
10 Groupware and

Computer Supported Cooperative Work

Clarence Ellis and Jacques Wainer

10.1 Introduction

Groupware is hardware and software technology to assist interacting groups. Com-

puter Supported Cooperative Work (CSCW) is the study of how groups work,

and how we can implement technology to enhance group interaction and collabo-

ration. This chapter presents definitions, concepts, examples, and issues related to

groupware and CSCW. It is written as an overview for the technical non-specialist,

and primarily emphasizes the technical perspective. The material is presented and

discussed in the context of a functional 4-part groupware classification. The four

categories described within the classification are keepers, coordinators, communi-

cators, and team-agents. This classification is also convenient for the investigation

of middleware, and of low level issues of groupware. It also facilitates a discussion

of social and organizational implications.

10.1.1 Well Known Groupware Examples

One way to answer the question of what is groupware is via examples. Groupware

comes in many shapes and styles. Most everyone is familiar with electronic mail,

and understands that this is a technology used at different times, and different

places by its participants. The sender does not expect an immediate reply from

the receiver. This can be contrasted with face-to-face electronic meeting room tech-

nology, sometimes called group decision support systems (GDSS.) These systems

typically consist of the following networked technology in a single room:

presentation technology (large screen projector, or electronic whiteboard), and

computation technology (a workstation or portable PC for each participant),

and

group process technology (voting tools, brainstorming tools, etc.)

Notice that in contrast to electronic mail, a GDSS is designed to support real-

time face-to-face interaction among people, so it is called same time, same place

technology.



2 Groupware and Computer Supported Cooperative Work

Another well known groupware example is video conferencing, which allows

participants in different locations to see and hear each other for a same time,

different place collaboration. There are many systems and products of this type

available. For example, MBone [40] tools are available and free to allow meeting

attendees in different locations to have a distributed meeting over the Internet.

Participants in various locations can see (VIC), and hear (VAT) each other, and

share a group window on their screens (Whiteboard.) This same time, different

place technology is in the same category as MUDs and MOOs (chat rooms,) and

group virtual realities.

Our final groupware example is workflow. A workflow management system is a

networked control system that assists in analyzing, coordinating, and executing

business processes. A workflow management system typically has two sub-systems:

(1) A modeling subsystem which allows organizational administrators and analysts

to construct a procedural models of the flow of work among people and tasks. This

model is embedded in the network system to drive the enactment subsystem. (2) An

enactment subsystem which uses the model to coordinate task executions by various

participants at various workstations connected to a network. It initiates tasks in

their correct order, and keeps track of completed work. Since a workflow system has

a representation of work procedures, and knows which actors at which workstations

are assigned to do what, it is called “organizationally aware groupware.” This is a

potentially powerful system which can download appropriate programs and data to

users’ workstations as needed; assist in task execution; send reminders when and if

a user misses a deadline; automatically fill out electronic forms when needed; and

generally act as coordinator, historian, and process overseer.

The above groupware examples suggest that there is a wide variety of systems.

Some are same time, same place; some are different time, different place like work-

flow; and some fall in between these. But we see that all of these groupware systems

aim to assist people in their communication, coordination, and collaboration.

10.2 Basic Definitions

10.2.1 Groupware

As stated above, groupware is technology to assist groups. Before presenting our

elaborated definition of groupware, we discuss the notion of group. In this document,

we define groups very generally as collaborating communities of participants. A

group may be very small (e.g. two designers working via an electronic whiteboard,)

or very large (e.g. all citizens of a large country participating in electronic voting.)

A group may be very close knit, sharing goals and tasks and common knowledge

and preferences and etc; or it may be a very amorphous group with no knowledge

of other group members and no explicit shared goals. This latter type of group is

of interest because it is commonly found on the Internet. Terms such as teams,

organizations, corporations, communities and societies all fall within our notion of



10.2 Basic Definitions 3

groups; thus groupware may be applicable to these quite varied entities.

When one thinks about typical groupware, electronic mail and video conferencing

come to mind as typical examples. In fact, there are many single user tools which

have been upgraded to be “group enabled.” For example, a single user text editor

which has an add-on electronic mail feature integrated into its latest release is

groupware, or at least it has a groupware aspect. Thus, when examining the utility

of groupware, we must specify which aspects of it we are focusing upon. This chapter

suggests a four part classification of groupware according to its aspects.

It is clear that some groupware are much more useful to groups than others. For

example, ordinary electronic mail is not as useful as enhanced electronic mail that

filters, sorts into various mailboxes, and is multimedia. The filtering helps prevent

information overload, the sorting helps to categorize messages into conversations -

thereby providing context for messages, and the multimedia allows much more of

the group spirit, emphases, and social background to be captured. This document

therefore suggests that the question of “Is that technology groupware?” may

not have a simple YES or NO answer, but depends upon the aspect of the

technology that we are focusing upon, and is best represented by a spectrum.

Some technological tools are high on this spectrum, meaning that they incorporate

powerful and appropriate aids for group work. Others are considered low on the

spectrum because they provide weak or inappropriate aids for group work. Ordinary

email is much lower on the spectrum than enhanced email. Fax is also groupware,

but it is quite low on the scale. Many group enabled systems tend to be lower on

the scale than systems which were initially designed as group support systems.

We are now ready to state our definition of groupware: Groupware (also some-

times called collaboration technology) is defined as computing and communications

technology based systems that assist groups of participants, and help to support a

shared environment.

10.2.2 CSCW

Computer Supported Cooperative Work is the name of the research area that stud-

ies the use of computing and communications technologies to support group ac-

tivities. Associated with this are are questions such as “How do people interact

and collaborate?” and “How can technology facilitate and enhance this interaction

and collaboration?” The emerging new focus on groupware presents opportunities

for new paradigms, new types of systems, and new ways of working. Along with

these opportunities come new problems and new intellectual challenges. Research

methodologies utilized in this area include field studies, laboratory experiments,

ethnographic studies, systems prototyping, simulation, and conceptual modeling.

There have been a large number of studies, utilizing a wide variety of techniques.

The techniques, technologies, and findings in this area have been useful to enhance

interactions ranging from real time face to face meetings, to asynchronous organi-

zational workflows.

In this area, it has been the case that technology tends to change and progress at a



4 Groupware and Computer Supported Cooperative Work

much faster rate than our understanding of human interaction phenomena. We need

a much deeper understanding of the social and organizational factors, and their in-

teraction with technology, than currently exists. There is an important component

of the CSCW area concerned with theories, frameworks, and mathematical models.

Thus, CSCW includes the theoretical development of models of teams, organiza-

tions, and social systems. This effort supports the analysis, prediction, and design of

social structures taking into account the participants’ information, communication

possibilities, objectives, relationships, and incentive mechanisms. In constructing

such theories, the area draws upon diverse disciplines including social psychology,

organizational design, economics, computer science, and management science. As

information technologies drive the underlying factors such as communication possi-

bilities, the theoretical models provide a means to evaluate the effects of alternate

designs, and a guide to shaping both the technology and the social systems for

beneficial outcomes.

10.3 Aspects of Groupware

In this section we propose a classification of groupware systems that, we believe,

is more interesting than previous taxonomies both in terms of its pedagogical

advantages and in terms of its ability to direct future research in the area.

Other researchers have proposed taxonomies of groupware systems based upon

a same/different time/space distinction [31], based upon areas of application [17],

and based upon other criteria such as group size. We propose a classification based

upon underlying functionalities of groupware. We introduce four classes, which we

call aspects. Briefly, the first aspect, keeper, groups functionalities that are related

to storage and access to share data; the second aspect, coordinator, is related to

the ordering and synchronization of individual activities that make up the whole

process; the third aspect, communicator, groups functionalities related to uncon-

strained and explicit communication among the participants; and finally the forth

aspect, team-agent, refers to intelligent or semi-intelligent software components that

perform specialized functions and help the dynamic of a group.

This classification is neither complete, in the sense that not all functionalities fall

within one of such aspects, nor it is categorical, in the sense that it is always possible

to say when a functionality falls within one or other aspect. In fact there will be

functionalities that seem to lay on the intersection of different aspects. But despite

these problems, we believe that the aspect taxonomy is helpful to understand the

past and present of the field, and to suggest directions for the future.

It turns out that most current groupware systems have functionalities that fall

overwhelmingly within one of the first three aspects. In this sense, we will talk about

typical keeper systems, typical coordinator systems and typical communicator

systems.



10.3 Aspects of Groupware 5

10.3.1 Keepers

Sometimes the collaboration among a group of people is centered on the access

and change of a shared set of data. Sometimes the goal of the collaboration is the

construction of this shared data, which we will call the artifact. The keeper of the

artifact, or keeper for short, is the set of functionalities related to the storage and

manipulation of the artifact.

Two examples of non computer-mediated keepers are the white board in a

brainstorming session in which three engineers are drafting a new circuit, and the

draft of a business contract that is circulating among some executives who write

their comments about the contract on the margins.

These two examples reflect an important distinction among keepers: there are

keepers that allow for more than one user at the same time to alter the artifact,

such as the white board, whereas some other keepers do not.

