A Conceptual Model of Groupware

Clarence (Skip) Ellis
Department of Computer Science
University of Colorado
Boulder, CO 80309-0430, USA
E-mail: skip@cs.colorado.edu

Tel: +1-303-492-5984

Jacques Wainer
Department of Computer Science
State University of Campinas
Campinas, SP 13081-970, Brazil
E-mail: wainer@dcc.unicamp.br

Tel: +55-192-39-3115

June 1994

ABSTRACT

This paper discusses a conceptual model of groupware
consisting of three complementary components or mod-
els: a description of the objects and operations on these
objects available in the system; a description of the
activities (and their orderings) that the users of the
system can perform; and a description of the interface
of users with the system, and with other users.

KEYWORDS: Groupware, CSCW, collaboration tech-
nology, system modelling, ontological model, coordina-
tion model, user interface model.

INTRODUCTION

This paper is concerned with technology mediated work-
group systems, also sometimes called CSCW systems or
groupware. We take the broad definition of these terms,
as presented by Schmidt and Bannon [16]. We present
a conceptual model which is applicable to a wide range
of groupware—from electronic meeting rooms, through
video conferencing, to workflow systems. The issues
raised by the model are sometimes similar to, but fre-
quently distinct from single user systems issues. This is
especially true within the user interface domain.

How can one compare two distinct groupware system?
How can one describe a particular system? These ques-
tions seem to be related to the question of what char-
acterizes a groupware system: if one knows what char-
acterizes a system one can describe it and compare it
to others. This paper proposes that, from the point of
view of the user (or users) of a groupware system, one
can characterize such a system in three complementary
aspects, or models as we will call them in this paper.

The three aspects are:

e a description of the objects and the operations on
these objects that are available to users;

e a description of the dynamic aspects of the system:
the control and data flow;

e a description of the interface between the system
and the users, and amongst users.

We call these three aspects the ontological model, the
coordination model and the user interface model respec-
tively.

We must stress that these three models describe the
system from its users’ point of view. There are as-
pects of the system that are not captured by this three
model approach - for example implementation aspects
which are mainly of concern to the implementor. Thus,
whether a system has a centralized or a distributed
implementation only indirectly affects the users, and
such distinction is not captured by our three model
approach. However, distribution is a major issue from
the implementation point of view.

The three-models approach is more than just a descrip-
tion of the system from the users’ perspective, or for the
users’ benefit. We believe it corresponds to a functional
description of the system, and it reflects the designer’s
intuition of the important aspects of the system. In this
sense, the three conceptual models have strong similari-
ties with system specification concepts in software engi-
neering. The ontological model is related to static speci-
fications of systems like, for example, entity-relationship
diagrams and object-oriented analysis. The coordina-
tion model would correspond to functional specifica-
tions, data-flow diagrams, Petri-nets, or other forms of
dynamic description of systems.

But there are some differences between the ontological
and coordination models, and the static and dynamic
models of software in general. The ontological model is

a static description of the objects available to the users
for manipulation, thus it may not describe aspects of
the implementation of the system itself. The difference
between the coordination model and , for example, a
data-flow diagram is in the same line as above: the co-
ordination model describes the organization of activities
to be performed by the users, and not the organization
of processes to be performed by the system. Thus both
models refer to the users’ view of the system and not the
implementation view. Furthermore, the essence of this
proposal is not the realization that one can distinguish
a static and a dynamic aspect of a groupware system,
but the concepts and definitions that derive from this
distinction. For example, we will discuss below the con-
cept of operational and intended semantics of objects,
which derive from a static description of the system.
We will also discuss levels of simultaneity and currency
which are derived from the dynamic component of the
system.

We believe that this work’s main contribution to the
CSCW community is that it provides some concepts
and definitions that can be very useful in describing and
designing groupware.

ONTOLOGICAL MODEL

The ontological model of a groupware system is the de-
scription of the classes of objects and the operations that
the system provides to the users. In fact, the concept
of an ontological model is by no means limited to a
groupware system; all (or nearly all) interactive systems,
be they single-user or groupware systems, embody some
ontological model. For example, a group drawing tool
differs from a VLSI CAD tool by the ontological model
it embodies. A drawing tool offers objects like straight
lines, points, curved lines, closed regions, colors and
textures, and operations to create and modify these
objects. A VLSI CAD tool offers objects like transis-
tors, resistors, terminals; crossings, and so on, and the
corresponding operations to create, move, modify and
set attribute values on these objects. Even though a
terminal in the VLSI CAD system may appear as a rect-
angle it should not be confused with a rectangle object
in a drawing tool. The terminal object has different
attributes from the rectangle object, and it is subject to
different operations.

Similarly, two groupware systems may be within the
same general category (e.g. both review systems or
both electronic mail systems), but they may embody
different ontological models. Let us compare two review
systems CA-ForComments [3] and PREP [13] under this
view. They both are concerned with text based doc-
uments, and offer the usual edit operations on them.

Both systems also define the concept of comments that
are contributed by the reviewers.

