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Abstract

In this paper, parsimonious covering theory is extended in such a way that tem-
poral knowledge can be accommodated. In addition to causally associating possible
manifestations with disorders, temporal relationships about duration and the time
elapsed before a manifestation comes into existence can be represented by a graph.

Precise definitions of the solution of a temporal diagnostic problem, as well as
algorithms to compute the solutions are provided. The medical suitability of the
extended parsimonious cover theory is studied in the domain of food-borne diseases.

Keywords: Parsimonious cover theory, Temporal abductive diagnosis, Automated
medical diagnosis, Temporal reasoning

1 Introduction

Diagnostic reasoning is a complex cognitive process that involves knowledge
about a particular domain, general and domain specific heuristics about the
diagnostic reasoning itself, and constrains imposed by cognitive limitations
of the human diagnosticians. Parsimonious covering theory (PCT) [12] is an
attempt to formalize diagnostic reasoning, with the advantage that domain
knowledge, domain heuristics, and general diagnostic problem solving method-
ology are clearly separated from each other.
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Briefly, the basic version of PCT defines the domain specific knowledge as
a set of disorders (causes), a set of manifestations (effects), and a causal re-
lation between disorders and manifestations. The causal relation associates
each disorder with the manifestations it may cause. If one or more of those
manifestations are actually present in a diagnostic case, then the disorder may
be used to “explain” those manifestations. A particular diagnostic problem is
defined by a set of manifestations that are actually observed on the patient,
and the solution to that problem is to discover sets of disorders that explain
all the manifestations present, with some restrictions on these sets of disor-
ders. A limitation of PCT is that the domain specific knowledge is atemporal,
that is, one associates each disorder with a set of manifestations, but it is not
possible to specify how these manifestations evolve with time. Because of this
atemporallity PCT can only be used to solve diagnostic problems in which
all relevant symptoms are observable at the moment of diagnosis. In many
medical domains, and we expect in other diagnostic domains, that is not the
case.

In this paper, PCT is extended in such a way that it is possible to asso-
ciate with manifestations knowledge about their evolution in time. We call
this extension temporal PCT (t-PCT). The need for temporal information in
diagnostics systems has been recognized for some time [5,8], and temporal
reasoning has been combined with diagnostic reasoning in other works , e. g.
[2,3]. This research is the first to combine temporal reasoning with PCT.

The semantics of the causal relation in PCT is that the disorder may cause the
manifestation. This means that although the disorder explains the manifesta-
tion, that is, if the manifestation is present then the presence of the disorder
is a possible explanation for that, the fact that the manifestation may not be
present is not taken as an evidence against the disorder.

In a second extension of PCT, we allow for both necessary and possible causal
connections between disorders and manifestations. Thus, it is possible to state
that a disorder necessarily causes a particular manifestation, or that it just
may possibly cause the manifestation. This necessary/possible distinction on
the causal relation is be called categorical information. Other researchers have
proposed the inclusion of categorical information in diagnostic reasoning [16,7],
but we are particularly interested in the interference between the categorical
information and temporal reasoning, which has not been addressed by the
works mentioned above. This second extension to PCT that combines categor-
ical and temporal information is called categorical/temporal PCT (ct-PCT).

The next section describes the basic PCT, and it is a summary of [12, Chap.
3]. Section 3 discusses the temporal PCT and section 4 discusses the categor-
ical/temporal PCT. Section 5 reports on the implementation of a diagnostic
system for food-borne diseases using ct-PCT, and compares its efficiency with



Fig. 1. Causal network of a diagnostic knowledge base KB = (D, M, ().

a standard PCT implementation of the same diagnostic system. Finally sec-
tion 6 discusses the limitations of the model proposed, and explore some future
research topics.

2 Basics of Parsimonious Covering Theory

The basic version of PCT [12] uses two finite sets to define the scope of diag-
nostic problems (see Figure 1). They are the set D, representing all possible
disorders d; that can occur, and the set M, representing all possible manifes-
tations m; that may occur when one or more disorders are present.

The relation C', from D to M, associates each individual disorder to its man-
ifestations. An association (d;, m;) in C' means that d; may directly cause m;.
Together the set of disorders D, the set of manifestations M, and the causal
relation C constitutes the knowledge base KB. More formally, a knowledge
base is defined as a triple KB = (D, M, C).

To complete the problem formulation we need a particular diagnostic case.
We use M™, a subset of M, to denote the set of observations, which are
manifestations that are present in a particular patient case.

Definition 1 A diagnostic problem P is defined as a pair (KB, Ca) where:

- KB = (D, M,C) is a knowledge base, with D a finite, non-empty set of
elements, called disorders, M a finite, non-empty set of elements, called
manifestations, and C' C D x M s a binary relation called causation.

— Ca = (M) denotes the case information, where M™ C M is the set of
observations.

Disorders (manifestations) are usually denoted by the the letter d (m), possibly
supplied with a subscript.



2.1 Solution for a Diagnostic Problem

In order to formally characterize the solution of a diagnostic problem, PCT
defines the notion of cover, based on the causal relation C, the criteria for
parsimony, and the concept of an explanation (explanatory hypothesis).

Definition 2 For any d; € D and m; € M in a diagnostic problem P

- effects(dy) = {m;|{di,m;) € C}, the set of manifestation directly caused
by dl}'

- causes(m;) = {di|{(d;,m;) € C}, the set of disorders which can directly
cause m;.