In groupware systems some typical keepers are:

systems that allow for revision of documents [41]. In such systems, a single person

writes a document and then submits it to be reviewed by others. The reviewers

may attach comments to segments of the document, or propose changes to it.

Then the original author receives the comments, proposals of change, and so on,

and changes the document, which may be again submitted to more reviews.

concurrent editors [16], that allow more than one user to change the same

file/document at the same time.

computer aided design (CAD) and computer aided software engineering (CASE)

tools [6].

Functionalities that fall within the keeper are:

control access rights to the objects. Not all participants have the same rights

to the objects that make up the artifact or the same rights to perform certain

operations onto these objects. For example in a document reviewing groupware,

the reviewers do not have the right to change the real document, they only

have the right to attach comments and substitutions to it. In some systems one

reviewer do not have the right to read other reviewer’s comments, whereas in

others, the reviewers can both read and comment each other’s contributions.

control of simultaneous access to the artifact. Some groupware allow for simul-

taneous changes to the artifact. This poses the problem of maintaining the con-

sistency of the artifact: if two simultaneous and contradictory changes are sub-

mitted to the keeper, how will it perform them?

versioning of the artifact. In some applications it is important to store stable

situations of the artifact during the process and to allow the artifact to be

restored to such stable situations.

storage of time stamp and author information on objects of the artifact. Some

groupware allow a user to view just the changes performed since she last logged



6 Groupware and Computer Supported Cooperative Work

on, or the changes made by another participant.

floor control. Some groupware systems use a mechanism of floor control to avoid

simultaneous access to the artifact, for example a classroom blackboard. At each

time only one user has the right to change the artifact (the participant that has

control of the floor). Other users may request the floor which will be granted by

the system as soon as the participant that has the floor relinquishes it.

Ontological model – model for keepers

The ontological model is a description of the objects and operations that can be

used to construct and manipulate the artifact; the semantics of such objects and

how they should be used.

Sometimes, a precise description of how the objects should be used is the essence

of a groupware system. That is the case of QuestMap [44]. QuestMap product

evolved from the experimental gIBIS [11] system, and as with the other members

in the IBIS family it supports decision making by structuring the discussions. It

implements the IBIS model of discussion and decision developed during the early

1970 [35]. The IBIS model proposes that decision making about “wicked problems”

should be performed in three phases: divergence, when solutions to the problems

are creatively suggested, convergence when after listing all alternatives the group

converges to a few of them, and decision when all in the group are convinced of

the solution to be adopted. Of these three phases the IBIS model considers the first

as the most important and proposes that in that phase the participants make a

clear distinction between the questions, the solution for those questions, and the

arguments in favor or against those proposed solutions. Questions are named issues

in IBIS and solution are named positions.

QuestMap is a tool to support the divergence phase: the discussion is the

collective construction of a graphical map that contains nodes to represent issues,

positions and arguments; and different links connecting these nodes. By clicking on

a node, the user accesses the content of the node: the statement of an issue, position,

or argument. Each user can add new objects to the discussion and can delete objects

created by herself. All users can access and change the map simultaneously, and

their changes will be transmitted to all other participants, or they can access and

change the map asynchronously.

Another component of the ontological model is its concurrency control : how

are simultaneous access and change requests to the artifact dealt with. Some

systems would not allow for concurrent change to the artifact because either their

collaboration model does not allow for concurrent activities that may access the

artifact, or because their mechanism of floor control is restrictive. There are many

varieties of floor control. Many systems implement a floor control mechanism in

which only one participant at a time has the right to perform changes to the artifact

or artifact attributes. Those changes may occur in a fashion that is immediately

visible to all group members. A common feature of concurrent systems is the

existence of a group window (for example GROVE, a concurrent group editor [16])



10.3 Aspects of Groupware 7

in which the same view is displayed to all participants. The region of the artifact

that is being viewed in all group windows is controlled by one of many possible

floor control mechanisms.

In some other systems, there is no floor mechanism but there is some form of

locking: a participant protects a region of the artifact by placing a lock that prevents

other users from making changes within that region (for example REDUCE [10]).

Some other systems accept all operations from the participants and deal with

inconsistent ones in an application dependent way.

Another component of the ontological model is currency : how up-to-date are the

views that each participant has of the artifact. Depending on the implementation,

some systems may present an out-of-date view of the artifact to the participants.

In such cases the model may specify a mechanism allowing a participant to request

the current version of the artifact, or if this is done automatically, how frequent

is the update. Also the model has to specify what happens with changes that are

performed on out-of-date views of the artifact. Many options exist. For example,

they may remain local, they may be later merged into the current version of the

artifact, or they may be sent to the current version immediately. Another issues is

how are inconsistencies due to the lack of currency dealt with.

10.3.2 Coordinators

Sometimes collaborating is each participant of the group performing some activity,

possibly but not necessarily an individual activity, in a previously defined order.

The coordinator of activities, or coordinator for short is the set of functionalities

related to this temporal evolution of the system, the enabling of an activity after

all its preceding activities are terminated.

A prototypical non-computer-mediated coordinator is the production line in a

factory. In the production line, the process of constructing, say a car, was carefully

and previously divided into a set of individually performed and temporally ordered

activities. This example also shows one of the limits of our aspect model: in a line

of production, the point is the construction of the artifact, that is the car. In fact

there is almost always some data involved in a coordinator system: people frequently

perform their activity upon some data that is passed along to the person that will

perform the next activity in line. But we claim that in most coordinators this data

is not really shared, the data flows overwhelmingly in one direction, that is, as soon

as someone has terminated her activity and performed all the changes in the data,

that person will not receive that data again in the process. Keepers to store and

control such data are simple (or uninteresting) because the changes to the data are

linear and predictable. We claim that for such systems, the coordinator aspect is

much more interesting than the keeper aspect, and thus we call them coordinators.

Other non-computer mediated coordinators are techniques for meeting manage-

ment such as the Delphi method [37].

Some typical groupware with strong coordinator components are:



8 Groupware and Computer Supported Cooperative Work

workflow management systems [30]

software process management systems [19, 22].

some examples of meeting coordinators and group decision support systems [51]

The basic functionalities of a coordinator are centered on the execution (or

enactment) of a plan, or a sequence of activities (sometimes called a procedure

or a process). The coordinator is responsible for insuring that an instance of a

process follows its predefined plan. This is also referred as enacting the plan or

model for that process. Some functionalities related to enactment are:

enabling an activity once its preceding activities have terminated.

notification to the users that they may start a particular activity or that a

particular activity is late.

inspecting the current stage of a process. Some systems allow privileged users to

obtain various information about the process state, such as which activities have

been completed, and when, and by who, and which activities are being carried

on.

dynamic alteration of a process description to cope with surprises. Very few of

the existing coordinators allow for changes on the plan of a process. Changes

to the plan are important in dealing with unexpected situations, that were not

taken into consideration when the plan was conceived.

helping participants to manage their work. Some systems, such as workflow

systems, deal with more than one process at a time. For example, John’s purchase

order and Bill’s travel reimbursement may both be processed under the control

of the same workflow system although they are instances of different processes.

In such cases there will usually be many activities attributed to a single actor,

and the workflow management system may help that actor by displaying the

list of activities to be performed by that actor, displaying the deadlines, and

allowing the user to choose which activity she wants to perform.

Another important group of functionalities of coordinators centers on defining the

plan itself. This is also referred as modeling. In general terms, the plan or model

is a description of the sequence of activities that should be performed, who will

perform them, when they must terminate, and so on. Most coordinators allow for

some form of definition of the plan. Meeting support systems sometimes have a

predefined sequence of activities, but allow the users to define who will perform

them and when should they be finished. Workflow systems and software process

management systems allow for the definition of not only who will perform the

activities and when, but also what activities will be performed, which supporting

tools and environment will be available for each activity, and in what order the

activities should be executed.



10.3 Aspects of Groupware 9

Coordination Model

The main concept of the coordination model is that of an activity. Other important

concepts are role and actor. An activity is a potential set of operations (and the

corresponding objects) that an actor playing a particular role can perform, with a

defined goal. In general, an actor may be a user, a computer system, or a group.

The actor carrying out the activity is called the performer of the activity. A set of

activities and the ordering among them make up a procedure. Some coordinators

are designed for a single procedure, for example software inspection, others, such as

workflow systems deal with multiple processes, such as “order processing procedure”

and “travel reimbursement procedure” for example.

More than one instance of each procedure may be “executing” at the same time:

there may be many order processing jobs being carried out simultaneously in a

company for many different customers. Each of this instances of the procedure will

be called an endeavor.

The coordination model has two components, as indicated above: a component

that deals with the modeling of the process and one that deals with the enactment.

The plan is a predefined specification on how an endeavor will or should proceed.

The plan specifies the activities and their goals, who perform them, the objects

and operations available in each activity, the order in which the activities should be

performed, when should the activities end, etc. We will call the part of the plan that

defines which activities should be performed and in what sequence as the activity

plan. The component that describes who will perform what activity is the actor

assignment, and the component that defines deadlines as the temporal plan.