CA-ForComments offers the objects “comment,” “revi-
sion,” and “dialog” (among others), which are all kinds
of text but intended for different uses. The comment
object is supposed to contain the reviewer’s comment
on a sequence of lines of the original document. Thus,
besides operations for creating and editing of a com-
ment, ForComments offers an operation for attaching a
comment to a sequence of lines in the original text. The
revision is supposed to contain a replacement text for a
sequence of lines, and besides the creation and attach-
ment operations, the system provides an operation for
replacing the text of the original document with the text
of the review object attached to it. The object dialog is
a comment on a comment, and can only be attached to
another comment.

On the other hand, PREP (the version described in
[13]) provides just a generalized comment object that
can only be attached to paragraphs of the original text.
These generalized comments may contain comments in
ForComment’s sense, but may also contain text with
other intended meaning. In fact, [13] suggests a gen-
eralized comment called “plan” that is created and at-
tached to paragraphs by the author of the document and
describes the author’s intention for each paragraph.

Thus, although both systems are designed with the same
general purpose of facilitating the task of a group of peo-
ple in reviewing a document, they have quite different
ontological models. Notice that ForComments attaches
comments to sequences of lines, while PREP attaches
comments to paragraphs. Of course these differences
are a reflection of the respective designer’s different in-
tuitions on what are the “best” object types and opera-
tions to accomplish the task of reviewing a document by
friendly reviewers. It is very likely that a system to aid
the reviewing of documents by not so friendly reviewers,
for example revision of a technical paper submitted to
publication to a scientific journal, would embody yet a
different ontological model.

The description of the two review systems above also
provides insights on important aspects of an ontological
model, described below.

Some Definitions

The main components of the ontological model are ob-
jects and operations. Objects are the data structures
upon which the participants (i.e. users) operate; op-
erations on objects are an important aspect of a par-
ticipant’s contribution to the job. For example, in a

group drawing system part of a participant’s work is a
sequence of operations on objects, like creating a poly-
gon, changing an attribute of a circle so that its interior
has some color, deleting a line and so on. In a workflow
system, part of the participant’s work can be seen as a
sequence of editing operations on objects such as forms
or fields or documents. Another important part of the
participants’ work is interacting with group members
and the environment for problem solving, decision mak-
ing, group membership maintenance, etc. In groupware
systems and models, there is much more concern with
these aspects of work than in single-user systems.

The objects are modeled using the standard concepts
of attributes and values: objects have attributes and
these attributes may have one or more values. Values
can be either atomic or other objects. Although we
use the term object, this modeling does not strongly
relate to the concepts of object-oriented methodologies.
In particular we will not use the concepts of methods,
message passing, and inheritance. We use the term
“object” as a synonym of “data structure.”

Operations are transformations that act on the objects.
We will broadly classify the operations as view op-
erations, which allow a user to know about the ex-
istence of an object and possibly to know the value of
its attributes; create operations, which create new in-
stances of an object; modify operations, which change
or add values to some of the attributes of an object
instance; and destroy operations.

It is also important to notice the distinction between
object classes, which represent generic, prototypical ob-
jects, and object instances, which are the entities (mem-
bers of classes) upon which the operations can be ap-
plied.

Finally, we will also speak of relations between or among
objects. We will say that some object instance stands in
some relation with another object instance, or that some
instance is linked to another through some relation. The
concept of relation is secondary since it can be imple-
mented using the concepts of object and attributes. For
example, a binary relation can be implemented as a new
class of objects, and to state that object A and B stand
in that relation to each other correspond to the creation
of a new instance of the relation objects, with A and B
as the values for the ”argument” attribute.

Intended and Operational Semantics
When talking about objects classes is important to bear

in mind the distinction between intended and opera-
tional semantics of the objects. The intended seman-

tics of an object class is the description of the intended
use of the instances of that class. For example, in CA-
ForComments, the class “comment” is intended to con-
tain a text that expresses the reviewer’s opinion about a
sequence of lines, while the class “revision” is intended
to contain a replacement text. Similarly, in PREP, the
intended semantics of the class “plan” is to contain text
in which the author comments on his/her intention for
the particular paragraph to which the plan is attached.

The intended semantics of the classes of objects pro-
vided by the system is usually explained in system’s
user manuals, and is the result of the designer’s intuition
or analysis of what are the concepts that would make
solving the task easier.

The operational semantics of a class are the con-
straints on the possible relations between this class and
the other classes of objects in the systems, and the
set of operations that can be applied to instances of
this class. Thus the operational semantics of the class
revision in ForComments is that it can only be attached
to a sequence of lines of the original document, and
nothing else. The operation “replace” when applied
to a revision would replace the lines of text to which
the revision is attached by the contents of the revision.
Similarly, a comment can also be attached to a sequence
of text lines, and objects of the class dialog can be
further attached to comments (dialogs are comments
to comments in ForComments). The operation replace
cannot be applied to comments.