The set ef fects(d;) represents all manifestations that may be caused by dis-
order d;. The set causes(m;) represents all disorders that may cause mani-
festation m;. These functions can be easily generalized to have sets as their
arguments.

Definition 3 The set D, C D is a cover of My C M if My C ef fects(Dy).

Definition 4 A set £ C D is an explanation of M™ for a diagnostic problem
iff E covers M™, and satisfies a given parsimony criterion.

In the following definition we present some possible parsimony criteria ([17]
describes other criteria).

Definition 5

— A cover Dy, of My is said to be minimum if its cardinality is the smallest
among all covers of My.

— A cover Dy, of My is said to be irredundant if none of its proper subsets is
also a cover of My; it is redundant otherwise.

— A cover Dr, of My is said to be relevant if it is a subset of causes(My); it
is irrelevant otherwise.

In many diagnostic problems, one is interested in knowing all plausible ex-
planations for a case, rather than just a single explanation because they, as
alternatives, can affect the course of actions taken by the diagnostician. This
leads to the following definition of the problem solution:

Definition 6 The solution of a diagnostic problem P=(KB,Ca), designated
Sol(P), is the set of all explanations of M*.

In this paper we will use irredundancy as the parsimony criterion, as suggested
by [12]. If one is interested in developing general algorithms for diagnostic
problems, irredundancy seems to be the preferable choice since from the set



of all irredundant explanations one can mechanically generate the set of all
minimal explanations (by selecting the sets of minimal cardinality) and the
set of all relevant explanations (by systematically adding new disorders to
some of the irredundant explanations). It is important to notice that minimal
cardinality, which is a natural criterion for parsimony, based on the idea that
one should not diagnose more disorders than the necessary, is not a general
heuristic, but a domain specific choice. For example, in domains where disor-
ders have different likelihoods or prior probabilities it may be more plausible to
say that two fairly common disorders are responsible for a set of observations,
than to say that a single extremely rare disorder is the cause.

For example, if the knowledge base is the diagram represented in figure 1, and
Mt = {mgy,ms}, then {d4} is a minimum explanation, {d,,ds} is a irredun-
dant explanation, {d;, dy,d,} is a relevant explanation, and {{d4}, {d2,d3}, {d1,d3}}
is the solution for the problem using irredundancy as the parsimony criterion.

2.2 Algorithms for PCT

There are basically two approaches for developing algorithms for PCT, de-
pending on how the set M* is presented. The set could be presented a priori
to the algorithm, in which case it will be said that the algorithm is non-
interactive. This seems appropriate in situations when one can monitor all
possible manifestations, so that the knowledge of which manifestations are
present in the case is readily available. In the second alternative, the observa-
tions in M ™ are presented to the algorithm one at a time, possibly as answers
to a question posed by the diagnostic system. This approach seems more ap-
propriate in situations where it may be costly to obtain all observations.

Algorithms may also differ in the parsimony criterion used to define an ex-
planation: irredundancy or minimal cardinality. [14] discusses two algorithms
that uses minimal cardinality as the parsimony criterion: HT an interactive
algorithm, and SOLVE a non-interactive. [12] presents the interactive algo-
rithm BIPARTITE which uses irredundancy as the parsimony criterion, and
which will be the basis for the algorithms presented in this paper.

BIPARTITE makes use of generators, a compact representation of alternative
explanations for a case. For the sake of completeness, and to be able to used
them in our modifications of the BIPARTITE algorithms, we will very briefly
describe some concepts and operations on generators. The reader should con-
sult [12] for more details.

If g1, 92, ..., 9m are pairwise disjoint subsets of D, then G; = {¢1,92,...,9m} is
a generator, and the class generated by G is [Gy] = {{d1,da,...,d,. }|d; € g:}.
G ={G1,Gy,...,Gy} is a generator-set if G is a generator, and [G[|N[G;] =

ot



0.

We define the operations res, div, augres, and revise, where G and () are
generator-set, Gy € G and Q)5 € () are generators, Sp C D is a set of disorders,
and ¢; € () is also a set of disorders.

Although defined in terms of generator and generator-set, the operation div is
better understood in terms of sets of explanations. Given a set of explanations
for a set of manifestations (M%), represented as a generator set, and the
disorders evoked by a new manifestation m, represented as a set of disorders,
the div returns the explanations of the original M™* that would also explain
the new manifestation m.

div(G, Sp) = U div(Gr, Sp)

G]EG

div(Gr,Sp) = {QklQkr = {qr1, Gr2, - - -, en}
gi— Spitj <k
and gi; = { ¢: N Sp if j = k
g ifj>k

The operation res is in some way the dual of div, given a set of explanations
for m™ and the disorders evoked by a new manifestation m the res returns
the explanations of M* that did not explain the new manifestation.

res(G, Sp) = U res(Gp, Sp)

G]EG
—Sp,.sGn— S ifg, — S 01 <<
res(GI,SD): {{91 D g D}}l g D # t>n
0 otherwise

The operations div and res are then extended to deal with set of set of disor-
ders (represented as generator and generator-set) as their second argument.

div(G,Qr)= |J div(Gr,Q)

G1€G
{G1} ifQr=10

div(Gl.a QJ) =
div(div(Gr,qi), Qs — {q;}) otherwise



G ifQ =10
res(res(G,Qy),Q — {Q,}) otherwise
res(G,Qs)= |J res(G1,Qy)