The coordination model has to specify which of these components are fixed

and which can be set by the user. Some systems have a fixed activity plan, but

both the actor assignment and temporal plan can be set by the user. In such

systems, the fixed activity plan reflects a methodology that is embedded into the

system. Document reviewing systems is an example of a coordination model with

fixed activity plan. Other coordinators that have a fixed activity plan are meeting

management systems.

Other coordinators allow for all parameters of a plan to be defined by the user.

Workflows and software process management systems are examples in this category.

Such systems are limited by the language used to define the activity plans, the actor

assignment and so on.

The enactment component of the coordination model defines the relationship

between the plan and the execution of an endeavor: is the plan a specification

of what will happen with the endeavor, or just a suggestion. In other words, is

it possible, at enactment time, to change the plan for a particular endeavor or

not. This replanning for a particular endeavor may be important to deal with

unplanned, unexpected, or exceptional situations. In a workflow system, the order

processing endeavor for a particular case may have to follow a different plan than the

one predefined because, for example, that customer, which is the most important

customer of the company, needs to receive the goods ordered in a very short time.



10 Groupware and Computer Supported Cooperative Work

In this case, the plan for that endeavor may be altered to skip some activities.

Another aspect at the enactment level is whether the system controls/monitors

more than one endeavor at the same time. For example a document review system

may not be designed to monitor more than one endeavor. In this case, although

many documents can be reviewed at the same time, each document is being

controlled by a separate instance of the document reviewing system, and each

instance does not know about the others. In such a case, the system (or better

an instance of the system) cannot know that a particular reviewer is overburdened

with five other reviews.

Multiple-endeavor systems may also help users manage their work. Since the

system knows about all activities that are assigned to a particular actor, it can

provide the actor with information such as which activities are urgent, and which

are late.

10.3.3 Communicators

Communication is a basic aspect of any collaborative endeavor. In a mainly keeper

application there is (implicit) communication when one participant changes the

artifact, and that is known to the others. Also, in a mainly coordinator application

there is (implicit) communication when one participant finishes an activity and

that enables another participant to start the next activity. But many times there is

need for explicit communication among people. The communicator aspect groups

the functionalities that allow different users to communicate explicitly among

themselves.

Two non-computer mediated examples of communicator are telephone and let-

ters. These two examples also illustrate an interesting distinction among commu-

nicators: whether they are same time (real-time) or different time (off-line).

Typical groupware communicators are:

e-mail.

desktop conferencing systems (for example [43, 46]). These systems allow a

group of people to communicate through audio and/or video from their desktop

computers. Some systems allow for all users to both transmit and receive, while

others allow only one person to transmit while the others only receive.

chat and muds/moos (for example [36]). These systems allow for a group of

people to interact mainly through text. Participants send their contributions

either to the whole group or privately to some subset of the whole group, and

each participant sees all messages sent to the group or to her privately.

white-boards (for example [46, 40]).

Typical functionalities of communicators are:

sending and receiving a message.

joining and leaving a conference.



10.3 Aspects of Groupware 11

management help functions and abbreviations, such as mailing lists, alias, and

so on.

Conference and Conversational Models

The conference and conversational models are the underlying models of commu-

nicators. The conference model describes whether only two or more people can

communicate and how that communication is initiated, and if more than two party

conferences are allowed, how new people join the conversation, whether it is possi-

ble within a multi-party conversation to talk privately to some subset of the group,

and so on. The conference model must also specify whether all participants can

transmit/receive, and if not how one switches from transmitting to receiving.

The conversational model describes what are the conversational moves allowed in

the communication, how participants take turns in performing these conversational

moves, what are appropriate conversational replies to the moves, how the groupware

can help the user manage each conversation, and manage multiple conversations.

In real time communicators the emphasis is on the conference model. It is as-

sumed that the participants themselves will manage the conversation. For example,

in a video-conference system once the participants “get together” in a conference

(following the system’s particular conference model) it is assumed that the par-

ticipants will understand when someone’s contribution is a question, for example,

because the participants will use the group/culture/language appropriate markers

and intonations to convey the question. In other words, it is usually left to the par-

ticipants, and not to the system, to interpret the conversational moves and follow

(or not) the appropriate cultural/group protocols for such moves.

In some video-conference systems, such as IVS [29] all participants transmit

video but only one transmits sound, while the others listen. Once the participant

terminates her contribution she releases the sound control to others. In CU-SeeMe

[14] all participants can transmit video and sound, and each participant chooses

which video and sound transmissions to receive.

In off-line communicators, the emphasis is on the conversational model. Because

there may be a long period between one conversational message and its reply,

the groupware system, if it incorporates an appropriate conversational model, may

provide help to its users. It may help a user that just received a message to figure

out its context, that is, what are the other conversational messages that preceded

this one, and what are the appropriate replies to it. The system may help the user

by listing all messages that need reply, and what kind of reply is appropriate for

each of them, list all conversations that have not yet reached a final state, list all

previous conversations, and so on.

Furthermore the conversational model may state that some types of messages

need no reply but should be processed automatically. For example, let us assume

that the conversation model specifies that a message of acknowledgment of receipt

should be sent in response for a message in which the field “acknowledge-receipt” is

set. The communicator not only can send this acknowledgment upon receiving an



12 Groupware and Computer Supported Cooperative Work

incoming message with the field set, but can also process incoming acknowledgments

and alert the user of messages that the user sent more that 2 days ago and for which

there has been no acknowledgment.

An communication system that has an elaborate and explicit conversation model

is The Coordinator[52, 21]. The Coordinator implements Winograd and Flores’

model of conversation for actions. In the model a conversation is started by a

request (to do something, before some time). The recipient may accept the request,

may refuse it, or may negotiate. If the request is accepted, maybe after negotiations,

and performed, the recipient of the request declares it completed, which is accepted

or not by the original sender. Each message identifies itself as a particular message

type called a “conversational move” in an ongoing conversation. For example the

user would understand that a particular message is user B’s modified request after

a first round of negotiations and that this user appropriate response would be

to accept, reject, or re-negotiate this new request. Furthermore, The Coordinator

would assist the user to manage her obligations: the user would be able to list which

requests from others she has accepted and still has to perform, and when are they

due, which request the user has not answered yet, which of her requests has not

been performed until now and so on.

The clarity of the Coordinator’s conversational model has caused a large impact

in groupware research, and there has been much discussion, debate and study about

the usage of this type of system [49, 15].

10.3.4 Team-Agents

Team agents are artificial participants that perform specialized functions within a

group setting. Besides groupware modules which must be concerned with the opera-

tion of the entire groupware system, there are frequently modules which are built to

perform specific non-global subtasks. These frequently involve specialized domain

knowledge; we call these modules team agents. Examples include the “performance

specialist” within a software engineering team, and the “social mediator” within an

electronic meeting. Neither of these examples is concerned with the overall workings

of the system, but each contributes useful functionality in a specialized domain as

part of a group. Thus each is a team agent. Ideally, team agents act as if they were

full fledged, actively participating members of the group.

An important distinction within the category of team agents is autonomous

agents versus single user agents versus group agents. Autonomous agents primarily

work alone on an independent subtask; single user agents (e.g. user interface

agents) interact with, and work for a single participant within the group; group

agents interact and collaborate with the various members of the group as a true

colleague. Group agents thus need a good understanding of the goals, structures,

and personalities of the group, and of their role within the group.



10.3 Aspects of Groupware 13

Group Critic

Some (single-ware) computer aided design (CAD) systems have critics that com-

ment or check the user’s designs. Critics are AI programs that tap into an artifact

being developed and reports problems with the design. For example, the critic de-

scribed in [20] warns the designer of problems in kitchen design such as a stove too

close to a window and so on. Although at the time of the writing of this chapter

there was no group-CAD that incorporated critics, it is conceivable that they will

in the short future. Such critics would be good examples of team-agents.

As a team agent, and more specifically as a group agent, a group critic must be

aware that the problems it find in the design are the result of different users acting

on different goals and all are responsible for the problem. For example, if the critic

detects that the stove is too close to the window it must warn the user that placed

the window and the user that placed the stove, even if placing the stove was done

last.

Appointment Scheduler

A popular groupware application is group calendaring and scheduling of meetings

[50]. Such softwares allow one to schedule a meeting among a group of people

by selecting a free time slot for all meeting participants. In order to do that, the

scheduler must have access to each participant’s individual calendar. An interesting

scheduler would also know about peoples’ preferences for meeting hours, and in case

of a cancellation of a meeting this system could re-arrange some of the meetings so

the participants would be happier with their times.

The appointment scheduler, specially the implemented ones are mainly au-

tonomous agents. But depending on the functionalities it may also be a single

user agent. An appointment scheduler that knows about its user’s preferences and

pro-actively tries to satisfy those preferences is certainly acting on behalf of its user.

10.3.5 Agent models

It is important to notice that the use of the term agent in this chapter is broader

than its use in most of the other chapters in this book. Agent is any automatic

process; it does not need to be “intelligent” or “autonomous” in the sense used in

other chapters.