From the point of view of the operational semantics,
there is no distinction between the various classes of ob-
jects in the systems. They are all described in terms of
possible operations and possible relations among them.
But from the point of view of intended semantics, the
clagses can be classified in object-level classes, like text
or sequence of lines, and meta-level classes, like com-
ment or plan, and possible meta-meta level classes, like
dialogs.

In some cases the ontological model, and in particular
the intended semantics of some classes of objects, are
the main concept behind the groupware system, and its
major contribution. A clear example of this are the
Issue Based Information System (IBIS) [4, 15]. The
main idea behind IBIS is that chunks of knowledge in a
group discussion should fall into only three categories,
and that these categories relate to each other in few
and well defined ways. “Issues” are points that need
resolving, or questions that need answering; “positions”
are possible ways of solving an issue; and “arguments”
are statements that either support or go against a posi-
tion. The main relationships among these object classes
are that a position answers an issue, and an argument

supports or opposes a position.

From the point of view of the system which implements
the ontological model, the intended semantic of the ob-
jects is not implementable: there is no way the system
can check if an instance of an object is used according
to its intended semantics. For example, it is not pos-
sible with current technology to expect that an IBIS
system could enforce the fact that a position has to
contain a possible solution to the issue to which it is
attached. For that to be possible, the system would have
to understand the meaning of the issue and check that
the content of the position is indeed a possible answer
to that issue. Thus, the system cannot enforce the
intended semantic of these objects, but it enforces their
operational semantic, for example by not allowing the
creation of a supports link between two positions, and so
on. Thus, in an IBIS, the operational semantics of the
objects is the descriptions of what are the possible links
between the classes of objects, whereas the intended
semantics is what the objects in each class should mean
to the users.

Similarly, one of the important aspects of the Coordi-
nator [17] is the classes of messages it defines, or more
specifically the intended semantics of those classes, and
the relation between the classes. But, once again, the
system cannot enforce this intended semantic.

Other Aspects of the Ontological Model

Operation rights and access rights

Another concept related to the ontological model are
the rights to perform operations or just to access an
object (or the content of an object). A user, at a certain
moment, may have the right to access an object, that is,
to view its contents, but may not have modify rights to
perform modify operations on it. At another moment,
the same user may have access rights to the object and
rights to perform only some of the operations but not all,
and so on. We will see later that these moments where
the users have different rights are usually associated
with activities, which is a fundamental concept of the
coordination model.

Groupware systems typically have an expanded set of
rights which must be considered; privacy, protection,
and control [5] are all important considerations within
the ontological model

Automatically generated values

The final concept of ontological models is based on the
fact that not all values of an attribute of an object are

set by the participants, but some are automatically set
by the system. The most clear example of automatically
generated values are time and user stamps. For instance,
an e-mail system could tag each message created with
user-identification, and the date stamp. Usually, the
system that implements automatically generated values
will provide operations that are able to access, but not
modify these fields. Thus in the e-mail system above
one could list all messages sent by a particular person,
or all messages sent after a certain date.

Summary

The concepts that make up the ontology model are not
restricted to groupware systems: all interactive systems,
including the single-user ones, should have an ontology
model. But some aspects of it are more relevant to
groupware systems than to single-user systems. For
example, access and operation rights could be incorpo-
rated into a single-user system, although that is not
usual. The same will be true for all aspects of the
other two models described below: one can conceive a
single-user system that might incorporate some of those
concepts, but we believe those concepts are much more
likely to be relevant for groupware than for single-user
systems.

COORDINATION MODEL

The coordination model describes the activities that
each participant may perform and how these activities
are coordinated so that the group can accomplish its job.
Let us first define the concept of activity, and the related
concepts of s-action and t-action, and then discuss the
other concepts related to the coordination models.

Some Definitions: Activity and Actions

The main concept of the coordination model is that of an
activity. Other important concepts are role and actor.
An activity is a potential set of operations (and the cor-
responding objects) that an actor playing a particular
role can perform, with a defined goal.! In general, an
actor may be a user, a computer system, or a group. The
actor carrying out the activity is called the performer of
the activity.

For example, in CA-ForComments there is the activity
of creating the document, for which the available ob-
jects are the components of the document (e.g. lines,
characters, and so on) and the available operations are

1 The use of “potential” in the definition will become clear when
we discuss the distinction between activity-level and object-level
coordination below.

the usual edit operations on the document’s compo-
nents. The goal of the activity is to create a draft
of the document, and the performer of this activity
is the author. There are also review activities, one
for each reviewer. The many review activities, which
follow the create-document activity, can be performed
in parallel or in sequence, depending on how the sys-
tem is configured. The available objects for the review
activities are the document, comments and revisions,
and the operations available are: read (but not modify)
the document components, create, modify and attach
comments and revisions to the document components,
and possibly read the other reviewer’s comments, and
create, modify, and attach dialogs to them. Finally
there is the activity of incorporating the reviewer’s com-
ments into the document, performed by the author. The
author may then choose to restart the review activities,
or declare the document as finished.