GreG
0 ifQ;=10
res(Gr,q;) Ures(div(Gr,q;), Qs — {¢;}) otherwise

res(G,Q) =

res(Gr, Q)=

The augres operation is a modification of the res operation so that instead
of returning the sets of explanations of M™* that do not explain the new
manifestation m, it adds new disorders to those explanations so that now
they also explain M+ U {m}.

augres(@, Sp)= | augres(Gr, Sp)

GreG
{{gl _SD7"'7gn _SDvA}} lng—SD # ®7A7£®
augres(Gr, Sp) =
0 otherwise

where A = Sp — U, ¢

Thus, given a set of explanations to M™, and a set of disorders evoked by a
new manifestation m, the set of explanations to M* U {m} can be obtained
by a combination of the div operation and the augres operation. This is done
by the revise operation:

revise(G, Sp)=Q Nres(Q’, Q)
where ) = div((G, Sp) and Q' = augres(G, Sp)

2.3  Limatations of PCT

PCT is a conceptually simple and powerful theory of diagnostic reasoning. It
clearly separates the role of domain knowledge (sets M, D and principally the
relation ('), the role of general diagnostic reasoning (the parsimony criteria
and the definition of cover), and domain heuristics. This separation allows one
to gather and express domain knowledge separately from domain heuristics,
as opposed to rule base diagnostic systems [15,18], for example. On the other
hand, PCT can also be seen as a limited form of an abductive causal theory

[6,7.9].



It has been pointed out that PCT has some limitations to represent more
complex forms of causal relationships among disorders and manifestations.
The most severe one, for the purpose of this research, is the fact that PCT
assumes that two disorders to not interfere with each other. It is not possible
to represent that the presence of a disorder will change the manifestations of
another disorder, or that if two disorders occur simultaneously they will cause
manifestations that none would cause without the presence of the other. An
extension of PCT that allows for the representation of the interaction among
disorders is discussed in [9].

Another problem of PCT is that the solution of a problem tends to have
many alternative explanations. Irredundancy as the parsimony criterion is too
weak to significantly reduce the number of alternative explanations, as the
experimental results reported in [17] confirm.

An approach for reducing the size of the solution of a diagnostic problem is to
add probabilistic information to the causal relation, as shown in [12,13] among
others, and compute only the most probable explanations.

Given the lack of probability information about disorders and manifestations
in some domains, another useful approach is to develop domain specific heuris-
tics that selects from the set of irredundant explanations a subset of more
“plausible” ones. Conceptually, the solution generated by the diagnostic sys-
tem using irredundancy would be filtered by the domain specific heuristics.
Because other explanations can be mechanically generated from irredundant
explanations, this approach is at least feasible, although not efficient. Once
the appropriate domain specific heuristics have been found, it may be possible
to incorporate them directly into the algorithm that generates the solution,
improving its efficiency.

3 Temporal PCT

The aim of this paper is to extend PCT so that instead of associating to each
disorder a set of manifestation, one could associate an evolution of manifes-
tations. Thus, a knowledge base could state that disorder d; causes first my
which will last between 2 and 5 days, followed in 7 to 14 days by my which
may last an undetermined amount of time, and will be followed at any mo-
ment by mgs, and so on. We accomplish this temporal representation using
a graph, in which nodes are manifestations and directed arcs between nodes
represent temporal precedence. If there is quantitative information about the
duration of the manifestation, it is associated with the corresponding node; if
there is quantitative information about the elapsed time between the start of
two manifestations, it is associated with the corresponding arc. Furthermore,



quantitative information are not represented as a single number, but as an
interval. The knowledge base associates each disorder with one such temporal
graph.

A similar representation is used for the case information. It is possible then to
state that for a particular patient, manifestation my started sometime between
2 and 3 weeks ago, and it lasted for 1 to 2 days, and that the patient has
manifestation ms but there is no information on when it started.

3.1 Temporal Representation

Time points, or moments, are the primitive objects to represent temporal
information. An interval is defined as non-empty convex set of time points, or
in other worlds, as a continuous set of moments. An interval is determined by
two time points, its lower and upper extremes, and denoted as I = [[~, 1],
where I~ is the lower extreme and IT the upper extreme. Usually, I~ < I™;
if I~ = I* then the interval reduces to a time point, and if 7= > I™ then the
interval is empty.

An intervals will be used as a range for temporal measures: to state that a
temporal measure must be within an interval I = [I~, %] is to state that
the actual value d for that measure must be such that 1= < d < IT. If the
measure is not given precisely, as a single number, but as an interval K, then
we will say that the measure interval is compatible with the interval I if there
are time points common to both intervals, that is, if INK # 0. If [ = [I~, 7]
and J = [J~,JT], we define the following operations on intervals:

I+ J=[1"+J It +J"
~InJ=[mazx(I~,J7),min(It,J")];

and use the abbreviation I < ¢, where ¢ is a time point, to mean I < ¢.

A temporal graph is a direct, acyclic, transitive, not necessarily connected
graph where the nodes are manifestations. The existence of an arc from m; to
m; in a temporal graph denotes the fact that the beginning of the occurrence
of manifestation m; must precede the beginning of the occurrence of m;.

Definition 7 The temporal graph of a disorder d; € D, Gy = (V;, A)), is a

direct, transitive and acyclic graph defined as:

- Vi € M is the set of manifestations directly caused by d;, and
— Ay ={(mi,m;)| the beginning of m; occurs before the beginning of m; when
the disorder d; is said to be present}.



The impossibility to define cycles is a major restriction on the expressive power
of this temporal representation formalism. In other words, it is not possible
to represent recurring events. Nevertheless, this restriction is important since
it reduces the complexity of the reasoning process [2].