In particular, for the purposes of this chapter, an autonomous agent is a program

that runs independently, and has no interaction with any user. An autonomous

agent may tally the votes in a decision meeting, it may compile a program in

a software development workflow, it may print an acceptance letter based on a

template and data available in a database, and so on. None of these activities

are considered intelligent. But an autonomous agent may choose a particular

methodology and tool for a meeting, based on the problem [1], or another agent may

plan the sequence of activities to be performed based on the goals to be achieved



14 Groupware and Computer Supported Cooperative Work

[12]; these are more “intelligent” activities.

A model of an autonomous agent will not be developed in this chapter. The

theories and models put forth in the other chapters are all relevant to define, classify

and model autonomous agents.

Group agents are programs that interacts with all participants and thus “should

behave like a participant” therefore group agents should incorporate a model that at

least describes what is “to behave like a participant.” But there are no implemented

group agent and thus there is not enough experience to abstract into a group-agent

model.

User agent models

Groupware reflects a change in emphasis from using the computer to solve problems

to using the computer to facilitate human interaction. Users can best take advantage

of this changed emphasis via systems with user-interfaces especially designed for

groupware. We call these group user-interfaces. The issues that designers of group

user-interfaces face are challenging and are significant extensions of the usual issues

of interfaces for single-user systems. Thus the user interface conceptual model is

highly concerned with representation of human-human interaction, and significantly

transcends single user interface models. The model has four components:

views of information objects and operators

views of process and communication;

views of participants;

views of shared context.

Firstly, the user interface for a participant in a groupware session must be capable

of presentation of the objects and operations embodied in the ontological model as

previously defined in this chapter. Since different participants may have different

abilities (or different perspectives), the user interface model includes the concept

of multiple views of objects and the concept of local operations which are typically

not present in single user models.

Besides the ontological model data, the user interface in a groupware system may

have to deal with other “meta objects”. Examples include telepointers and group

windows [16]. For example, on systems that allow for inspection of the stage, the

user-interface has to display this information.

Views of objects derives from the fact that different participants may want to have

different views of the same objects of the system. For example, in a GDSS, an object

may be semantically an array of numbers, but one participant may opt to view it

as a bar chart, another may prefer to see it as a pie graph, or as a table. All these

different representations are views of the same object, and in principle it should be

an issue related to the user interface. Furthermore, if one of the operations allowed

upon this generic array object is to alter the values of its elements, the operation

has to be translated appropriately to each view of the object. In the bar chart view



10.3 Aspects of Groupware 15

of the table, one could change the corresponding element by stretching the height

of the bar corresponding to the element. In a table view, one could type the element

index and change its value using the keyboard.

Similarly, in an IBIS one participant may want to view the network of issues,

positions and arguments as a graphic network of connected nodes. Another may

want to view it as linearized text, indented appropriately to differentiate issues from

positions from arguments.

The concept of local operations derives from the observation that group editing

is a common and necessary operation in many groupware systems, but all edits

need not be seen immediately by all participants. There are decisions or options

that must be built into each groupware system concerning granularity of edits and

locality and when to transmit to others. If an edit operation is part of a real time

synchronous interaction, then a WYSIWIS (“what-you-see-is-what-I-see”) system

may transmit the edit immediately to all participants. Alternatively, within an

asynchronous system, edits may not be transmitted to other participants until a

save operation is executed. For many existing systems, when entering data through

the keyboard, the system considers all key presses as local operations until the

return key is pressed. Thus composing a line is an atomic operation. Finally, it

should be pointed out that in some systems, operations on meta objects, e.g. pointer

movement, are permanently local operations which are never transmitted to other

participants.

In a group editor system, for example, if the participant realizes that he mistyped

the last character, he would press the backspace key and erase it. If we were to

consider that within a real time interaction, it might be transmitted immediately.

In GROVE and the Unix talk program, backspace key presses are object level

operations, and are transmitted immediately. Clearly the level of granularity of

operations depends upon the application and the group environment.

In a synchronous system, understanding who is simultaneously doing what is

useful, and should be presented to users. In an asynchronous system, it is useful to

understand who did what since the user last signed on. This leads to the notion of

“view of the process.” Workflow systems are a clear example where it is useful to

have answers to questions of what step preceded mine, and what follows. The user

should be able to see upon demand, a simple view of which workcases are in which

stages. As exceptions arise in processing, formal and informal communication ought

to be facilitated. Maps of who holds which positions, and who talks to whom help

to make communication visible.

Groupware is much more concerned with assisting people to people communica-

tion than single-user systems. Providing some convenient means of knowing other

participants, and what they are doing is an important aspect of our model. The

identity of a participant is not directly related to the completion of the endeavor,

but this information can be extremely helpful to the other participants in evalu-

ating the situation of the group dynamics. For example, knowing that Smith is in

a group long-distance discussion mediated by an IBIS, may lead the other partici-

pants to formulate their contributions in different ways than if Smith was absent.



16 Groupware and Computer Supported Cooperative Work

GROVE, for instance, provides this context information by displaying the pictures

of the participants at the bottom of each group window. Systems of video windows,

video walls, virtual rooms, and virtual realities may display the real time video im-

ages of participants which helps with the evaluation of everybody’s attention and

mood during the session. ClearBoard, for example, allows shared video drawing,

while super-imposing the image of the collaborating colleague [28]. This allows eye

contact and gaze awareness, while still focusing on the work artifact.

In addition to displaying participants, it is possible to present, in an unobtrusive

manner, relevant status, background, and preferences of participants. Benford

discusses concepts of auras, nimbus, focus, and adapters [3], all of which are within

the scope of the group user interface model. Group information such as the social

network of who talks to whom can be presented, and the view of this can be tailored

to the viewing participant. For example, if there is a relevant and significant shared

previous experience between Smith and me, then I would like to be reminded, and

associate this with Smith.

Other possible forms of participant context information are: group opinion on

relevant issues, extent to which participants know each other, status of the commu-

nications technology, how are the participants geographically distributed; informa-

tion from a database on relevant aspects of each participant; etc. The information

on the geographical distribution of participants may help long distance participants

to realize that the subgroups that are in the same place may have developed other

protocols of communication besides the one enforced by the collaboration model

of the system. Remote response time information may help the division of labor

among the group members so that the tasks of a long-distance participant should

not depend on high currency. Finally, information about other participants may

help a user to place the context of the other participants contributions.

Another area of presentation that should be dealt with by a group user interface

is all of the useful background material that we call context. The choice of what

and how to present contextual information is a challenge, and that context may

include items as diverse as the time of the next meeting, the current weather, and

the presence of new mail messages from other participants.

We categorize contextual information as structural, social, or organizational,

Structural context includes what and where data, such as the set of interactions in

which I am currently participating, and temporal information such as what data

has changed since I last accessed this hypertext web. Within a software engineering

project, useful context may include languages and case tools used, status of various

code and documentation files, and future milestones.

Social context includes items such as group norms, group metrics, and social

history of the group. One proposed metaphor of shared virtual reality is that

different projects would take place in dramatically different virtual rooms. Thus,

the group’s difficult design project would take place in a Tahitian hut, and the

formal election processes always takes place in a London House of Lords; just the

act of re-entering these contexts might trigger much useful contextual information in

the heads of the participants. The research work on GroupAnalyzer [38] explored



10.3 Aspects of Groupware 17

the efficacy of providing an electronic meeting barometer for groups in face to

face interaction. This is an excellent example of the utility of graphical context

presentation.

Organizational context can apply to small groups, large corporations, countries,

or international organizations. It potentially includes formal reporting and respon-

sibility structures of the group such as the organization chart. Also included are

other items such as rules of the organization (procedures manuals, etc.,) and inter-

organizational data (competitive edge, mergers, etc.) In general, it must be un-

derstood that a meeting or any interaction is not an event in isolation, so these

contextual clues provided by the user-interface can make the difference between a

successful interaction versus a failure.

Finally, we note that participants are not context! Context connotes objects and

conditions that are in the background. A primary function of groupware is support

of communication and collaboration among participants, so participants are in the

foreground.

10.3.6 An example of aspect analysis of a groupware

Let us discuss some different possible implementations of whiteboards which mix

aspects from communicators and keepers. Whiteboards are group drawing tools,

somewhat like a group Paint. Whiteboards have a strong communicator component,

specially the conference model. People may join and leave a ongoing whiteboard

session.

The simpler whiteboard has one cursor for each participant. The participant by

moving the cursor around sets some pixels to, say, black, and each participant

sees the composition of all contributions. The canvas can be seen as a keeper, but a

trivial one. The objects maintained buy the keeper are pixels and the only operation

available is to set them on. There is no problem of concurrent access to the same

pixel, and the currency of each participant’s view is not critical.

In a more elaborate whiteboard, each participant still has her own cursor but

each cursor paints the canvas in a different color. The objects maintained by the

keeper are a little more complex, pixels with colors, but still very simple. An even

more elaborate whiteboard in terms of its keeper model would be one in which each

participant paints on her own transparent canvas, and each participant can choose

whose canvas or canvases she wants to see. Now the ontology model is yet more

complex. Finally, let us assume that the system is also used asynchronously, and

that each participant can choose to see only the changes made by some particular

participants since she last logged into the system. Now the ontology model includes

objects like canvas, time and author stamps, and so on. But all these versions of a

whiteboard are simple in regard to object coordination, or concurrency control.

