WorkFlow Systems: a few definitions and a few suggestions

Paulo Barthelmess and Jacques Wainer
Department of Computer Science
State University of Campinas
Campinas, SP 13081-970, Brazil
E-mail: wainer@dcc.unicamp.br

Phone: +55-192-39-3115

ABSTRACT

This paper hopes to make a contribution on three as-
pects of workflow systems: we stress the fact that there
is a broken symetry between the level of the specification
of the procedures and the level of their enactment; we
propose some ways of classifying activities and excep-
tions; and we propose some run-time functionalities to
help users deal with exceptions.

INTRODUCTION

Much work has been devoted to the study of docu-
ment flow in organizations, yet much remains to be
understood about the nature of activities. The focus on
the flow (expressed even in the term Workflow) stems
from the origins of present systems, derived from the
early Office Automation Systems of the 80’s. Questions
related to the nature of activities, locus of the effective
work in the system, as well as those about the flow
of responsibilities, temporal concerns and other such
important issues are rarely dealt with. The same can be
said about exception handling. Some papers discuss the
theme, but hardly any implementation actually support-
ing exception handling exists [Saa94]. Yet, an important
share of office work can be charged to exception handling

chores [SM89, EN93].

On the other hand, efficiency and rapid response are
becoming an imperative. In order to survive organi-
zations should more than ever be prepared to provide
rapid responses to an ever increasing rate of changes, in
the most efficient way. Reengineering introduces drastic
changes that alter not only the flow but also the essence
of organizational work itself. If new levels of efficiency
are to be reached, it is mandatory that more be known
about each of the steps involved in the workflow. This

article aims at presenting some contributions on the less
studied but nonetheless important issues related to the
flow of work in organizations.

This work will first propose a few definitions, based
on the distinction of description and execution level of
workflow management systems (WFMS), and then we
will center our analysis on two components of these
two levels: the process modeling and the enactment
level, and discuss their relationship specially under ex-
ceptional conditions. An important component of the
process modeling is the activities that must be carried
out during the execution of the process. We will classify
activities activities according to a few criteria. The next
section will propose some concepts related to exceptions
in office procedures. Like activities, we believe that
exceptions are a central aspect of office work and they
need further study. Finally we discuss how a workflow
system can be of help in dealing with exceptions.

DESCRIPTION LEVEL and EXECUTION LEVEL

The first important concept on workflow management
systems (WFMS) is the distinction between two distinct
levels: description and execution.

The description level deal with describing (or modeling)
the important aspects of a workflow system, that is, it
describes things that determine what the WFMS will do:
which procedures will it implement/monitor, what data
will it store, which organization is the WFMS a part of,
what user-interface will it present to its enactment-level
users, and so on. The description level is made up
of some components: the PROCESS DESCRIPTION
which describes the procedures that the system will im-
plement/monitor; the DATA DESCRIPTION which de-
scribes the data that will be stored/used/checked by
the system; the ORGANIZATIONAL DESCRIPTION
which describes the people and roles and their relation-
ship in the organization; and the USER-INTERFACE
DESCRIPTION which describes the user interface for
users performing the activities and possibly the interface
with other computational tools.

Within the description level, one can distinguish be-
tween the procedure and the organizational aspects of
the description, which has a more model-oriented ap-
proach, and the data and user-interface aspects of the
description, which has a more implementation-oriented
approach. A description level user of a WFMS that
is interested in designing or re-designing the business
procedures of the organization would deal mainly with
the organizational and procedure aspects of the descrip-
tion level, whereas users in the process of installing a
WFMS would be dealing mainly with the data and user
interface aspects of the description level. In this paper
we will concentrate on these modeling aspects of the
description level, and we will refer to them as the model
level.

The runtime level deals with the execution of the WFMS.

It is further decomposed into two aspects: ENACT-
MENT and MANAGEMENT. The enactment aspect
deals with the effective execution of the activities speci-
fied at process description. That involves keeping track
of what activities (or instance of activities, as we will
call them later) are being performed which documents,
and who is performing that activity, providing support
for the execution of those activities, and so on. The
enactment-level user of a workflow system is a office
worker that fill the forms, approve documents, make
decisions and so on. The management aspect of the
execution level involves privileged access to audit in-
formation about current and past workcases, statistical
information about users, processes, activities and so on

User-interface
oo Data Model
Model
Organizational
Model
Description Level
Execution Level
Enactment Management
Level Level
Figure 1: The Description and Execution levels of

Workflow Systems

In this paper we will concentrate on elaborating the pro-
cess description level and the enactment level, and their
relations. The workflow literature has been mainly on
process description, proposing languages or methodolo-
gies to describe the processes [MWFF92, EN93, SR92,

ZisT7, Joo94]. We will extend a bit that focus by in-
cluding the enactment component and its relation to
the process description.