A set of activities and the ordering among them make up
a procedure. Thus, the activities above constitute the
procedure of write/revise a document in that system.
Usually groupware systems are designed for a single
procedure (for example the review system above), but
that is not necessarily so. For example a workflow sys-
tem may embody an “order processing procedure” that
incorporates the activities of credit check, billing, and
shipping, and “payment of travel expenses procedure”
among others.

Many customers who request to purchase goods from
that company may be processed concurrently. Each
order would represent an instance of the “order pro-
cessing” procedure, and we call each of these instances
an endeavor. As a procedure is made up of activities,
an endeavor is made up of instances of activities, for ex-
ample the credit check for customer Acme Inc. We call
each instance of an activity (associated to a particular
endeavor) a task.

We will call a task inactive if it has not yet started or
if it has already been completed, and active otherwise.
Thus active tasks are those activity instances that have
already started, but which have not yet completed, and
the operations and objects defined in each active task
are still available to the actor that is performing it.

An activity is initiated by a start action or s-action, and
completed by a termination action or t-action which is
performed by one of the participants or by the system
itself. Usually the performer of the activity is also re-
sponsible for one or all its s-actions and t-actions. In
the review system example above, the reviewer may
perform a t-action of submit comments to terminate
his/her review activity.

An important aspect of a coordination model is the
temporal precedence of the activities. Some activities
can only start after others have been completed. Some
activities may all be active at the same time, others not.
For example in a particular workflow system one may
require that all billing and shipping address informa-
tion to be entered in a customer order form before the
customer credit can be evaluated. But the system may
allow that the entering of the billing address and the
shipping address to be performed in any order, without
any precedence between them.

The difference between an operation on an object and
an action (a t-action or a s-action) is somewhat subtle
but important. An activity is a sequence of operations
on the objects available, performed by an actor. Thus,
in a workflow system (for example FlowPath [2]), filling
the fields in a form; in CAD systems, creating and mod-
ifying graphics objects; in a review system, creating and
attaching comments, are all operations. But submitting
the form for the next step of processing in the workflow
system is a t-action. It significantly changes the stage
of collaboration, for example, by giving to the next
participant in the processing of the form access rights to
it, and usually removing all rights of the first participant
to that form. Furthermore, a s-action may be bound to
a previous t-action.

The relation between actors and activities and t-actions
may be a direct mapping, that is, the assignment of
a particular person as responsible for an activity or a
t-action, or can be mediated by a role. In this case, arole
is assigned to activities and t-actions, and participants
are assigned to roles. The assignment of activities and
t-actions to roles is usually fixed and an essential part
of the coordination model, while the participant-role
mapping may be dynamic.

Activity-Level and Object-Level Coordination

In a groupware system, coordination or sequencing of
events can happen in two levels: at the activity-level
and at the object-level. At the activity level, the co-
ordination model describes the sequencing of activities
that make up a procedure. At the object level, the
coordination model describes how the system deals with
multiple participants’ sequential or simultaneous access
to the same set of objects. An example of activity-
level coordination is the fact that a review system pro-
poses/forces that the activity of writing the document
must be completed before the activity of reviewing it
can start.

Object-level coordination is concerned with how sequen-
tial or simultaneous access to the same objects are man-

aged. For example, how to deal with two participants’
requests to modify the same object, at the same time.
Thus object-level coordination sometimes utilizes solu-
tions like locking, in which one of the participants would
place a lock on an object and thus avoid simultaneous
object modification.

Groupware tends to be especially concerned with shared
access because this can enhance close inter-working of
groups, and the synergy that makes groups productive
and energized. Thus, a challenge at the object level
of coordination is to allow more open access than tra-
ditional database solutions. Some groupware systems
have pioneered non-locking shared write access, and in-
teractive concurrency control [6].

Muiltiple and Single Endeavor

Some systems can only track/accompany/implement one
endeavor at a time. For example, a group CAD system
may only be able to deal with one design project at a
time: the system can only hold one design that is being
operated upon by a group of people. Of course one
may start a second instance of the program on a second
design, but the instances are not aware of each other.

Other groupware systems allow for multiple endeavors.
For example, in the Coordinator, the procedure is the
completion of a communication cycle as proposed by
Winograd and Flores’ theory of conversations for action
[17]. The system can track many of those conversations,
and in fact it was designed exactly to help with the
difficult work of managing many conversations (endeav-
ors). Similarly, a workflow system can also track or
accompany the processing of many endeavors. In some
way, both the Coordinator and workflow systems were
designed not only to provide the capability of multiple
endeavors but also to help each participant to manage
them.

Stages and Inspection of Stages

In a coordination model each of the moments of the
collaboration is called a stage. A stage is a global
description of the instances of activities that are active.
For example, one can say that the reviewing process is
in the stage where reviewers A and B have both sub-
mitted their comments, and reviewer C is still entering
his comments to the document.

Some systems are single-stage, that is the collabora-
tion model does not provide any temporal sequencing of
activities. Each of the participants are always engaged
in a single task. This is common on systems with high

levels of simultaneity, where the participants are all at
the same time operating on the same set of objects.
For example, a group CAD system, group drawing sys-
tems (for example CoDraft [9]) and group editors like
GROVE [6] are all single stage. These systems exhibit
a complex object-level coordination, at the expenses of
a very simple, or in fact trivially simple, activity-level
coordination.

