions and Future work

As far as the authors know this is the first prefer-
ence based nonmonotonic logic for multi-agents. The
other examples of non-monotonic multi-agent logics
[Mor90, Lak93, HM93, PJ95] follow the autoepistemic
tradition. One important difference between the pref-
erential and autoepistemic logics is that the former
allows one to easily introduce priorities among the de-
faults, as we did in example 2. It will be an interest-
ing extension of this work to compare a flat version
of the preference multi-agent logic (that is, where all
minimizations are done in parallel) with some of these
autoepistemic logics.

The work presented here is still preliminary. First,
we need to discover other properties of the logic £%.
For example, we cannot yet present any result on how
lack of knowledge (—B;) interacts with the preference
ordering.

It is also important to extend the results for a quan-
tified logic since preference logics have naturally been
based on quantified logics.
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