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Abstract— This paper presents a model-based approach
to diagnose performance and communication faults in local
area networks (LANs). The diagnostic is based on the idea
that if the system has an approximate model of the network,
and knows how IP packages travels in the network, it can
reason about the causes of alarms. A set of subsystems was
developed, to gather the network information, to construct
the model, to criticize the model, and to interact with the
network in order to gather status information. Some results
of experiments are reported.
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I. Introduction

Many of the Artificial Intelligence diagnostic systems for
computer network faults discussed in the literature (for ex-
ample [1], [2], [3], [4], [5], [6], [7]) or available as part of
network management platforms are experience-based sys-
tems. Such systems, in some way capture the experience
of detecting a fault on a particular computer network. For
example, [1], [2] discuss case based models for fault diagnos-
tics: a memory of previous faults episodes of the network
is kept, and as a new set of abnormal behaviors are discov-
ered, they are matched with the previous episodes, in the
hope that previous knowledge will help solve the current
problem. Other systems use neural nets [8] to learn from
previous cases to diagnose a new fault.

A problem with experience based systems is that they
only work for that particular network. If a particular net-
work, for which one has a large set of diagnosis cases, is
changed, it is very likely that a case based system, or a neu-
ral net learning system, and any other experience based sys-
tem will be useless. The experience based system is tuned
to that particular static network (topology, type of equip-
ments, even identity of the equipments) and any changes
in the network renders the system useless. It is our expe-
rience that local area network undergo changes with high
frequency (one change a week), and thus the need for diag-
nostic systems that are not so dependent on the particular
network.

This paper will present a model-based approach to de-
tection of performance degradation and fault diagnosis in
computer networks. The idea is to have an approximate
description of the local area network: the topology, type of
equipments, routing tables, and so on. With this informa-
tion (and knowing of how IP packets travel in the network)
one is able to perform a model based reasoning for this net-
work. For example, let us suppose that the management
platform detects that a host is unreachable. By computing
the path that the IP packet would have taken to and from

that machine, one can create a first diagnostic hypothesis,
that at least one element in the path is faulty. By either
querying further the network or receiving further alarms
the hypothesis is incrementally refined. When the hypoth-
esis can no longer be refined, it is informed to the (human)
network manager, to further refine the hypothesis but in
locus observation, or to correct the network by fixing the
components.

To illustrate the diagnosis of a performance degradation
situation, let us assume that the diagnostic system discov-
ers that the latency for a IP packet to reach a certain desti-
nation and come back is too high. By computing the path
the packet takes, and assuming that the high latency is due
to a segment of the path with high occupancy of the chan-
nel, the system can create a first diagnosis hypothesis, that
one of the collision domains in the path has a high occu-
pancy rate. A collision domain is a set of devices interface
connected with some technology so that an unicast packet
sent by any interface in the domain is also received by all
other interfaces in the domain; thus all interfaces connected
among themselves through HUBs, or an Ethernet cable are
in the same collision domain. By further investigations of
each of the collision domains in the path, the system can
refine the hypothesis and determine the particular collision
domain which has high occupancy rate and which hosts are
responsible for it.

In order to construct the model of the network we de-
veloped a module that discovers the network model auto-
matically. Thus, if the network is changed, this network
discovery system must be run and it will automatically (or
semi-automatically) reconstruct the network model for the
new configuration.

A. Architecture of the diagnostic system

The diagnostic system, pictured in figure 1, is composed
of different subsystems, which run at different moments.
The off-line subsystem, has two components: the Network
Discovery System (NDS) and the Configuration Critic Sys-
tem (CCS). These two systems generate and analyze the
network model.

The online subsystem has two components: the Network
Status Gathering System (NSGS), which collects informa-
tion about communication faults and performance degrada-
tion from the network, and the General Diagnostic System
(GDS), the central component of the system, which receives
the information of some communication fault or unaccept-
able latency, and based on the network model, interacts
with the NSGS to discover a set of diagnostic hypothesis.



Each diagnostic hypothesis is a list of network elements and
connections, where at least one of these elements is faulty.
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Fig. 1. The diagnostic system online architecture

II. Network Discovery System

In general, commercial network management platforms
have a discovery module that is capable of constructing
part of the network model, but which usually does not
contain all the necessary information needed for a diagnos-
tic system. Such platforms frequently collect information
about the network level (IP level) and about the identity
and parameters of the equipment; sometimes they also col-
lect information about the connection and interface char-
acteristics, but information about routing tables is usually
not gathered by such systems.