Systems that are not single-stage and are multiple en-
deavor usually provide mechanisms to inspect the stage
of each endeavor. There are many forms of inspection.
The first one is the participant-based inspection in
which the system will provide the information on all the
active instances of activities a particular participant is
responsible for, for all endeavors. In a review system,
one could list all tasks that a particular participant has
to perform, for example: review Smith’s paper before
May 3th, review Doe’s paper before May 17th, and so
on. Systems that provide this participant-based inspect-
ing can also be seen as a managing tool for the users’
tasks. They may provide tools to make this managing
more effective: sorting tasks by urgency, allowing the
participant to choose in which task he wants to engage
next, and so on.

A second form of inspection is endeavor-based in-
spection, which will provide the global stage informa-
tion about a particular endeavor. For example, a review
system may allow the author of a document to check
the stage of the endeavor of reviewing his paper. Such
endeavor-based inspection would report, for instance,
that Thompson has already submitted his comments,
and that both Suzanne and Lee are still engaged in their
respective reviewing tasks.

The Coordinator, for example, allows for both partic-
ipant and endeavor-based inspection: one can list all
requests that need reply (a participant-based inspec-
tion) or verify the stage of a particular communication
(a endeavor-based inspection).

A third type of inspection is total inspection which
combines both participant and endeavor-based inspec-
tions, and would display the stage of all endeavors. Pos-
sible examples of total inspection are workflow systems
that provide such information to some privileged par-
ticipant, like a manager.

The final form of inspection is second-order inspec-
tion which may provide statistical information on many
endeavors like average time to complete this activity,
average time for a specific participant to complete an
activity, average time to complete the procedure, aver-
age number of tasks that a specific participant is en-
gaged in at the same time, and so on. Again, the most

probable usefulness of such information is for privileged
participants in workflow systems.

Finally, some systems may allow for the modification
of the stage. That would be useful to deal with ex-
ceptions. For example, in a review system, if one of
the reviewers calls the author and says that she cannot
complete the review in time, it would be convenient
to the author to alter the stage accordingly, in order
to indicate to the system that that reviewer’s task has
terminated. In this case, the system will still wait for
the other reviewers to submit their comments before the
author could collate them, but it would not wait for this
reviewer. The modification of the stage is an important
aspect on the way the workflow system FlowPath deals
with exceptions to pre-specified procedures.

Levels of Concurrency and Currency

The concepts of stages and multiple endeavors allow us
to be more precise about the levels of simultaneity in a
system. We will define the levels of simultaneity based
on whether two or more tasks (instances of activities)
can or cannot be active at the same time, and if at least
two tasks can be active at the same time, whether they
have or do not have access to the same set of objects.

The lowest level of simultaneity which we will call se-
quential will happen in single endeavor systems in which
one activity follows the other. In such systems, only one
instance of an activity is being executed at a time. An
example of such a system is a single endeavor review
system where the review activities are sequenced one
after the other.

The second level of simultaneity, which we call parallel
refers to instances of activities that can happen at the
same time, but that belong to different endeavors. In
this case, each task is dealing with a totally different
sets of objects, and no interference between them can
happen. Example of systems which allow for parallel
activities are e-mail and coordination systems based on
e-mail, like the Coordinator, Info Lens [12], etc. Each
procedure in an e-mail system is strictly sequential: the
activity of composing the message, and the activity of
reading the message. But, in the system as a whole
more than one instance of an activity may be active
at the same time: Sousa may be composing a message,
while Li-Chen is reading a different message. The activ-
ities are simultaneous but they do not share any object,
since they refer to different endeavors. Similarly in the
Coordinator, the activities to achieve the completion of
a conversation are sequential but many endeavors can
be going on at the same time, and thus many tasks may
be active.

The third level of simultaneity, which we call additive
concurrent refers to tasks within the same endeavor
that can be active at the same time but that do not
have modify rights to the same set of objects. That is,
each participant can only add new objects, or place old
objects into new relations (which, as discussed above,
means creating a new instance of a relation object), and
can only modify a subset of the objects, and this subset
has no intersection with the corresponding subsets of
any of the other participants. Since there is no simulta-
neous modification of any object, such systems do not
need complex object-level coordination. An example
of additive activities happens in an IBIS where each
participant can only add objects and relate them to
others, but cannot modify the existing objects, except
the ones he owns.

Additive concurrent activities, (and systems that allow
for them) also face the problem of currency, that is,
how up-to-date are the objects being accessed by the
participants. A participant may be accessing a set of
objects that is no longer up to date. For example, a
new object may have been created by a participant,
or an already existing object has been modified, but
that information has not yet propagated to the other
participants in the system. Notification time is the
time that any modification takes to be propagated to
all participants. Furthermore, the updating mechanism
can be automatic, that is, the process of keeping all
versions of the objects in a current version is performed
by the system. In a manual system, the participants
are themselves responsible for initiating the updating
process, usually performing a specific update action (for
example, in most electronic mail systems, the user has
to perform a get-new-mail action to receive the new mail
that may have arrived).