A whiteboard system that is more complex in terms of concurrency control, even

though it has a very simple ontological model, is the first whiteboard modified so

that there is only one cursor for the whole group. The cursor is the resource that

needs to be controlled by the keeper, and some way of passing this control must be



18 Groupware and Computer Supported Cooperative Work

planned. It could be a first come first serve floor control with explicit release (the

one that holds the cursor must explicitly release it, and control will pass to the first

one waiting in line for it), or release by timeout (after a period of inactivity the

cursor goes to the next in line). Or the cursor may be owned by some privileged

participant that may pass temporarily the control of the cursor to one participant,

but may regain its control any time she wants.

10.4 Multi-aspect groupware

The aspects model of groupware is interesting because not only does it serve as

a guide to the designers and users of groupware systems but it also allows for a

perspective on the past research on groupware and we believe can point the way to

future research in the field.

Most Groupware research done until the 90’s were single-aspect systems, that is,

a system in which functionalities within one aspect overwhelm the functionalities

within other aspects. But there are some exceptions, such as document reviewing

systems (for example [42]) which mix keepers with coordinators. Another such

system is The Coordinator [52, 21], which mixes communicators with coordinators.

We will describe below the Chautauqua workflow system, which mixes all the

10.4.1 Chautauqua - A multi-aspect system

Chautauqua is an Internet based collaboration management system designed and

implemented within the Collaboration Technology Research Group [13] at the Uni-

versity of Colorado, USA, and the Center for Informatics (ZID) at the University

of Arts, Austria. This exploratory prototype, which has been in test usage since

1995, illustrates the possibilities and advantages of tight integration of coordinator,

keeper, communicator, and agents. At its base, this system is a workflow manage-

ment system. However, unlike conventional workflow systems, this system carefully

incorporates functionality for goal based reasoning, for real time interaction, and

for flexible, human controlled dynamic change [18].

The history of workflow products in corporate America has been mixed; more

systems have silently died than been successful [24]. Workflow has been heavily

criticized because of its typically inflexible and dictatorial nature compared to

the way that office workers really accomplish tasks. Chautauqua attempts to

address these criticisms by being strictly a subservient system - it incorporates

novels features including flexible exception handling mechanisms, representation of

inconsistent concurrently updated information, assistance for simultaneous group

editing, and powerful, verifiable dynamic change capability. All of these features

are accessible to any and all users with appropriate access rights.

Thus, the information concerning procedural specifications associated with the

coordination aspect, which we call organizational awareness, is the artifact main-

tained by the sophisticated Chautauqua keeper. This information is available (in



10.5 Social and group issues in designing groupware systems 19

graphical, easy to use form) to all users for seeing and understanding the procedures,

and also for making changes to the procedures. The keeper must support simulta-

neous editing of this information, and must be capable of mediating and merging

inconsistent information entered by different users. The keeper is thus integrally

integrated with the coordinator.

Techniques implemented by Chautauqua for assisting with the above mediation

include the concept of “town meetings” and “group decision sessions”. Clearly some

of the tasks such as problem solving and decision making can be facilitated if the

system can schedule and initiate real time video conferences. Being organizationally

aware, the workflow system is in a good position to do this. Thus, Chautauqua

integrally integrates a communicator.

The dynamic change feature goes far beyond application data update capability

to allow open change to control flow and to organizational structures. Furthermore

this change can take place in the midst of system enactment without stopping

and restarting, or aborting work cases in progress. This feature is implemented

via “Change Agents” that have certain global knowledge about the state of the

executing system and which work cases are where. Consider a procedure in which

task A is specified to execute before task B. If the dynamic structural change is to re-

specify that A and B should be done in parallel, then work that is “inside of task A”

at the time of change (the change taking effect immediately and instantaneously)

may accidentally never execute task B. This is a simple example of potentially

complex inconsistencies that can occur if dynamic change is not carefully managed.

In general, the change agent can work with the users and utilize its global

knowledge to analyze changes for potential problems. Note that a change can be

permanent, or a temporary one time change. Thus, exception handling falls within

the dynamic change category. The change agent in Chautauqua is integrally woven

into the design of the Chautauqua system, and uses an analytic method based upon

graph grammar rules applied to Petri nets to do this change analysis efficiently

and effectively. This is yet another example of the importance of designing in the

multiple aspects of a groupware system rather than attempting to add on an agent

or a keeper as an after-thought.

10.5 Social and group issues in designing groupware systems

On designing a groupware system, one has to be aware of multiple levels of issues.

At the top most level, one has to be aware that because groupware systems deals

with groups, intuitions and experiences appropriate for singe-ware may not be

appropriate for groupware.

For example, [23] discusses that group appointment schedulers are used in real

work situations far less than the intuitions of someone that had to schedule

a meeting among a couple of people would suggest. Grudin suggests that the

explanation for that is that in real, hierarchic work situations there is a strong

separation between the people that benefit from the existence of the system (the



20 Groupware and Computer Supported Cooperative Work

ones that can call a meeting) and the people that, because of the system, has to do

extra work (the ones that have to enter their schedules into the system). If someone

fails to mark all her appointments in the system she risks the possibility that the

system will schedule a meeting during those unmarked but otherwise busy time

slots. On the other hand, it is very to sabotage the system by blocking all time

slots; by marking all time slots as busy, one will not have to enter one’s detailed

schedule, nor risk having a meeting scheduled at a busy time slot.

Thus for such a system to be successful the users have to have an incentive to use

the scheduler by itself, despite its group benefits. Thus the real issue on the success

of failure of a group scheduler is not centered in the group part: finding a free

time slot, communication protocols that would allow users in different computer

to schedule a meeting and so on. The central issue is providing functionality that

pleases the user when using the system as a single-ware. If that is resolved, then the

designer has to deal with the next level of issues, in this case the ones that relates

to the group functionalities. If the user decides to use the system as his calendar

tool, then this user will probably not be happy if his daily appointments were made

known to other users when they try to schedule a meeting with her. Thus the issue

of privacy, which is a very important issue when dealing with groups, becomes

relevant at this level.

Because groupware systems have to be used by all participants, there is an

all/nothing or sometimes critical-mass characteristic to the adoption of such sys-

tems. Using the scheduler example above, if one of the team members decides not

to use the scheduler, either because she does not like the user-interface or the func-

tionalities, the whole team cannot use system as intended.

In other cases the issue is not whether a whole team adopts or not a groupware

system, but whether a single user decides to adopt a new technology that would

allow her to participate in some collaboration. This shows a critical mass charac-

teristics: it is only attractive to adopt a new communication technology, say voice

electronic mail, if enough of the people one wants to talk has voice electronic mail.

In order for a groupware systems to be adopted and accepted its designer must

be aware of the issues above, but even more important, he must be aware of how

the people for whom the system is being build really work. There is a difficult and

moving line between wanting to improve how people work together by means of a

groupware system and not violating how the work is done without such system [15].

More and more research reported in Groupware conferences are analysis of work

practices, the influence of technology in these practices, the influence of a particular

groupware system on a team, aspects of the adoption (or not) of a groupware system,

and so on. For example [5] describes the use of anthropology to understand the work

practices of a group as part of the methodology to design a particular groupware

system. [47] describes the two distinct views about work in organizations and its

impacts on the design of groupware systems.



10.6 Supporting Technologies and Theories 21

10.6 Supporting Technologies and Theories

We believe that the espoused taxonomy of keepers, coordinators, communicators,

and agents is not only useful at the application level, but also at the middleware

(resource managers, protocols, etc.) level and at the underware (hardware, basic

resource providers, etc.) level. In this section, we discuss supporting technologies,

where technology is interpreted in the broad sense to include hardware underpin-

nings, software underpinnings, and conceptual underpinnings. Thus, communica-

tions hardware, software construction kits, toolboxes, protocols, and underlying

theories are included.

We also note in passing that any lower level category of technology may be

useful for the implementation of several different categories at higher levels. Thus,

for example, low level technology such as Ethernet, which is in the communicator

category, is very useful and important to implement higher level communicators,

but also to implement items in the high level coordinator category. Otherwise there

is no vehicle for synchronization signals to get from one module to another.

10.6.1 Keepers

At the bottom underware level there are numerous examples such as RAID disks

and CD-ROM technologies that form data storage underpinnings for groupware

applications. At the middleware level, examples include file and database systems,

particularly distributed ones. We should also mention conceptual middleware such

as object oriented and relational database schema technology. All of these tech-

nologies help to support generic application level groupware such as organizational

memory and electronic librarians; also groupware in the keeper category targeted

toward a specific application, such as group CAD systems.

10.6.2 Coordinators

Coordinators may range from workflow systems to GDSS to the UNIX Make

software. Middleware that greatly facilitates the construction of this includes the

ISIS synchronizer [7], workflow meta-systems such as ADONIS [33], and at a lower

level, network operating systems. At the lowest levels, we find interrupt hardware

as a primitive that handles coordination at the lowest level. Kernel schedulers

are software just above the interrupt hardware that would also be categorized

as coordination underware. Although ATM transmission technology is within the

communicator category, the ATM switch is a sophisticated technology that is

strictly concerned with synchronization - it is within the coordination underware

category.