Process Description

At the process description level (or process modeling as
we will call it) we define a PROCEDURE as a spec-
ification on how a particular business process should
be performed: which activities should be performed,
by whom, and in what order. Thus an organization
may have the customer order procedure, which specifies
what is supposed to be done to each customer order; or
a purchase procedure, which specifies what steps have
to be taken if a member of the organization wants some
product to be bought from outside sources, and so on.

An ACTIVITY is one of the steps in a procedure. It is
a set of operations to be performed by a person filling
a particular ROLE onto some objects (or documents),
in order to achieve a particular goal. Thus, in the cus-
tomer order procedure, one can talk about the checking
the customer’s credit activity, whose goal is to check
whether the customer has credit to pay for the purchase
ordered. This activity is performed by a person in the
role of a credit specialist. The carrying out of the activity
is do checking organizational data-bases for past infor-
mation on this customer, verifying outside sources, like
credit services, for the credit history of the customer,
and so on. All this information may be placed in the
customer’s order documents, or it may be placed in
temporary documents, and only the final decision on
whether to approve the credit or not is placed in the
order documents.

A procedure has two aspects: its activities and the or-
dering among them. We will call this ordering the FLOW.
The flow is interested in specifying what activity will
follow another, what can be done in parallel, and what
must be sequentialized, and so on.

The focus of the process description literature has been
centered mainly in describing the flow of a process: there
are many languages to describe the flow, for example
Information Control Languages [El79], Role Interaction
Networks [SR92], Action Technologies flow language
[MWFF92, MM92], and many forms of Petri Net based

languages.

Another component of the process model is the ACTOR
ASSIGNMENT, that is, the specification on how to as-
sign actors to activities. The specification of an activity
includes the definition of the role that can carry out
that activity. But the real executing of the activity (at
the enactment level), has to be carried out by people

(or actors) filling that particular role. Thus there must
be a specification on how to choose (at the enactment
level) an actor to perform that activity. Standard spec-
ifications include: select one of the actors that can fill
that role at random; distribute the activities to a pool of
workers in a round-robin fashion; assigning the activity
to the least loaded worker in the pool of workers capable
of filling that role, and so on.

The user of the model level of a workflow system is
interested in designing office procedures for an organiza-
tion, and verifying whether the implemented procedures
are efficient. Thus, a model-level user is typically a
manager, and he is interested in tools that makes the
task of designing and redesigning [Ham90] procedures
more efficient. For example: graphic language to spec-
ify procedures, simulation and animation of procedures
[EN93], methodologies that guide the design of proce-
dures [MWFF92], statistical data about existing proce-
dures and activities within those procedures, the ability
to dynamically change a procedure even when there are
instances of that procedure still being processed [EK93],
and so on.

Enactment level

The model level of a workflow deals with modeling the
application, the enactment level deals with “running”
it. At the model level one defines a purchase order
procedure, and instances of it are carried out at the
enactment level. We will call an instance of a procedure
as a WORKCASE. Workcases can be active, if they are
still being carried out, or may be inactive, if they have
been all carried out. Thus the system may have many
active and inactive workcases that are instance of the
same procedure.

The corresponding concept to activities at the enact-
ment level are INSTANCES OF ACTIVITIES. Unless
there is the danger of ambiguity, in this paper we will
call instances of activities just as activities. The in-
stance(s) of activity that is(are) being carried out in
a workcase at the moment are called the active activ-

ity(ies).

There is no simple correspondent to the flow at the
enactment level. The flow is the specification of the se-
quence of activities a workcase must or should go through
as a whole. But on the enactment level, this temporal
dimension is not represented but lived through. Thus
the whole of the flow of a procedure should be divided
for each workcase, at the enactment level, into three
components: the current instances of activities that are
active; the activities instances that have already termi-
nated; and the activities that will or should still be done.