In this work we have developed a NDS that can collect
such information. First, the NDS sends one broadcast ping
(ICMP-echo) for the LAN, listing all SNMP agents that
answer for this ping [9]. Making use of this list, the NDS
starts to fetch all MIB information found in which agent of
the network, organizing this information per sub-network.
The NDS makes use of the SNMP, and in particular inter-
faces and IP group from MIB-II [RFC1213], Bridge MIB
[RFC1493], RMON MIB and Repeater MIB [RFC1516].
The following table shows all entries that are collected:

After fetching and organizing this information, the NDS
starts one detailed parsing, translating the data into Pro-
log clauses and building the network model. Basically, the
NDS performs the following reasoning when parsing:

• The information from the IpNetToMedia table provides
all available IP/MAC pairs (it is also possible to fetch addi-
tional pairs in the bridge-mib table). This makes possible
to physically identify the devices
• The information from the rptr table belongs to hubs,
where it is possible to find all the Collision Domain con-
nections and the up-link connection when intersecting with
the IpNetToMedia table
• The dot1dTp table provides information of connection
and interfaces that connects the switch with respective de-
vices
• The core information to the diagnostic is fetched from the
IpRoute table. The routing tables can be built from them,
all route computation consults these tables. Information

ipRoute ipRouteDest
ipRouteNextHop
ipRouteIfIndex
ipRouteMask
ipRouteMetric1

ipNetToMedia ipNetToMediaPhysAddress
ipNetToMediaNetAddress
rptrAddrTrackPortIndex

Rptr rptrAddrTrackSourceAddrChanges
rptrAddrTrackNewLastSrcAddress
rptrAddrTrackPortIndex

dot1dTp dot1dTpFdbAddress
dot1dTpFdbPort
dot1dTpFdbStatus

ifTable ifIndex
ifPhysAddress

ipAddr ipAdEntAddr
ipAdEntIfIndex

sysname sysName

TABLE I

Entries from the MIBs

like next hop, destination IP, source IP are found for each
device.
• The interfaces for each device are fetched in the IpAddr
and IfTable tables

The model constructed is usually an incomplete model
of the network. If there are some network equipments that
are not SNMP-managed, then part of network connections
cannot be automatically gathered. It is unfortunately very
common to find not SNMP-manageable hubs and switches
that do not appropriately implement the Bridge MIB. This
incomplete network model will lack the information to dis-
tinguish the topology within a collision domain, but will
have information about all computers, switches and routers
in the collision domain. The remaining information has to
be entered manually into th NDS model. Although such
task is not trivial, the partial model allows for some guid-
ance in collecting such information. Once such information
is entered into the model it is assumed to be constant, so
in a new cycle of discover, such information is kept ex-
cept if it contradicts with the newly gathered information.
Thus, the manual work of entering the missing connection
information must be performed only once.

III. Configuration Critic System (CCS)

The Configuration Critic System performs many tasks.
First it analyzes the quality of the model gathered by the
NDS, specially in relation to its incompleteness. The CCS
evaluates if the possible lack of information regarding phys-
ical connections within a collision domain will render the
model too imprecise to be useful or not. In particular for
the diagnosis of performance degradation the collision do-
main internal configuration information is not needed. But
when dealing with communication faults such lack of infor-
mation may be serious.



Once the model has been verified for completeness, the
CCS will analyze the network itself for contradictory in-
formation or for situations considered incorrect. We found
out that in a network of hundreds of components it was
common to have at least a dozen configuration problems.
For example, the CCS will check if all routing tables are
consistent with each other, it will verify if there is an IP
number assigned to different equipments, if whenever nam-
ing is available, it is consistent, and so on. The CCS will
also suggest some configuration improvements, like point-
ing out that two servers are in the same domain of collision
and consequently may overload this domain.

IV. The General Diagnostic System (GDS)

A. Network Status Gathering system (NSGS)

The Network Status Gathering System (NSGS) is the
component that queries the network to determine its sta-
tus. Among the information returned by the NSGS there
is a “loss of signal” alarm that indicates that the queried
device did not answer a ping (ICMP echo requests) and the
latency of the ping when it succeeds. The NSGS can also
query SNMP objects.

A.1 The NSGS and the polling heuristic

The NSGS uses the LAN model, in a first instance, to
sort the elements that will be polled. It is known that the
polling of a large network is expensive, both in terms of
time and resources, increasing the traffic overhead and de-
creasing the performance. For this reason, it is important
to maximize the efficiency of the pooling. [10] describe
a pooling heuristics based on the time interval between
ICMP-echo packages sent to the same device. We have de-
veloped an heuristic based on the merging of elements of
different collision domains, computing the maximum dis-
tance between devices of the same domain.

We first build a tree (see figure 2), having as root the
manager device (the device that runs this system). It is
clear that only the leaves of this tree must be polled. If
there is no connection to a leaf, it is assumed that at least
one device in the path to and from that leaf is in the faulty
state, and such hypothesis is refined by pooling the ele-
ments in the path.