The temporal distance between manifestations and the duration of a mani-
festation are represented by functions on the graph, denoted by DIST and
DUR, respectively. The temporal distance function DIST associates an interval
R = [R™, R"] with each arc of a temporal graph G,. DIST(G/, (m;,m;)) = R
for (m;,m;) € A;, which we will abbreviate as DIST,((m;,m;)) = R, states
that the elapsed time between the beginning of m; and the beginning of m;
in the temporal graph G} of d; must be within the interval R. The duration
function DUR associates with each node m; of a temporal graph G an interval
J, that specifies that the duration of m; must be within the interval J.

The transitivity of the temporal graph must be consistently carried over to
the DIST function: if DIST,(m;,m;) = Ry and DIST(m;,my) = R, then
DIST;(mi,mk) =R1 + RQ.

3.2 Temporal Diagnostic Problem Formulation

Definition 8 The knowledge base of a temporal diagnostic problem is the
tuple KB = (D, M, G,DIST,DUR) where D and M are defined as before, GG
s a set of temporal graphs, each one associated with one disorder of D, DIST
and DUR are the temporal information functions defined above.

In order to represent the case information, we will need a set of observations
M, as before, supplemented with two temporal functions BEG™ and DUR™.
The function BEG™ associates an interval with some of the observations in
M*. BEG*(m) = I states that m started at any time within interval I. The
origin of the time line for describing BEG™ is arbitrary, provided the same
origin is used in all temporal information for the given case.

Similarly, the function DURY associates a duration interval with some of the
observations in M ™, such that the actual duration of the observation is any-
where within that interval. It is important to notice that the model allows
for incomplete knowledge about the observations. Both the beginning and the
duration of an observation can be stated as an interval or they may not be
stated at all.

Definition 9 A temporal diagnostic problem P is a pair (KB, Ca) where KB
is defined above, and Ca = (M* ,BEG*Y DUR™") is the case information.

One can define the ef fects and causes functions in a similar way to def-
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inition 2. For example causes(m) = {d;|m € V, for any temporal graph
G = (Vi, A)) € G}, represents the set of disorders that may cause m.

3.3  Solution for a Temporal Diagnostic Problem

In order to define the solution of a temporal diagnostic problem, a set of con-
cepts about temporal inconsistency needs to be defined. These definitions will
allow us to remove from the solution all explanations that contain disorders
in which the evolution of manifestations contradicts the evolution of the ob-
servations in the case. For example, if for the disorder dg the manifestation
my precedes my but in the case, the occurrence of m; started after the occur-
rence of msy, then one can disregard all explanations that contain dg, since it
contradicts the temporal information of the case.

Definition 10 For a temporal diagnostic problem P, let Gy = (Vi, Ay), (m;, m;) €
Ay, and mi,m; € MY, The arc (m;,m;) in graph G, is temporally inconsistent
with the case iff

(BEG-I_(T)’LZ) + DIST;((mZ, m]))) N BEG+(T)’L]) = @

(BEG™ (m;) + DIST;((m;, m;))) is according to dj, the possible range for the
beginning of manifestation m;, or in other words, the set of time points in
which disorder d; expects m; should begin. On the other hand, BEG™ (m;) is
the range of uncertainty for the real starting point of m;, that is, all time points
in BEG™ (m;) could have been the moment in which m; really stated. If there
is no intersection between these two sets then what the disorder expects are
the starting times for the manifestation do not correspond to the real starting
times, and the arc (m;,m;) should be considered temporally inconsistent with
the case.

Definition 11 For a temporal diagnostic problem P, let Gy = (Vi, A;) be the
temporal graph of a disorder d; € D. The disorder d; is temporally inconsistent
with the case Ca = (M* ,BEGY DURT) iff

— there exists at least one arc (m;,m;) € A; temporally inconsistent with
respect to the case , or

~ there exists at least a node m € Vi, such that, m € M* and DUR;(m) N
DUR*(m) = 0.

Thus, a disorder is temporally inconsistent with the case information, if it
has a temporally inconsistent arc, or if the range for the duration of one
of its manifestations does not agree with the range for the duration of the
corresponding observation.

11



Finally, based on the above definitions, we formalize the notions of temporally
consistent explanation and temporally consistent solution.

Definition 12 A set E C D is said to be a temporally consistent explanation
of the case for a temporal diagnostic problem P iff

(i) E covers M*, and
(i) E satisfies a given parsimony criterion, and
(tii) for all d; € E, d; is not temporally inconsistent with the case.

Definition 13 The temporally consistent solution of a temporal diagnostic
problem P = (KB, Ca), designated by Sol(P), is the set of all temporally

consistent explanations of the case.