Some of the conceptual underpinnings for coordination seem to fall close to

the boundary between middleware and underware. We feel that the speech act

primitives [48] are indeed conceptual primitives and fall within the underware

category. On the other hand, process description languages such as ICNs, and



22 Groupware and Computer Supported Cooperative Work

fundamental models of coordination such as Petri nets seem to fall within the

middleware category because they are really concerned with the description and

management of coordination.

10.6.3 Communicators

Communicators at the application level may range from generic email and video

conferencing systems to very application specific systems. Increasingly more and

more remote collaboration is performed over the Internet using the MBone tech-

nology [34, 40], and modern successors to it [46]. On the one hand, the specific

tools for MBone video, audio, and whiteboard are at the application level. On the

other hand, the underlying multicast protocols are middleware, and the hardware

systems which allow implementation of efficient MBone multicast protocol are un-

derware. At the communication underware level, many examples such as Ethernet

exist. And below this there is much work on wireless transmission, and on satellite

transmission, and etc. As previously mentioned we definitely consider conceptual

technologies within our categories. Thus, there are many communication protocols

which fall within the communication middleware category. The well known ISO

seven layer communication protocol is an example. Of course the lowest layer of

this is clearly underware, and the highest, 7th layer, is clearly and strictly at the

application level, but all other layers are middleware. Finally, we remark that the

Internet and the WWW when viewed from our taxonomy, are not synonymous with

groupware (contrary to some vendors claims.) In fact the Internet is simply one of

many possible communication vehicles, and the various parts of this technology

need to be placed in various sub-categories. Thus, HTTP, the hypertext transport

protocol, is simply one of many choices of middleware for implementation of group-

ware. This needs to be clearly distinguished from HTML, the hypertext markup

language, which is not concerned with communication but with presentation to the

user. It thus falls in the category of user agent technology which is discussed next.

10.6.4 Team-agents

As previously described, we divide agents into categories of autonomous agents,

(single) user agents, and group agents. The other chapters in this book describe

both technological and conceptual underpinning of the agents. In the domain of

agents supporting users, UIMS’s (user interface management systems) and user

interface implementation toolkits have been well used to construct sophisticated

user agents.

An interesting category which is much less visible is the group agent category.

However, one domain where rapid progress is being made is virtual reality for groups

of participants. These systems allow multiple participants connected via a network

to a virtual reality system to also see (or sense) and interact with each other. These

systems sometimes implement the metaphor of a room, a shared desktop, or perhaps

a castle or dungeon with dragons. New middleware that can be used to implement



10.7 Other Taxonomies of Groupware 23

these types of systems includes NetEffect, a distributed server based toolkit for

multi-user virtual worlds on the Internet [8]. As conceptual middleware, HTML

and VRML (virtual reality markup language) are available. At the underware level,

multimedia hardware and virtual reality hardware are proliferating. We see this

team agents category as an under-represented one where exciting research and

development is now happening.

10.7 Other Taxonomies of Groupware

10.7.1 Space/Time matrix

[32] classifies groupware systems based on the same space, different space, same

time, different time distinction. GROVE and IVS for example, would be both

same-time, different-space groupware. Sometimes this distinction is more profitable

applied to certain activities or functions within particular groupware rather than to

the system as a whole. Let us consider a software inspection system which supports

a single programmer writing the code, supports the simultaneous and concurrent

inspection of the code by three reviewers that attach comments to segments of

the code, and supports the programmer changing the code to suit the reviewers’

comments, or discussing with that reviewer why the code is correct as it is, and

finally supports the reviewers verification that all their concerns were addressed

by the programmer. Is this system same-time or different-time? In fact, its both!

But at different stages. This is becoming more prevalent as the needs of groups are

becoming better understood.

Furthermore the distinction of whether the activities were performed at the same

time or at different times is sometimes not appropriate. In the example above, one

could assume that the system would also support that the review activities were

performed at different times. What is important is whether the system necessarily

requires some activities to be performed at different times, or necessarily require

that they are performed at the same time. In the example above, the activity of

reviewing and the activity of changing the code had to be performed at different

times. That may be because limitations on the keeper component of the application,

or it may be because the coordination model so requires: it is reasonable to require

that the programmer should not have access to the reviews until they are done, in

order to avoid unnecessary argumentation and confusion.

10.7.2 Application area

It is also reasonable to classify groupware systems according to application domains

[17]: group editing and reviewing, workflow, group decision support, real-time

communication, distance learning, etc. It turns out that groupware systems for

some of these application areas fall clearly within one or another aspect. Group

editing and reviewing, for example, are typical keeper systems. Workflow systems



24 Groupware and Computer Supported Cooperative Work

are typically coordinators.

The application area in which there is some interesting diversity in terms of

aspects and models is group decision support, or meeting support. In this area the

goal is to provide methodological and technological support for meetings.

In some way meetings can be seen as the most unstructured form of collaboration;

however activities within meetings, such as voting, are frequently very rigid and

structured. Some systems propose to support meeting by temporally structuring

well defined activities, and thus are mainly coordinators with fixed activity plans.

Each activity has some predefined goals and need some specific tools, which may

be communicators or keepers. For example, many meeting methodologies propose

at least an activity of brainstorming [25], in which all participants are encourage to

contribute many possible solutions to the problem at hand. An appropriate tool for

such activity is a backboard-like communicator, to which the participants submit

contributions, usually anonymously [43]. A few other systems, such as those in the

IBIS tradition, choose to structure the meeting “spatially” and thus are mainly

keepers.

10.8 Groupware and Internet

At the time of the writing of this chapter, the word Groupware is frequently

accompanied with the word Internet especially in the non academic press. This

section tries to elicit the relationship between these two concepts.

In order to do that, we need to model the architecture of a typical groupware

system/application. The user will interface with the system through a software

component that we will call user software component (USC ). The USC runs in the

user’s computer, but its functionalities are varied: the USC may include all or just

part of the user interface, it may host part, or the whole, or a version of that artifact

if the system is mainly a keeper, and so on. The USC must communicate/exchange

information with other software components that are, typically, in other computers.

Thus if the groupware is a teleconference system, each USC needs to communicate

with other USCs and there may be a server component.

In order for the USC to communicate with components in other computers it

must make use of services provided by another software components, the network

software component (NSC ). It is unimportant whether the NSC is part of the

operating system of the user’s computer, or if it is implemented explicit as part of

the USC. The relevant issue is that the NSC runs in the user machine and it is

either provided by that machine or implemented in the USC itself.

Given this abstract architecture of a groupware system, one can elucidate two

possible relations between Groupware and the Internet. The first relation, which

we call Internet as infrastructure, the Internet implements the NSC. In the second

relation, which we call Internet as presumed user software, the Internet implements

the USC.



10.8 Groupware and Internet 25

10.8.1 Internet as infrastructure

The idea behind the Internet as infrastructure is that computers that are on the

Internet must have software that allows for some/all of the functionalities required

from the NSC. A computer is “connected” to the Internet when it is able to send

and receive information according to the many standard protocols (UDP, TCP,

FTP, SMTP, NNTP, HTTP, and so on).

Thus, by using the user’s computer’s own Internet software as NSC, the designer

of the groupware avoids having to design the groupware’s own NSC (which may be

extremely difficult since the services provided by the NSC must necessarily interact

with the computer’s low level software and hardware), or avoids having to assume

that the user’s computer has a particular non-standard NSC incorporated into the

operating system.

First, it is important to notice that using the Internet as NSC is not the only

option available for the designer: computers in a local network may use other

protocols that are not available in the Internet; even if the computers are not

in a local network, the designed has the option of having one computer phone the

other and use non-standard protocols over this phone connection, or the distant

computers may be part of a private non-Internet network with its own protocols.

But in all these alternatives, the designer has to assume that the user computer

will be on the local network, or will have access to a phone line, or will be part of

the private wide-area network, and in many of the cases the designer will have to

write the NSC herself.

The Internet has some peculiarities that must be taken into account by the

groupware designer: it is unreliable, that is messages may not get to their recipients,

and it is insecure. Furthermore, at the time of the writing of this chapter, the

Internet is still weak concerning protocols for real-time transmissions, and multi-

casting.

10.8.2 Internet as presumed software

The second frequent relation between Internet and groupware is that the Internet

implements the USC altogether. One Internet software popular for this task is the

WWW browser; at the time of the writing of this chapter, to “be in the Internet” is

to have access to a WWW browser. By implementing the USC by a WWW browser,

all Internet members are potential participants in the groupware. By pointing the

browser toward the server in which the applications runs, one becomes a participant

in that system.

The advantages of implementing the USC by a WWW browsers are many for

the user: there is no need to buy/install a separate USC to become a participant

in a system; the user has to deal with a single interface, the same software (WWW

browser) can be used for many applications.

But using a WWW browser as the USC has some problems and limitations.

The limitations can be separated into three categories: user interface, client-server



26 Groupware and Computer Supported Cooperative Work

architecture, and system interface limitations [4].