One feature of this tree is that one set of sister leaves
represents the same collision domain. For this reason it is
possible to interactively merge leaves, until no more leaves
are found. At the end of this operation we can guaran-
tee that the final merging is an semi-optimal poll sequence
where two pings to the same collision domain will be placed
in a long distant from each other, although we cannot guar-
antee optimality (this is an approximate solution for an
NP-complete problem if any node has more than two sub-
trees).

Once the poll sequence is computed (by the CCS), the
system starts the polling loop, which is interrupted when
either a polled device does not answer to the ICMP-echo
or when the latency of such an answer is larger than a
predefined threshold. In such cases, the General Diagnostic

a        b         c       d               e        f         g        h

i           j         k        l

Hub

Switch Hub

Hub Hub

 Managerh = 0

h = 1

h = 2

h = 3

h = 4

a    e     b     f     c    g    d     h   

i      j     k     l

recursively
merge with leaves 

at less high

Fig. 2. The network tree
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V. Fault diagnosis

Upon detecting that one device is not answering the
polling, the diagnostic system computes the path the IP
packet would have taken from the NSGS to the device. It
then assumes that one of the devices in the path is faulty
and queries these devices according to different orders, in
order to reduce the size of the set of “possible faulty de-
vices”.

Our fault detection algorithms make the following as-
sumptions:

• the network (LAN or WAN) uses no dynamic routing
protocol.
• TCP/IP based network.
• during the diagnostic cycle there is a single fault in the
system.

The first two presuppositions are needed to calculate the
path the IP packet took from the NSGS to the first device
that was discovered as unreachable. We believe that it
is very common for LANs and even certain WANs to have
dynamic routing disabled. That is true, at least, in our test
network, a departmental research oriented network with
hundreds of computers. The subparts of the network that
are ATM based are not included in the tests.

The third assumption is reasonable given the speed of the
diagnostic cycle. Once a “loss of signal” alarm is received,
the diagnostic cycle can in few seconds determine a minimal
set of possible faulty devices. In these seconds it is unlikely
that some other device will also fault.

A. Generic diagnostic algorithm

The generic diagnostic algorithm is described below.
generic(From,Dest,H) should be interpreted as a func-
tion that given that H is the set of possible faulty devices ,
and we still have to figure out which of those between From

and Dest are faulty, returns the minimal set of possible
faulty devices.

The initial condition of the algorithm is that if the NSGS
cannot reach the device x, it calls generic(NSGS,x,∅),



Algorithm 1 The fault diagnostic algorithm

generic(From,Dest,H)
if (From = Dest) then return(H)
p = path(From, Dest)
e = select(From,Dest,p)
if e cannot be queried then

e = substitute(e)
if (e = Dest) or (e = From) then

return(H)
else

q = path(From,e)
if e is reachable then

H = H − q

generic(e,Dest,H)
else

H = H ∪ q

generic(From,e,H)

which will automatically set the initial hypothesis H as
the path between the manager (device running NSGS) and
the faulty element x.

The function path(From,Dest) computes the sequence
of devices in the path from From to Dest and back. It
deals with cases in which the path of the packet from From

to Dest is not the same as from Dest to From. If the
network model is incomplete in the sense described above
it represents that the packet traveled through a collision
domain without specifying the details.

The function select is a binary search algorithm that
selects one element in the path.

Finally, the substitute function adds some “thinking
ahead” in relation to the choice of the element e. For ex-
ample if e is a non managed hub, there is no direct way
of querying it. Thus substitute will return some de-
vice which can answers to queries and whose path passes
through e. Substitute also takes into consideration that
there may be computers in the network which are “turn-
off-able”, that is, personal computers that may be turned
off by their users. So there is no point in querying such
computers.

Once all queries in the path are made, the GDS returns
one minimal set of faulty devices and sends one trouble
ticket as output. In the tests we have traced, the most
part of the solutions was reduced to one device and its
respective cable, which is very precise. However, if the
network model is incomplete, the solution loses precision,
and the minimal set may contain many devices and their
interconnecting cables.

Since the hole on-line system is cyclic and the period
is short, one mechanism of control of trouble tickets was
developed to ensure that one re-incident fault will not be
considered as a new trouble, only advising that the problem
has not yet been solved. Moreover, it flags when the faulty
device returns to the normal state.

VI. Performance Diagnostic

In the performance diagnosis we assume that perfor-
mance degradation is usually due to overloading in an col-
lision domain or high equipment CPU usage rate, like a
computer with high CPU occupancy rate or a router with
high processing rate due to packet filters. We believe that
these are the most common causes for performance prob-
lems in a stable network, where stable means that the net-
work operates usually without performance problems. The
performance degradation may be observed by some symp-
toms like increase in the communication latency, in packet
retransmission, and as an load rate increase within the col-
lision domain.