3.4 Algorithm

We present here an interactive algorithm that computes all explanations to
a temporal diagnostic problem. The algorithm is a modification of the BI-
PARTITE algorithm in [12]. The important aspect of the algorithm is that
temporal consistency is not implemented as a filter, that is, it is not applied
after the original BIPARTITE algorithm has generated the solution, but it is
incorporated very early into the process of merging the causes on the “new”
observation into the set of current explanations. Thus the algorithm has to
deal with smaller sets of explanations.

function t-BIPARTITE(KB)
variables
m: manifestation; (* new observation *)
hypothesis: generator-set; (* all explanations *)
D¢, (* consistent disorders *)
Dy, (* inconsistent disorders *)
H, (* disorders evoked by m *)
Ig, (* inconsistent disorders due to BEG *)
Ip: set-of-disorder; (* inconsistent disorders due to DUR *)
MT: set-of-manifestation;
BEGH,
DUR™: function;
begin
hypothesis = {0};
D¢ = 9;
Dy =0;
M* =0,
while MoreObservations do

Ig =0

-1 O Ot = W N —

12



8

9

10
11
12
13
14
15
16
17
18
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20
21
22
23
24
25
26
27
28
29
30
31

Ip = @;
m = NextObservation; (* obtain next observation *)
M* =Mt U {m};
H = causes(m) — Dr;
if DUR™(m) is defined
then
In = {d)|d; € H, and DUR;(m) N DUR*(m) = 0};

endif
if BEG™(m) is defined
then
Ig = tempnc((H — Ip) N Do, Mt m);
endif

hypothesis = res(hypothesis, Ig U Ip);
D[:D[UIBU]D;
DC = (DC U H) — (]B U ID);
if (H— Dy) =0 or (hypothesis =) and M* £ ()
then
return nil (* there is no consistent explanation *)
else
hypothesis = revise(hypothesis, H — Dy);
endif

endwhile
return hypothesis

The function temp_inc in line 18 is defined as follows: given a set of disor-
ders Sp and a new manifestation, the function returns the disorders from the
set Sp that are temporally inconsistent with the new manifestation. In or-
der not to clutter the notation, we assume that the knowledge base KB =

(D, M,G, DIST,DUR) and the case information Ca = (M* BEG", DUR™")

are globally accessible to this function.

temp_inc(Sp,m) =

{d, € Sp | there exists (m;,m) € A; and m; € Mt and
(BEG*(m;) + DIST,((m;,m))) N BEGT(m) =0
or
there exists (m,m;) € A; and m; € M+ and
(BEGT (m) + DIST;((m,m;))) N BEG (m;) =0
}

The functions MoreObservations and NextObservation are entry-points for
the module that interacts with the patient, probably through the physician,
asking questions about the presence of manifestations. In order to ask effective

13



questions this module must have access to current set of explanations, the
knowledge base and very likely will use domain specific heuristics to select the
next question to ask.

At the beginning of a new cycle, a new observation (m) is entered (line 9),
and the disorders known to be inconsistent with the temporal information of
the case so far (D;) are removed from the disorders evoked by m (line 11),
resulting in a set of consistent disorders evoked by the new observation (H).
If there is duration information for the new observation, the set of disorders
in H that are inconsistent with the duration information is collected in Ig
(line 14); if there is starting time information for the new observation, the set
of disorders in H which are inconsistent with this information are collected
in Ig (line 18). Explanations that contain such disorders are eliminated from
the current hypothesis (line 20). The sets of all inconsistent and consistent
disorders so far are updated (lines 21 and 22), and the set of explanations
is updated to include the consistent disorders evoked by the new observation

(line 27).

3.5 Discussion

We have presented our first extension to PCT, which adds temporal represen-
tation of manifestations and observations to the original PCT. The temporal
representation used here is similar to the ones used by other researchers both
in medical domains [2,3] and robotics [4]. The temporal inconsistency criterion
is equivalent to the one described in [3].

As discussed earlier, this temporal representation allows for many forms of
uncertainty. Time information may be expressed as intervals or may not be
expressed at all, both for the knowledge base and for the case. In fact, the
t-PCT is a true extension of the original PCT, since by not providing any
temporal information one has both a PCT knowledge base and a PCT case,
and in this case the definition of a solution for a temporal diagnostic problem
will coincide with the PCT’s definition of solution for a diagnostic problem.

This true extension property is a positive trait since many diagnostic domains
(including some medical domains) are atemporal in the sense described above,
and t-PCT could be the appropriate diagnostic theory for them as well. But the
true extension property restricts some possible useful forms of uncertainty in
describing the case. For example, it is not possible to state that an observation
has already occurred and that it is not present anymore, without explicitly
stating its its starting time and duration.

14



4 Categorical/Temporal PCT

The semantics of the causal relation in PCT (and t-PCT) is that the disorder
may cause the manifestation. An important extension is to distinguish between
a possible causation and a necessary causation [7]. For example, botulism may
cause nausea and vomiting, but necessarily causes some form of paralysis. This
distinction between necessary causation and possible causation will be called
categorical information.

By taking into consideration this categorical information, it is possible to
reduce the number of explanations for a particular diagnostic problem: if d;
necessarily causes mgy, and if my is not one of the manifestations observed in
the diagnostic case, then no explanation for the case can contain the disease
dy. We call this reasoning, categorical rejection. When a temporal dimension
is added, one has to be careful about categorically rejecting a disorder. Even
if dy necessarily causes my, and if my is not observed in the case, one should
not categorically reject dy without checking whether m, had time to develop,
given the current stage of the disorder d;.

4.1 Problem Formulation and its Solutions

In order to provide categorical information, the function POSS is added to
the knowledge base. It attributes to each node of each temporal graph either
the label N, for necessary, or the label P, for possible; POSS(Gy,m;) = N,
abbreviated as POSS;(m;) = N, states that disorder d; necessarily causes the
manifestation m;.

In categorical diagnostic problems, one is interested in manifestations known
to be absent in the diagnostic case, called negative observations. M~ the set
of negative observations, and I,,y, the time point that represents the moment
of diagnosis, are added to M+, BEGT, DUR™ as the components of the patient
case information, Ca.