The WWW browser can display a large variety of information in different media:

text, different picture formats and so on. Furthermore for most browsers it is

possible to define external programs that will display media types that are not

internally dealt with by the browser. These media types include many audio and

video formats and also application specific formats, such as postscript, and text

editors internal formats. But as an input device, the WWW browser is very limited;

it accepts text typed into the fill-in fields, selection of radio buttons and predefined

lists, and mouse click on predefined regions of text and on predefined images. No

other gestures, such as mouse movement, and single and double clicks are supported.

This poses some severe limitations for some applications; it is not possible to write

an application in which the users freely draw a diagram, or changes a diagram by

dragging some of its components, or build a diagram by placing predefined shapes

onto a canvas.

The client-server limitation is also central for the designer of groupware systems.

WWW was designed as a typical client-server protocol: it is stateless, that is the

server does not remember any of the previous history of communication with the

client, and only the client can initiate communication. The first limitation has been

long solved in the WWW community either by using cookies [45] or by encoding

the state of the communication in the information sent by the client to the server.

When the client requests new information, the encoded state is also transmitted

and used by the server.

The real problem is the fact that the WWW server was originally designed as

“pull” technology. This means that the server cannot initiate communication with

the client. This limits applications in which the currency must be high. In a keeper

application, for example, if other participants change the artifact, the server cannot

warn the client that the artifact has changed unless the server is “push” technology.

The user system limitations are less severe. They refer to the browsers ability to

communicate and operate changes into the user’s system. WWW browsers typically

allow for files to be downloaded, from server to browsers, but not uploaded.

If the user has locally made changes onto the artifact, using software that runs

on the user environment, it may not be possible to easily upload it to a central

repository or to the other users

The use of JAVA seems to be a solution for all this problems, but at a price.

By writing a JAVA program (or applet) that runs on the user’s environment the

groupware designer is able to overcome the three problems mentioned above. For

example the designer may write a program that accepts user’s gestures as inputs,

or a program that communicates with other components of the system using its

own protocol, instead of using the client-server model underlying HTTP. But in

the first case the designer will have to write at least the interface components of

the USC, and in the latter case, the NSC. The advantage is that the designer does

not need to make presuppositions about the user’s environment; if JAVA indeed

becomes a widely accepted standard then the designer may assume that the user’s

WWW browser will both be able to run the program and serve as interface to the



10.9 Future Research on Groupware 27

user’s environment. Thus the same USC program will run in different hardware,

operating systems and network environments.

10.9 Future Research on Groupware

The authors believe that future research on groupware will be centered on agents

and multi-aspect groupware. There are many forms of mixing aspects into a single

system. Let us discuss some.

10.9.1 Incorporating communicators into keepers

Sometimes participants working in a keeper must communicate to each other

directly to understand points of view, to synchronize actions and so on. Some of

these communications will be about the artifact and for these communications

it would be important to be able to refer to parts of the artifact within the

communication, in similar ways that pronouns such as this, and that are used in

conversation to refer to outside entities.

This could be accomplished, for instance, by incorporating a video conference tool

within a keeper that would allow synchronous communication among participants,

plus some form of telepointer, which would allow the participants to make references

to parts of the artifact. The solution is less clear if one also wants to provide off-line

communication among the designers.

10.9.2 Incorporating keepers and communicators into coordinators

There is a very common view associated with coordinators that the whole process

should be decomposed into sub-processes and so on, until one reaches an “atomic”

sub-process, usually called a task or an activity, which cannot (or need not) be

further decomposed and which is to be performed by a single actor. The model of

the production line is a good example of this “decomposition until the individual

task” idea. But there are activities which should not be further decomposed and are

not individual. In a workflow system, one may have, for example, a “write proposal”

activity which is to be performed by a team. This activity should not be further

decomposed into smaller activities because that would constrain too much the team

creativity to write the proposal.

To support these collective activities within a coordinator, one needs an appro-

priate keeper. For example in the “write proposal” activity one needs a keeper

that would allow all the actors to work on the proposal. Probably one would also

need communicators so that the participants can interact beyond the limits of the

ontological model of the keeper for that activity.



28 Groupware and Computer Supported Cooperative Work

10.9.3 Future research on agents

Future research in agents in groupware will follow two directions: (autonomous or

group) agents to act on the domain and agents that act on the interaction. Domain

agents are similar to the group critic described above: they know about the domain

of the collaboration. The kitchen group critic knows about kitchens and stoves and

so on. A group critic on bridge building may know about material strength and

stress; a group critic on software development may know about coding and naming

conventions, or about proving a program correct in relation to its specification, and

so on.

An interaction agent does not need to know about the domain of the collaboration

but knows about interaction/collaboration itself. These agents could play a role

similar to human facilitators in meetings. Such facilitators do not necessarily know

about the topic that will be discussed in the meeting but they understand meetings,

they know when the discussion is becoming too polarized, when an intermission is

appropriate, when there are people and views that could not be expressed because

of the dynamics of the meeting, and so on.

An interaction agent would analyze the state of the interaction and propose

activities for the participants. For example, given the number of alternatives to

answer an issue, an interaction agent may propose one of many voting procedures.

Or given the statistics of the messages being exchanged (mainly from a few

participants), the agent may propose a different methodology for the discussion.

More ellaborate interaction agents may understand some aspects of the messages

being exchanged and help to categorize the group in terms of its group dynamics

[2].

10.9.4 Future research on keepers

Another area in which future development would be interesting are the specifiable

keepers. Keepers embed an ontology model that is usually fixed, and defined a priori

by the groupware designer. But it would be interesting if the users themselves could

define or adapt the ontology of the keeper. In the same way that workflow systems

are specifiable coordinators, there is a need for specifiable keepers.

In fact Lotus Notes [39], is a specifiable keeper. In a simplistic view, Lotus Notes

is a free form database; users (or the system administrators) can define and provide

semantics (attach programs) for particular fields of the documents and thus adapt

Lotus Notes to particular applications. However, it is not at all easy for naive users

to define and adopt.

There is very little research on the languages and primitives appropriate to specify

or parameterize an ontology model.

10.10 Exercises



10.10 Exercises 29

1. [Level 1] Compare the aspects of groupware described in this chapter with the

services described in section 1 of chapter 14.

2. [Level 2] CSCW and Groupware typically complement and help each other.

However, sometimes CSCW studies technological mismatch in which certain

groupware is inappropriate for certain work situations. Concoct a work situa-

tion, and a groupware technology in which this mismatch might occur. Explain

why you think that the groupware technology is inappropriate for your con-

cocted work situation.

3. [Level 2] Define the terms collaboration, cooperation, and coordination in a

way which you feel is clear and useful for the CSCW community. Justify your

definitions, and compare / contrast the three terms.

4. [Level 2] This chapter also introduced a time-space taxonomy. Criticize this

taxonomy. Should there be any further cells than the four which are presented?

Are there any further dimensions which should be added to the simple 2X2

matrix?

5. [Level 2] Two family of applications were not mentioned in the aspect section.

They are multi-user action games, such as DOOM and QUAKE [26], and

shared window [53]. Discuss if these systems fall overwhelmingly into one

aspect or another, of if they are multi-aspect systems, of if they show that

the aspect classification is not complete because it does not capture what is

essential in these two softwares.

6. [Level 2] There are a fewWWW-based chat services available. In most of them,

the user fills a form with her utterance and after submitting it, she receives

back a page with all recent interactions in the chat. Thus a user cannot “lurk”

at the chat, that is, listen to the other conversations without making herself a

contribution. But some chat pages allow for real-time chat, in the sense that

the page will change to reflect the recent interactions even though the user has

not send her contribution. Which non standard WWW technology does these

pages use, and what is the network impact of using them.

7. [Level 2] Besides WWW-based chats there are many other examples of Group-

ware applications that use WWW as infrastructure. In particular INOTE [27]

is an image annotation system, and BSCS [9] is a central repository of arti-

facts. Discuss which of the problems mentioned in section 10.8.2 these systems

faced and how did they solve them.

8. [Level 2] There is a view that the collection of WWW pages available in the

Internet is a Groupware system. Discuss this view. If that is true, what are

the main aspects of this system? Describe the model underlying this of these

aspects? Is it an elaborate model or a trivial one?

9. [Level 3] In some places in this chapter we mentioned virtual reality. Inves-

tigate if there are groupware applications that use virtual reality as a way

of interfacing with the user. Doesn’t current technology VR has some of the

problems discussed in using WWW as the underlying infrastructure of group-



30 Groupware and Computer Supported Cooperative Work

ware? Is VRML, for example, an appropriate technology for non-client-server

applications?

10. [Level 3] In engineering design there is a strong movement towards “Concur-

rent Engineering” (see chapter 14), which state that many specialists in areas

such as as marketing, manufacturing, cost, materials, maintenance, and so on,

must take part in the design of engineering artifacts. Investigate what group-

ware tools are being used by concurrent engineering practitioners, specially

what multi-user support does CAD systems provide.