The assumptions of the performance diagnostic algo-
rithm are:

• TCP/IP network without dynamic routing
• single performance fault during the diagnostic cycle
• for each collision domain it is given a “normal network
latency”
• for each collision domain it is given a threshold latency,
above which one considers the domain to be experiencing
a performance fault
• performance faults are caused by overloaded router or
computers sending or receiving too much packets.

Again, we believe the first two assumptions to be reason-
able for the reasons already explained. As for the normal
and threshold network latency, we believe that these val-
ues are a function of the technology used in that domain
of collision and the number of devices connected in that
domain. We still have to verify if these assumptions are
reasonable empirically. Finally, as for the last assumption,
corresponds to our experience of performance faults in a
stable network.

The performance algorithm is similar to the fault algo-
rithm explained above with the following differences:

• the function path does not compute the sequence of de-
vices in the forward and return path. It computes the
sequences of collisions domains, and their separators.
• we fixed a forward method in exploring the path.
• the NSGS takes into consideration the latency value of
the query to the device, invoking the diagnostic system as
soon as it find some unacceptable value.

In the performance algorithm:

• select-forward returns the first element of the path
• member returns an element of a collision domain which
can be queried.
• latency(e) is the total latency of a query to the element
e.
• threshold(d) is the threshold latency for the collision
domain d.

VII. Tests

The tests of this system were executed at the LSI-USP
LAN (Laboratório de Sistemas Integráveis of the Univer-
sity of São Paulo). This LAN is composed of hundreds
of components including three routers, three switches, ap-
proximately 12 hubs and various terminals. Some of this



Algorithm 2 Performance Algorithm

performance(p,Overhead)
e = select-forward(p)
if e is a switch then

performance(p− e,Overhead)
else if e is a collision domain then

e′ = member(e)
lat = latency(e′)
if lat−Overhead > threshold(e) then

return(e)
else if e is a router then

lat = latency(e)
if lat−Overhead > threshold(e) then

return(e)
performance(p− e, lat).

components are not SNMP-managed. The LAN does not
use dynamic routing.

The interfaces to the network, specially the NSGS, were
implemented in Java. The modules that construct the
model and perform the diagnostic reasoning (the NDS,
CCS and the NSGS) were implemented in Prolog. The
system runs in a Linux workstation. The NDS, the most
time expensive module takes approximately six hours to
collect all available information, but the rate in which the
NDS queries the various MIB is low so it will not overload
the system.

In the LSI LAN it was possible to automatically col-
lect and represent approximately 65 % of the LAN with
the NDS algorithm; the remaining information which was
mainly connecting cables linking hubs to other hubs and to
computers was manually added.

The generation of the poll sequence found 52 valid de-
vices to be polled, so that the entire network could be man-
aged. A large set of hosts (about 30 PCs) were not part of
the polling set, since one can not know if they were faulty or
simply powered down. In this case, the algorithm ensures
that at least one device represents the collision domain.
The on-line mode was set to infinitely iterate the poll se-
quence. The adoption of this polling heuristic decreased
the polling period from around 10 minutes when using a
commercial management platform to 1 minute.

We have artificially inserted communication errors into
this network, by disconnecting cables. The system was
able to precisely identify the exact place in which the error
occurred, returning the cable or the immediate device con-
nected to it as the source of the error and consequently the
result of the diagnostic. The time to diagnose one fault is
dependent on the delay of the answers for the ping request,
but within one minute of the introduction of the error, the
system would produce the trouble ticket.

VIII. Conclusion

This work has merged a theoretical approach from AI
with a practical application over a real LAN. The appli-
cation of the Model Based Reasoning in the diagnosis of

computer networks has shown that this approach can be
extended to the solution of dynamic systems such as LANs
where the model has to be frequently updated. It also pro-
vides one feasible way to deal with the constant changes in
computer networks, since none of the core algorithms have
to be changed if the model changes.

This dependence on the model enhances the importance
of a good discovery algorithm. This is a particular subject.
The modeling of the network based on the SNMP protocol
is a hard task. It involves a great amount of information
that is usually bad configured or missing. To maintain the
MIBs updated is the unique way in which a manager shall
gather consistent and complete information from the net-
work. [9] develop one detailed algorithm to automatically
model SNMP based networks. In the application of the
discovery system developed here the information regarding
connections between devices for diagnosing communication
faults is vital. However, this connections are difficult to
gather and have to be manually inserted.

We hope to have shown that a model-based reasoning
is a promising methodological approach to solving man-
agement and diagnostic problems in computer networks.
Future work will extend the approach to WAN with dy-
namic routing, and the experimental evaluation of the per-
formance presuppositions that were assumed in the algo-
rithm. We are also considering adding further information
to the model and reasoning about them. This work is the
continuation of the work reported in [11].
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