Definition 14 Let P=(KB, Ca) be a categorical diagnostic problem and G| =
(Vi, A1) € G. The disorder d; is categorically inconsistent with the case iff
there exists m € V; such that POSS;(m) = N, and m € M~ and

(i) there exists (m,m;) € A;, such that m; € M*, or
(ii) there exists (m;,m) in A;, such that, m; € M+ and
BEG™ (m;) + DIST(m;,m) < Lnow-
For a disorder d; to be categorically inconsistent a necessary manifestation

must not be present in the case ( POSS;(m) = N and m € M~), but also
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there must have been enough time for the manifestation to occur. In the
first case above, a later manifestation has already occurred ((m,m;) in A,
and m; € M%), so we can be sure that m should already have occurred.
In the second case above, that is warranted because there has been enough
time (BEG™ (m;) + DIST(m;, m) < Iow) since the occurrence of a preceding
manifestation that did occur in the case ((m;,m) € A; and m; € M*) and the
necessary manifestation that is not present.

Finally, we define an explanation of a categorical diagnostic problem.

Definition 15 A set E C D is said to be a consistent explanation of the case
for an categorical diagnostic problem P = (KB, Ca) iff

~ E covers M™, and
— FE satisfies a given parsimony criterion, and
— for all d; € E, d; is not temporally inconsistent, and

— for all d; € E, d; ts not categorically inconsistent.

4.2 Algorithm

We present below an algorithm that interactively solves a categorical /temporal
diagnostic problem. The algorithm makes use of two auxiliary data structures
CCR4 and CCRy, which mainly store disorders that are candidates for cat-
egorical rejection, that is, disorders that have a necessary manifestation not
present in the case, but cannot be categorically rejected because the conditions
(i) or (ii) in definition 14 are not true yet. CCR; stores disorders for which
the condition (i) in definition 14 was not verified and CCR; stores disorders
for which the other condition was not verified.

CCR; is a set of elements of the form (d, {1, ..., m;}) where d is a candidate
for categorical rejection and {my, ..., m;} are disorders that should occur after
a necessary manifestation of d that is not present in the case. CCR, is a set of
elements of the form (d, {(my1, mn1) ... (Mpk, muk)}), where each (mpr, myq) is
an arc of the temporal graph for d, and each m,; is a necessary manifestation
of d that is not present in the case, my; is a manifestation for which the system
has no knowledge whether it occurred in the case or not, and that should have
occurred before the corresponding m.,;.

The operations on CCR; and CCR; are defined below. cat_rej returns the
set of disorders that can be categorically rejected once the manifestation m
is known to have occurred. remove removes a set of disorders from the cor-
responding list, and add adds a new set of disorders to the list. For these
operations we assume that the knowledge base and the case information are
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globally accessible.

catrej(CCRy,m) = {d;|{d;, M;) € CCRy and m € M,}

cat_rej(CCRg, m, thow) = {di|{di, A;) € CCR;y and there exists
(m,my;) € A; and BEGY(m) + DIST;((m, 1)) < tnow}

remove(CCR, Sp) = {{d, X)|(d,X) € CCR and d & Sp}

add(CCR, S)={(d, X)|(d, X) € CCR and (d,Y) & S} U
{{d,Y)|(d,Y) € S and (d,Y) ¢ CCR} U
{(d, X UY)|(d, X) € CCR and (d,Y) € S}

function ct-BIPARTITE(KB)
variables

m: manifestation; (* new observation *)
hypothesis: generator-set; (* all explanations *)
D¢, (* consistent disorders (temp. and categ.) *)
Dy, (* inconsistent disorders (temp. and categ.)*)
H, Hy (* disorders evoked by m*)
I, (* inconsistent disorders due to BEG *)
Ip, (* inconsistent disorders due to DUR *)
I¢ : set-of-disorder; (* categorically rejected disorders *)
CCRy, CCR; :set;
M™: set-of-manifestation; (* observations *)
BEGY, DUR™: function;
thow: time point; (* now *)

BEG™,
DUR™: function;
1 begin
2 hypothesis = {};
3 D¢ = Q);
4 Dy =0;
5 CCRy = 0;
6 CCRz = 0;
7 M+ = {;
8 thow=Now;
9 while MoreObservations do
10 m= NextObservation;
11 H = causes(m) — Dr;
12 if NextObservation.status = present (* m; € M+ *)
13 then
14 M* =M*U{m}

17



15 Is = 0;

16 In = 0;

17 Ic = cat rej(CCRy,m) U cat rej(CCRy, m, thow);

18 CCRy = remove(CCRy, I¢);

19 CCR; = remove(CCRy, I¢);

20 if DUR™ (m;) is defined

21 then

22 Ip = {dl|dl € (H — I(j), and DUR[(m) N DUR"’(m) = Qj},
23 endif

24 if BEG™(m;) is defined

25 then

26 Ig = tempnc((H — (Ip U Ic)) N Dy, M, m);

27 endif

28 hypothesis = res(hypothesis, Ic U Ig U Ip);

29 D[:D[UIcLJ]BU]D;

30 DC:(DcLJH)—(]CU]BU]D);

31 if (H— D;) =0 or (hypothesis =) and M™* # ()

32 then

33 return nil (* there is no consistent explanation *)
34 else

35 hypothesis = revise(hypothesis, H — Dy);

36 endif

37 else (*m; € M~¥)

38 H, = {d)|d, € H, and POSS;(m) = N};

39 Ic = {di|d, € Hy and there exists (m, my) € A; such that m; € M*}
40 U {d;|d; € Hy and there exists (m;,m) € A such that
41 BEG™ (m;) + DIST;((mi,m)) < tnow};

42 hypothesis = res(hypothesis, I¢);

43 D[ = D[ U Ic;

44 DC = DC — D[;

45 CCR; = G,dd(CCRl, {<dl, SM>|d1 € H; — Ig and

46 Su = {mg|(m,my) € Ai}});

47 CCR; = add(CCRg, {<dl, SA>|dl € Hy — Ig and

48 Sa= {(m“m)|(m“m) € Al}});
49 if hypothesis = () and M+t # ()

50 return nil

51 endif

52 endif

53 endwhile

54 return hypothesis

55  end.