The final level of simultaneity, which we call fully con-
current will happen in systems that allow for two or
more simultaneous tasks to have modify rights to the
same set of objects. These systems have to embody
some form of object-level coordination to deal with con-
current modification of objects. [6] discuss some of the
object-level coordination issues, under the name of “con-
currency control.” Fully concurrent systems also need
a very high currency (usually they are automatic with
very low notification time) since when a participant de-
cides to modify an object she should be confident that
she is accessing an up-to-date version of that object.

Furthermore one can extend the concept of concurrency
of instances of activities to the system. A system that
allows for fully concurrent tasks is a fully concurrent sys-
tem. A system that does not allow for fully concurrent
tasks but allows for additive concurrent tasks is an ad-
ditive concurrent system. A system that does not allow

for concurrent tasks of any kind, but allows for parallel
tasks is a parallel system. And finally a system that
only allows for sequential tasks is a sequential system.
[6] calls both additive concurrent and fully concurrent
systems as real time systems.

USER-INTERFACE MODEL

Groupware reflects a change in emphasis from using
the computer to solve problems to using the computer
to facilitate human interaction. Users can best take
advantage of this changed emphasis via systems with
user-interfaces especially designed for groupware. We
call these group user-interfaces. The issues that design-
ers of group user-interfaces face are challenging and are
significant extensions of the usual issues of interfaces for
single-user systems. Thus our user interface model is
highly concerned with representation of human-human
interaction, and differs significantly from single user in-
terface models. Our model has three components:

¢ views of information objects;
¢ views of participants;

o views of context.

Views of Objects and Local Operations

The user interface for a participant in a groupware ses-
sion must be capable of presentation of the objects and
operations embodied in the ontological model as previ-
ously defined in this paper. Since different participants
may have different abilities (or different perspectives),
the user interface model includes the concept of views
of objects and the concept of local operations which are
typically not present in single user models.

Besides the ontological model data, the user interface in
a groupware system may have to deal with other " meta
objects”. Examples include telepointers and group win-
dows [6]. For example, on systems that allow for inspec-
tion of the stage, the user-interface has to display this
information and furthermore, if the system allows for
alterations on the stage, it has to accept the operations
that causes these alterations. This level of information
corresponds to an interface to the aspects to the col-
laboration model of the groupware system that can be
inspected and/or modified by the users. But, as we
mentioned above, some systems may not allow for any
form of stage inspection, and so this level of information
may be absent in some systems.

Views of objects derives from the fact that different
participants may want to have different views of the

same objects of the system. For example, in a GDSS, a
object may be semantically an array of numbers, but one
participant may opt to view it as a line chart, another
may prefer to see it as a pie graph, or as a table. All
these different representations are views of the same
object, and in principle it should be an issue related
to the user interface. Furthermore, if one of the oper-
ations allowed for this generic array object is to alter
the values of its cells, the operation has to be translated
appropriately to each view of the object. In the chart
view of the table, one could change the corresponding
cell by clicking and dragging the point in the graph that
correspond to the cell. In a table view, one could click
at the appropriate cell and change its value using the
keyboard.

Similarly, in an IBIS one participant may want to view
the network of issues, positions and arguments as a
graphic network of connected nodes. Another may want
to view it as linearized text, indented appropriately to
differentiate issues from positions from arguments.

The concept of local operations derives from the obser-
vation that group editing is a common and necessary
operation in many groupware systems. There are deci-
sions or options that must be built into each groupware
system concerning granularity of edits and locality and
when to transmit to others. If an edit operation is part
of a real time synchronous interaction, then a WYSIWIS
system may transmit the edit immediately to all partic-
ipants. Alternatively, within an asynchronous system,
edits may not be transmitted to other participants until
a save operation is executed. For many existing systems,
when entering data through the keyboard, the system
considers all key presses as local operations until the re-
turn key is pressed. Thus composing a line is an atomic
operation. Finally, it should be pointed out that in
some systems, operations on meta objects, e.g. pointer
movement, are permanently local operations which are
never transmitted to other participants.

In a group editor system, for example, if the participant
realizes that he mistyped the last character, he would
press the backspace key and erase it. If we were to
consider that within a real time interaction, it might
be transmitted immediately. In GROVE and the Unix
talk program, backspace key presses are object level
operations, and are transmitted immediately. Clearly
the level of granularity of operations depends upon the
application and the group environment.