The first component is the STAGE of the workcase:
what activities instances are being performed on the
workcase, and by who. The second component will
be called HISTORY of a workcase: which instances
of activities it has been through, when those activities
started and ended, and who performed them. And the
third component, the PRESCRIBED FUTURE STEPS

of the workcase.

For a workcase, a deviation from the prescribed flow
will be called a REDIRECTION. For example, the flow
may specify that after receiving a purchase order, the
purchase department will invite bids from suppliers to
fill that order, choose the best bid, place the order, and
But it could happen that in a workcase the
suppliers returns the order because some specification
is incorrect. Thus this workcase will return to whoever
initiated the purchase order to correct the specifications.
There was a redirection of this workcase, which deviated
from its normal sequence of activities.

SO on.

Another example of redirection may not involve repeat-
ing some activity but changing the actor assignment of
a workcase: a worker calls in sick or leave for vaca-
tions and the system reassigns the activities that had
been attributed to that worker to other people in the
organization. Redirection may also involve delegation of
work: a worker asks a colleague to deal with an activity
because he must leave earlier today, or he believes that
the colleague is more capable of dealing with that case,
or for other reasons.

At the enactment level, the system should provide its
users (usually an office worker) tools and functionalities
that will help that user to carry out the activities. Thus,
at the enactment level, one would like the workflow
system to have access the organization’s data and knowl-
edge bases; to easily integrate other computational tools
normally used by the enactment level user in his daily
work; to provide help in case something exceptional or
out of the ordinary happens; to help a office worker
manage his time and tasks; to help a new worker learn
his new duties and how to carry them out, and so on.

Comparison with other works

The separation between a description level and a ex-
ecution level for workflow systems is present in many
works [AK94, EK93, Wor]. But these works take as
basic the distinction of modeling and enactment, which
we believe i1s only a component of the basic distinction
between description and execution levels.

The idea of other components in the description level,
besides the process description is present in the descrip-

tion of two implemented workflow management systems
[IBM95, At94], although their definitions for these other
components do not agree totally with ours. Those two
documents made it clear to us that the modeling aspects
of the description level (that is, process description and
organization description) does not contain information
enough to describe a working system (but [Wor] seems
to take a different view in the sense that data and user-
interface descriptions can be seen as concerning only
applications that are triggered by a workflow enactment
engine). The need for a static (data) description, a
dynamic (process) description and a user interface de-
scription in order to fully specify a workflow system
agrees with the ideas described in [EW94].

The definitions in this paper in general agree with the
ones proposed by the Workflow Coalition [Wor]. The
most relevant difference is the fact that the Workflow
Coalition does not define concepts that would corre-
spond to our definition of flow and its correspondent
definitions at the enactment level. The table below lists
the correspondences.

Our Definition Workflow Coalition
Term

Procedure Process

Activity Process Activity

Role Organizational Role

Enactement-level User | Workflow Participant

Flow -

Workcase Process Instance

Instance of Activity Process Activity Instance

History Audit Trail

Stage -

Prescribed Future -

Next section will analyze the concept of activities which
we believe is a somewhat forgotten aspect of the process
modeling.

ACTIVITIES

Activities are the locus of processing work, defined at
process modeling level and effectively performed at en-
actment level. We believe that a more specific classifica-
tion of the types of activities is necessary for many rea-
sons. From a description point of view, a specification of
the activity (as oppose for example to treating activities
as “generic” black boxes as they are treated in some of
the process description languages) may help users to
better understand the procedure being described. More
importantly, from the WFMS point of view, knowing
the type of activity may allow it to provide the actors of
that activity with better tools do perform that activity.
Finally, we will see that a better understanding of ac-

tivities themselves will point us to some short comings
of current process description languages.

There are many dimensions by which one can classify
activities. We will discuss some of these dimensions but
we make no claim that the list is exhaustive.

Batch x Workcase-Based Activities

WORKCASE-BASED activities are activities that deal
exclusively with one workcase. The information needed
to perform the instance of activity is available in that
particular workcase (and possible data-bases and knowl-
edge bases of the organization), and the product of the
activity instance is added to that workcase. Thus filling
a purchase order is typical workcase-based activity: one
need to fill the appropriate fields for that workcase,
and maybe consult organizational data-bases to retrieve
information about cost and code of items. No access
to other workcases was necessary, and the result of the
activity is added to just that workcase.