In its main loop, the algorithm is divided into two segments: lines 14 to 36
process a new observation (m € M%), while lines 38 to 51 process a negative
observation (m ¢ M™). If the manifestation is present then line 17 collects into
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the set I all disorders in CCR; and CCR; that indeed became categorically
inconsistent by the presence of m. Lines 18 and 19 update the lists CCR;4
and CCR; by removing the categorically rejected disorders from them. Lines
20 to 36 basically repeat the correspondent segment of code in the algorithm
t-BIPARTITE, taking also into consideration the categorically inconsistent
disorders.

When the manifestation m is not present (m € M), the algorithm collects
in H; the set of disorders evoked by m, which has m as a necessary manifes-
tation. From this set, the categorically inconsistent disorders are collected in
I¢, which is used to update the current hypothesis (line 42), update the set
of inconsistent disorders (line 43), and update the set of consistent disorders
(line 44). Finally the sets CCR; and CCR; are updated with the disorders in

H; which are not yet categorically inconsistent with the case.

5 Diagnosis of food-borne disease using ct-PCT

Food-borne diseases [10, Chap. 81] result from the ingestion of food contam-
inated with pathogenic microorganisms, toxins or chemicals, and their symp-
toms are primarily gastrointestinal or neurological. This domain is well suited
to test both t-PCT and ct-PCT because not only temporal information about
the evolution of symptoms and categorical information are available, but they
are necessary for a correct diagnosis. For example: Staphylococcus aureus and
short-incubation Bacillus cereus are the only possible bacterial causes for nau-
sea and vomiting occurring within 1 to 6 hours after the ingestion of the
contaminated food. On the other hand, a patient with botulism (Clostridium
botulinum) will only have nausea and vomiting in 18 to 36 hours after the
ingestion. Not taking into consideration the elapsed time from ingestion to
the symptoms would result in incorrect diagnosis.

Furthermore, food-borne diseases also shows examples in which the categori-
cal rejection must be performed carefully because of temporal considerations.
For example the ingestion of poisonous mushrooms from the species Amanita
phalloides, A. virosa, and A. verna, will necessarily cause in 6 to 24 hours
abdominal cramps and diarrhea, which will last for up to 24 hours, followed
by a 1 to 2 days period of no symptoms, followed by hepatic and renal failures
(which in almost 50% of the cases leads to death). One should not categori-
cally reject this disease for a patient that is not showing signs of renal failure
without taking into consideration whether there has been enough time for that
symptom to develop.
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We implemented a diagnostic system for food-borne diseases in order to:

— test the theory.

— verify the adequacy of the temporal representation for representing diseases.

— compare the precision and efficiency of PCT and ct-PCT (and the corre-
sponding algorithms) in solving some diagnostic problems in this domain.

In particular it was not our goal to construct a diagnostic system to be used in
clinical settings. The implemented system has not been verified and validated
appropriately for clinical use.

5.1 The Knowledge Base

The knowledge base contained 28 of the food-borne infections described in [10,
Chap. 81], amounting to around 60 different symptoms. The whole knowledge
base was developed in four days, based mainly on that medical manual. A spe-
cialist was consulted once during the development phase, mainly to provide
categorical information on the symptoms of each disease, since such informa-
tion was not always available (or it was unclear) in the manual. The specialist
also verified the temporal graphs for some of the diseases. The total time of
consultation with the specialist was around two hours.

Food-borne diseases usually have a simple temporal structure: the event of
ingestion of the contaminated food and a set of cotemporal symptoms that
occur after the incubation period. Figure 2 represents the temporal graphs of
the symptoms caused by Y. enterocolitica and by the A. phalloides, A. virosa,
and A. verna mushrooms.

The Y. enterocolitica graph is typical of food-borne diseases. The manifesta-
tion mg is not really a manifestation but the event of ingestion. The necessary
manifestations are fever (my), abdominal cramps (ms), and mesentic adenitis
(m3); and the possible manifestations are nausea ( m4) and vomiting (ms).
The manual does not provide information about the elapsed time between
ingestion and manifestations ms, my, and ms, so we define the DIST function
for those arcs to be [0, oo], which only means that those manifestations occur
any time after mg. The duration of all manifestations is [1d,28d].

The graph for A. phalloides is more complex from the temporal point of view.
The arcs from mg to mg and from mg to mg are not represented in the graph.
mgo again is the ingestion event, mg and m; are abdominal cramps and diar-
rhea, and mg and mg are renal and hepatic failures. The durations of mg and
my are [6h,24h] and the duration of mg and mg are not defined, and thus set
to be [0,00]. Other diseases, like paralytic shellfish poisoning (PSP) have a
temporal graph similar to the one for Y. enterocolitica, but with 10 necessary
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Fig. 2. Temporal graphs of some food-borne diseases.

symptoms and 25 possible symptoms.