Views of Participants

Groupware is much more concerned with assisting peo-
ple to people communication than most single-user sys-

tems. Providing some convenient means of knowing
other participants, and what they are doing is an im-
portant aspect of our model. The identity of a partic-
ipant is not directly related to the completion of the
endeavor, but this information can be extremely helpful
to the other participants in evaluating the situation of
the group dynamics. For example, knowing that Smith
is in a group long-distance discussion mediated by a
IBIS, may lead the other participants to formulate their
contributions in different ways than if Smith was absent.
GROVE, for instance, provides this context information
by displaying the pictures of the participants. Systems
of video windows, video walls, virtual rooms, and virtual
realities display the real time video images of partici-
pants which helps with the evaluation of everybody’s
attention and mood during the session. ClearBoard,
for example, allows shared video drawing, while super-
imposing the image of the collaborating colleague [8].
This allows eye contact and gaze awareness, while still
focusing on the work artifact.

In addition to displaying participants, it is possible to
present, in an unobtrusive manner, relevant status, back-
ground, and preferences of participants. Benford dis-
cusses concepts of auras, nimbus, focus, and adapters
[1], all of which are within the scope of the group user
interface model. Group information such as the social
network of who talks to whom can be presented, and
the view of this can be tailored to the viewing partici-
pant. For example, if there is a relevant and significant
shared previous experience between Smith and me, then
I would like to be reminded, and associate this with

Smith.

Other possible forms of participant context information
are: how are the participants geographically distributed;
what is the response time for long-distance connections;
information from a database on relevant aspects of each
participant; and so on. The information on the ge-
ographical distribution of participants may help long
distance participants to realize that the subgroups that
are in the same place may have developed other pro-
tocols of communication besides the one enforced by
the collaboration model of the system. The response
time information may help the division of labor among
the group members so that the tasks of a long-distance
participant should not depend on high currency. Fi-
nally, information about other participants may help
a user to place the context of the other participants’
contributions.

Views of Context

Another area of presentation that should be dealt with
by a group user interface is all of the useful background

material that we call context. The choice of what and
how to present contextual information is a challenge,
and that context may include items as diverse as the
time of the next meeting, the current weather, and the
presence of new mail messages from other participants.

We categorize contextual information as structural, so-
cial, or organizational. Structural context includes what
and where data, such as the set of interactions in which
I am currently participating, and temporal information
such as what data has changed since I last accessed this
hypertext web. Within a software engineering project,
useful context may include languages and case tools
used, status of various code and documentation files,
and future milestones.

Social context includes items such as group norms, group
metrics, and social history of the group. One proposed
metaphor of shared virtual reality is that different projects
would take place in dramatically different virtual rooms.
Thus, our difficult design project would take place in a
Tahitian hut, and our election processes always takes
place in a London tea house; just the act of re-entering
these contexts might trigger much useful contextual in-
formation in the heads of the participants. The research
work on GroupAnalyzer [11] explored the efficacy of
providing an electronic meeting barometer for groups
in face to face interaction. This is an excellent example
of the utility of graphical context presentation.

Organizational context can apply to small groups, large
corporations, countries, or international organizations.
It potentially includes formal reporting and responsi-
bility structures of the group such as the organization
chart. Also included are other items such as rules of
the organization (procedures manuals, etc.) and inter-
organizational data (competitive edge, mergers, etc.)
In general, it must be understood that a meeting or
any interaction is not an event in isolation, so these
contextual clues provided by the user-interface can make
the difference between a successful interaction versus a
failure.

Finally, we note that participants are not context! Con-
text connotes objects and conditions that are in the
background. A primary function of groupware is sup-
port of communication and collaboration among partic-
ipants, so participants are in the foreground.

Issues for Concurrent Systems

Concurrent systems, both additive and fully concurrent,
present some special concerns to the user interface, re-
lated to the problem of currency. The first concept
is that of notification level, that is, how much of

the modifications to the objects done by the other par-
ticipants should be notified to a user. Too much of
such notifications may be distracting to the user, too
few will lower the user’s currency below an acceptable
limit. Also in this issue, different notifications may be
displayed in different ways, to attract or possibly not
to attract the user’s attention. Thus, changes made on
objects in which the user is currently interested should
attract his attention, whereas changes made on objects
of less interest should not. [6] discusses some of the par-
ticular issues of user-interfaces in concurrent systems.

Also in concurrent systems, it may not be wise to have
total tailorability for the user-interface. If two users
have very different user-interfaces, and different views
of the same objects, they cannot share their experiences
outside the context of the groupware as has been noted
in the literature. Thus, if two people are working in a
concurrent system and one asks for some help on using
some features of the user interface to the other, if the
views and interfaces are very different, then the second
one may not be able to help the first. How much of such
tailorability of interface and views is an issue that must
be carefully addressed.

SUMMARY OF THE CONCEPTUAL MODEL AND CON-
CLUSIONS

The conceptual model of groupware is a view of group-
ware based on three aspects: the description of the
“things” and operations on these “things” that the sys-
tem provides to the user, which we called the onto-
logical model; the description of how the activities of
each participant should be temporally organized and
coordinated, which we called the coordination model;
and how are the users to interact with the system and
each other, which we called the user-interface model.

Existing systems seem to present some regularities on
all three models, especially in relation to the coordina-
tion model. For example, the available fully concurrent
systems are all single stage, that is they have a very
complex object-level coordination and a trivially simple
activity level coordination. On the other hand, systems
with more elaborate coordination models, like review
systems or workflow, tend to not be fully concurrent.
We expect that in the future of groupware, these simple
regularities will yield to more diversity.