11. [Level 4] In the writing of this chapter, the authors did not use very elaborated

groupware. We divided the chapter into sections and for each section one of

us had the writing role, while the other had the reviewing and commenting

role. In the beginning we would take turns, once a section was written the

author would wait for the reviewers changes and comments before working

on that section again. By the end of the writing the interaction became more

intense and there times when an author would make changes in a section before

receiving the comments, and thus the comments and changes would be out-

of-date. We use e-mail to send the LATEX file from one to the other, that is

we used a communicator as the means of our collaboration. Specify a keeper

that would be appropriate for the task and for our mode of working. Take

into consideration that each of us have different preferences as to which text

editor to use, that Internet connection between us was slow and unreliable.

The keeper should be appropriate for both the turn-taking and the “closer-to-

deadline” working patterns.

12. [Level 4] Design a group spreadsheet in which the four aspects described in

this chapter are carefully taken into account and articulated. Create a design

specification that includes description of spreadsheet operations, multi-user

features, group user interface, centralized versus distributed implementation,

access control, and concurrency control. Emphasis of your design should be

on the groupware aspects and features that allow a group to all use the

spreadsheet at the same time, and also at different times. Do not spend much

effort on the single user features that are identical to those of single user

spreadsheets. State clearly any assumptions or extensions that you make; feel

free to suggest creative ideas and innovative designs.

1. P. Antunes, N. Guimaraes, J. Segovia, and J. Cardenosa. Beyond formal processes:
Augmenting workflow with group interaction techniques. In Conference on
Organizational Computing Systems, pages 1–9. ACM Press, 1995.

2. R. F. Bales and S. P. Cohen. SYMLOG: A System for Multiple Level Observation
of Groups. The Free Press, 1979.

3. S. D. Benford and L. E. Fahlen. A spatial model of interaction in virtual
environments. In Proceedings of The Third European Conference on Computer
Supported Cooperative Work (ECSCW’93), pages 109–124, 1993.



10.10 Exercises 31

4. R. Bentley, U. Busbach, D. Kerr, and K. Sikkel, editors. Computer Supported
Cooeprative Work: The Journal of Collaborative Computing, volume 6. Kluwer
Academic Press, 1997. Special issue on Groupware and the World Wide Web.

5. R. Bentley, J. A. Hughes, D. Randall, T. Rodden, P. Sawyer, D. Shapiro, and
I. Sommerville. Ethnographically-informed systems design for air traffic control. In
Proceedings of the ACM Conference on Computer Supported Cooperative Work
(CSCW’92), pages 123–129, Toronto, Ontario, 1992. ACM Press.

6. S. Bharwani. The MIT design studio of the future. Videotape presentation at the
ACM CSCW’96 Conference, 1996.

7. K. Birman. The process group approach to reliable distributed computing.
Communications of the ACM, 36(12):37–53, 1993.

8. R. Braham and R. Comerford. Sharing virtual worlds. In IEEE Spectrum,
volume 34, pages 18–20, 1997.

9. BSCS. http://bscw.gmd.de/.

10. S. Chengzheng et al. A generic operation transformation scheme for cooperative
editing systems. In Proceedings of the 1997 ACM SIGGROUP Conference on
Supporting Group Work, pages 425–434. ACM Press, 1997.

11. J. Conklin and M. Begeman. gIBIS: An hypertext tool for exploring policy
discussion. In Proceedings of the Second Conference on Computer Supported
Cooperative Work, Portland, OR, September 26–28 1998.

12. W. Croft and L. Lefkowitz. Using a planner to support office work. In Proceedings
of the ACM COIS, pages 55–62. ACM Press, 1988.

13. CTRG. http://www.cs.colorado.edu/s̃kip/ctrg.html.

14. CU-SeeMe. http://cu-seeme.cornell.edu/W̃CW/.

15. J. Dietz et al. Speech acts or communicative action? In Proceedings of The 1991
European Conference on Computer Supported Cooperative Work, pages 235–248,
1991.

16. C. Ellis, S. J. Gibbs, and G. Rein. Design and use of a group editor. In G. Cockton,
editor, Engineering for Human Computer Interaction. North Holland, 1990.

17. C. Ellis, S. J. Gibbs, and G. Rein. Groupware: Some issues and experiences.
Communications of the ACM, 34(1):38–58, 1991.

18. C. Ellis and C. Maltzahn. Chautauqua: Merging workflow and groupware. In
Proceedings of the HICSS’96 Conference (Hawaii International Conference on
Systems Science), 1996.

19. C. Fernstrom. Process Weaver: Adding process support to UNIX. In 2nd
International Conference on the Software Process, pages 12–26. IEEE Computer
Society Press, 1993.

20. G. Fischer, K. Nakakoji, J. Oswald, G. Stahl, and T. Sumner. Embedding
computer-based critics in the context of design. In Human Factors in Computing
Systems, INTERCHI’93 Conference Proceedings, pages 157–164. ACM, 1993.

21. F. Flores, M. Graves, B. Hartfield, and T. Winograd. Computer systems and the
design of organizational interaction. ACM Trans. Office Information Systems,
6(2):153–172, 1988.

22. R. Grinter. Using a configuration management tool to coordinate software
development. In Proceedings of the 1995 ACM SIGOIS Conference on
Organizational Computing Systems, pages 168–177. ACM Press, 1995.

23. J. Grudin. Groupware and social dynamics: eight challenges for developers.



32 Groupware and Computer Supported Cooperative Work

Communications of the ACM, 37(1):92–105, 1994.

24. W. F. Heitman. The Business Improvement Lab: 1997 Summary of Best Practices,
1997.

25. C. Hwang and M. Lin. Group Descision Making under Multiple Criteria: Methods
and Applications. Srpinger Verlag, 1987.

26. id Software. http://ww.idsoftware.com/.

27. INOTE. http://jefferson.village.virginia.edu/m̃ar4g/index.html.

28. H. Ishii et al. Clearface: Translucent multi-user interface for teamworkstation. In
Proceedings of The 1991 European Conference on Computer Supported Cooperative
Work, pages 163–174, 1991.

29. IVS. http://www.inria.fr/rodeo/personnel/Thierry.Turletti/ivs.html.

30. S. Jablonski and C. Bussler. Workflow Management Systems: Modeling,
Architecture, and Implementation. International Thomson Computer Press, 1996.

31. R. Johansen. Groupware: Computer Support for Business Teams. The Free Press,
New York, 1988.

32. R. Johansen. Leading Buisness Teams. Addison-Wesley, Reading, Mass., 1991.

33. D. Karagianis. The adonis workflow system. In Proceedings of the 1996 Linz
Workshop on Workflow Systems,, Linz, Austria, 1996.

34. V. Kumar. MBone: Interactive Multimedia On The Internet. Macmillan
Publishing, 1995.

35. W. Kunz and H. Rittel. Issues as elements of information systems. Technical
report, Working paper No. 131, Institute of Urban and Regional Development,
Univ. of California, Berkeley, 1970.

36. W. Lehnet. Internte 101. Addison-Wesley, 1998.

37. H. Linstone and M. Turoff. The Delphi Method: Techniques and Applications.
Addison-Wsley Publishing Co., 1975.

38. M. Losada and S. Markovitch. Groupanalyzer: A system for dynamic analysis of
group interaction. In Proceedings of the 23rd Hawaii International Conference on
Systems Science, 1990.

39. Lotus. Lotus notes. http://www.lotus.com.

40. Mbone. http://www.mbone.com/.

41. J. H. Morris. Issues in the design of computer support for co-authoring and
commenting. In Proceedings of ACM CSCW’90, pages 183–195, 1990.

42. C. M. Neuwirt, D. S. Kaufer, R. Chandhok, and J. H. Morris. Issues in the design
of computer support for co-authoring and commenting. In Proceedings of the Third
Conference on Computer Supported Cooperative Work, pages 183–195. ACM, Los
Angeles, CA October 7–10 1990.

43. J. Nunamaker, A. Dennis, J. Valacich, D. Vogel, and J. George. Electonic meeting
systems to support group work. Communications of the ACM, 34(7), 1991.

44. QuestMap. http://www.cmsi.com/business/info/.

45. RFC2109. HTTP state management mechanism.
http://www.cis.ohio-state.edu/htbin/rfc/rfc2109.html.

46. M. Roseman and S. Greenberg. Teamrooms: Network places for collaboration. In
Proceedings of the 1996 ACM CSCW Conference, pages 325–333. ACM Press, 1996.

47. P. Sachs. Transforming work: Collaboration, learning and design. Communications



10.10 Exercises 33

of the ACM, 38(9):36–44, 1995.

48. J. R. Searle. Speech Acts. Cambridge University Press, 1969.

49. L. Suchman. Do categories have politics? the language/action perspective
reconsidered. In Proceedings of the Third European Conference on
Computer-Supported Cooperative Work, pages 1–14, 1993.

50. ON Technologies. Meetingmaker. http://www.on.com/mmxp/.

51. M. Turoff. Computer-mediated communication requirements for group support.
Journal of Organizational Computing, 1(1):85–113, 1991.

52. T. Winograd and F. Flores. Understanding Computers and Cognition. Addison
Wesley, 1987.

53. XTV. http://www.visc.vt.edu/succeed/xtv.html.