We encountered two examples of diseases for which ct-PCT was inadequate to
represent the development of the manifestations or the causal relation between
the disease and its manifestations. This two examples will be discussed in
section 6.

5.2 Implementation and comparison between PCT and ct-PCT

In the domain of food-borne diseases, the appropriate parsimony criterion is
that of single-disorder explanations. This is an extreme form of the minimum
cardinality criterion, which requires that the explanations should contain only
one disorder. This criterion was implemented as a filter that runs after the
programs have computed all irredundant explanations. Furthermore in order
to collect information about the precision of ct-PCT in comparison with PCT,
we registered also the number of irredundant solutions each program computed
before the filter was applied.

Both the ct-BIPARTITE (for ct-PCT) and the BIPARTITE (for PCT) al-
gorithms were implemented in Prolog, almost straightforwardly from their
definition.

We tested the systems with seven artificial (non-clinical) cases created by the
specialists. The set of observations and negative observations, together with
their temporal information, were given to the program as a list, so the function
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NextObservation in ct-BIPARTITE (and BIPARTITE) would just read in
the next element on the list. The same list, stripped of temporal information
and negative observations was the input for the BIPARTITE program.

On average, the number of single-disorder diagnosis computed by ct-BIPARTITE
was less then half of the number of single-disorder diagnosis computed by BI-
PARTITE, and considering irredundant explanations, ct-BIPARTITE gener-
ated less then one third of the irredundant solutions generated by BIPAR-
TITE. In terms of execution time, on average, ct-BIPARTITE computed all
irredundant explanation in 70% of the time it took BIPARTITE to process the
same example. In a particular example, ct-BIPARTITE computed only a single
one-disease diagnosis, and 2 multiple diseases diagnosis against 6 one-disease
diagnosis and 73 multiple-diseases diagnosis computed by BIPARTITE. For
this example, ct-BIPARTITE completed its execution in 30% of the time it
took to BIPARTITE to complete.

6 Conclusions

This work has presented two extensions of the original Parsimonious Covering
Theory. The first extension t-PCT allows one to associate to each disorder an
evolution of manifestations, and the second ct-PCT adds categorical informa-
tion about the necessity or possibility of a disorder causing a manifestation
to the temporal reasoning. These two extensions include the original PCT,
in the sense that if the knowledge base contains no temporal or categorical
information then t-PCT, c¢t-PCT and PCT will compute the same solution for
all diagnostic problems.

A diagnostic systems for food-borne diseases was developed. The experimental
results showed that in that domain, and we expect in all temporally rich
domains, the temporal and categorical information allow for a faster and more
precise diagnosis than the standard PCT.

The temporal /categorical extension to PC'T has some limitations in represent-
ing both the knowledge base and case information in some diagnostic domains.
Overcoming these limitations are possible areas of future research:

— As discussed in section 3.5, temporal graphs do not allow for cycles. In
medical diagnosis few but important diseases have recurrent events. Malaria
is one of them: one distinguishes different forms of malaria by the period
between the re-occurrence of the fever episodes [1].

— Also discussed in section 3.5, ct-PCT does not allow to state that an ob-
servation has already happened and is no longer present without stating
explicitly the time and duration for the observation.
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— The semantics of arcs in temporal graphs, and the DIST function, refer to
the beginning of the manifestations, that is, DIST;((ms, m,)) = I means
that the elapse time between the beginning of manifestation m, and m,
should fall within the interval 7. This semantics of associating the beginning
of the manifestations was appropriate for most of the examples, but not
for all. In the example of intoxication by A. phalloides, A. virosa, and A.
verna mushrooms (figure 2), the hepatorenal failure will occur 1 to 2 days
after the end of the cramps and diarrhea symptoms. In that case, because
the duration of the cramps and nausea symptoms were given, we could
determine an interval from the beginning of the corresponded symptoms.

— In the food-borne diseases domain we encountered an example of categorical
information that could not be represented in ct-PCT: representing that a
disorder necessarily does not cause a manifestation. Uncomplicated develop-
ments of verotoxigenic stains of F. coli infections will cause bloody diarrhea
but not fever.

— PCT’s incapacity to represent the interference of disorders may be partic-
ularly severe in ct-PCT. In the presence of temporal information it is very
unlikely that two disorders will not interfere with each other. As an exam-
ple, let us suppose that d; causes m with duration / and d; causes m with
duration J. Then certainly the presence of both disorders simultaneously
will cause some change on the duration of m (the same can be true for the
temporal relation of m with other manifestations in both d; and d;). In the
area of medical diagnosis, this has been documented by [11]. If either I and
J are mutually inconsistent (/N.J = ), or either one is inconsistent with the
duration of the observation m (DUR™(m)N 1N J = () then the hypothesis
that contains both d; and d; will be discarded as temporally inconsistent
with the case.

An interesting extension of the ct-PCT theory, suggested to us by the special-
ists, is the incorporation of fuzziness into the idea of temporal inconsistency.
The specialists were willing to accept a temporally inconsistent disease in a
diagnosis provided its temporal information would not “disagree much” with
the case information. This indicates that temporal consistency should not be
modeled as a boolean attribute, but as a fuzzy one. If a measure falls within
the interval it is fully consistent, and its degree of consistency would decrease
the further away it falls from that interval. The idea of fuzziness must then
be carried over to all other concepts in the theory.
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