It is also important to notice that some systems seem
not to fit well into this three-sided description of group-
ware. Info Lens and Lotus Notes [10] are some of them.
We believe that such systems should be classified as
meta-groupware systems, and not groupware system
themselves. For example, Info Lens does not provide

objects and operations (an ontological model) but it
provides the possibility of defining classes of objects or
message-types. A user may write rules that define what
are the classes of message-types (the ontological model)
and rules that define what should be done upon receiv-
ing each message-type (the coordination model). Once
the rules are written, that instance of Info Lens becomes
groupware itself, with its own ontological and coordi-
nation models. Similarly, Lotus Notes by itself does
not define either objects or activities, but its scripting
language allows one to create an instance of a groupware
systems, with both an ontological and a coordination
model.

We call these systems meta-groupware because they could
be seen as applications whose objects are groupware
systems. Both Info Lens and Lotus Notes are group-
ware builders, that is they create instances of groupware
systems, but in general building groupware systems is
not the only thing a meta-groupware could do: one
could conceive meta-groupware that not only builds but
also analyzes a groupware system, or one that would
help the users to dynamically change for example the
coordination model of a groupware systems while it is
in use [7].

The work presented in this paper is only the first step to-
wards of what we call a conceptual model of groupware.
This paper has presented some intuitions behind the
three-models approach to classifying groupware. This
tri-model approach has not yet been formalized but even
at this intuitive level this model allows one to define
important concepts and distinctions. We believe that
this is the main contribution of this paper. Even at the
intuitive level, concepts like inspection of stages, multi-
ple endeavor systems, intended and operation semantics
of objects, and so on, allow one to classify and describe
the main aspects of a groupware system. Maybe even
more important, it allows a designer of a groupware
system to express and explore his/her intuitions on what
are the important aspects of the system to be build.

This work will be extended in many directions: devel-
opment of some formalization language for the ontologi-
cal and coordination models; expansion and elaboration
of the user interface model which seems to be crucial
within future tightly coupled groupware systems; fur-
ther exploration of the concepts related to meta-group-
ware systems: there seems to be the need for concepts
like meta-ontological model, meta-coordination model,
and meta-interface model in order to describe the set
of possible groupware systems a groupware builder can
construct.

REFERENCES

1.

Benford, S.A. Spatial Model of Interaction in
Large Virtual Environments. In Proceedings of the
Third European Conference on Computer Supported
Cooperative Work, (1993)

Bull Corporation FlowPath Functional Specifica-
tion. (Sept. 1992) Paris, France, .

Broderbund Software CA-ForComments 2.5 PC
User Guide. (1991) San Rafael, California.
Conklin, J. and Begeman, M. gIBIS: An hypertext
tool for exploring policy discussion. In Proceedings
of the Second Conference on Computer Supported
Cooperative Work, (1988)

Dourish, P. Culture and Control in a Media Space.
In Proceedings of the Third Furopean Conference on
Computer Supported Cooperative Work, (1993).
Ellis, C.A. and Gibbs, S.J. and Rein, G.L. Group-
ware: some issues and experiences. Communications
of the ACM 34 (1991)

Ellis, C.A. and Keddara, K. Dynamic Change
within Workflow Systems Technical report
CU-CS-667-93, Department of Computer Science,
University of Colorado, (Aug 1993).

Ishii, H. and Kobayashi, M. Integration of
Interpersonal Space and Shared Workspace. In
ACM Transactions on Information Systems, 114.
(October 1993).

10.

11.

12.

13.

17.

Kirsche, T. et all.
Cooperative Work.
16(9), 594-602.

Lotus Corporation Lotus Notes Application
Developer’s Reference (Release 3) (1993)

Losada, M. and Markovitch, S. GroupAnalyzer: A
System for Dynamic Analysis of Group Interaction.
In Proceedings of the 23 Annual Hawau Internatonal
Conference on System Sciences.

Malone, T.W., Grant, K.R., Turbak, F.A. The
Information Lens: An intelligent system for
information sharing in organizations. In Proceedings
of the ACM SIGCHI Human factors in Computing
Systems. (1986)

Neuwirt, C.M. and Kaufer, D.S. and Chandhok, R.
and Morris, J.H. Issues in the Design of Computer
Support for Co-Authoring and Commenting. In
Proceedings of the Third Conference on Computer
Supported Cooperative Work, (1990)

Opper, S. A groupware toolbox. Byte (Dec. 1988)

Rein, G.L. and Ellis, C.A. rIBIS: A real-time group

Communication Support for
Computer Communications,

hypertext system. Int. J. Man-Machine Studies 34,3

(1991)

Schmidt, K. and Bannon, L. Taking CSCW
Seriously. In Computer Supported Cooperative Work
Journal, 1,1 (1992).

Winograd, T. and Flores, F. Understanding
computers and cognition. Ablex, NJ, 1986