A BATCH activity is an activity that can only be com-
pleted if a set of workcases are brought together, and
the product of the activity is added to a subset of those
workcases. A typical batch activity is ranking, for exam-
ple ranking candidates for a position. One can only rank
the candidates if all the workcases for each applicant are
brought together, and are compared to each other. A
product of such activity could be to fill a field in each
workcase with the rank the candidate received (1st, 2nd
and so on).

Another examples of batch activity are some forms of
actor scheduling and time scheduling (see below). For
example, a phone company may have a scheduling ac-
tivity (both actor and time) that determines what re-
pair activities will be performed by what repairperson
and when will those repairs be made. This assignment
must take into consideration that the company wants
to optimize the traveling of the repairpersons, that one
repairperson may be more knowledgeable than others on
different kinds of problems, that a repair order should
be fulfilled as soon as possible, and so on. Again in this
case, all repair orders (or at least a lot of them) must
be brought together in order to perform this activity.

In general batch activities are either ranking activities
(in which the workcases in set are ranked according to
some preference criteria) or optimization activities (in
which some decision about a subset of the workcases
is made, and this decision in some way optimizes some
cost function).

Batch activities cannot be fully described in flow lan-

guages such as ActionFlow [MWFF92, MM92] or ICN
[ENI79]. These flow languages are inherently based on
workcases, that is, they describe the activities and the
ordering of these activities that a workcase must go
through. Thus a batch activity, that deals with more
than one workcase at the same time, cannot be fully
represented: only the “workcase projection” of a batch
activity, that is its results in a workcase, can be repre-
sented. In the first example above, the ranking activity
would be represented in a ICN as a classify or atiribute
classification activity, which describes the effect of the
ranking in that workcase, but not its details.

Structured x Non-Structured Activities

Some activities can not be put under direct supervision
of the system. That is the case of activities that involve
very elaborate creative work. For example, a service or-
der for a construction company may involve a “project”
activity which is performed by a group of engineers and
architects. This project activity, most likely, will not
be under supervision of the workflow system mainly
because it is probably unreasonable to decompose it as
a subprocedure (with its temporal scheduling of well
defined subactivities).

Non-structured activities cannot be decomposed into
subactivities, because they usually demand very cre-
ative forms of interactions, and one would not like to
constrain the activities by prescribing how they should
be carried out. But the products of these non-structured
activities must be incorporated back into the system, so
that the activities that follow the non-structured one
can be carried out. In the example above, following
activities may include: sending out a bidding proposal,
getting the client to approve the project’s specifications,
and so on. Non-structured activities are usually per-
formed by a group of people, working with tools outside
the workflow system.

Structured activities, on the other hand, are better un-
derstood by the system and by the people that design
the procedure itself. They can be achieved by a single
person working “within the workflow system”. In fact
the standard way of partitioning a procedure into activ-
ities is by separating the operations that can be done by
a single person alone.

Internal x External activities

Some activities are carried out “outside” the workflow
system. That means that during the execution of these
external activities the workflow system neither provides
the tools to carry them out, nor is able to monitor the

progress being made. The system has to be informed
when these activities are done since it has no knowledge
about them. Furthermore, the documents that are the
result of the activity may have to be entered (maybe
manually) back into the system so that they can be
incorporated into the workcase.

Example of external activities include, usually, the non-
structured activities. But other structured activities
may also be external. For example it is possible that
the workflow system is used only within subsets of the
whole organization (for example, in a few departments)
and the activities in a procedure that are performed by
the other departments are external to the system. The
relevant documents of the workcase must be printed,
handled over to the other departments, and the results
of those activities may have to be entered back into the
system.

Prototypical activities

One can also classify an activity as how close it matches
some prototypical activities. The list of prototypical ac-
tivities below is not complete, but we believe it represent
some major classes

External data gathering Data from external sources
is obtained and recorded. The interface for such
activities are usually implemented as a form whose
fields must be filled either by the client (the outside
source) or by a office worker that is in contact with
the client.

Data Processing New information is derived from the
external data, classifying it according to organiza-
tion’s internal criteria. It may involve batch activ-
ities like ranking, or workcase-based activities like
determining whether the data provided is appropri-
ate.

Decision A choice between alternatives that involves
subjective judgment. The decision would determine
which specific path of the flow will be taken. The
interface for a decision activity is usually presented
as a set of boxes and the decision maker must check
the box that correspond to the outcome of the de-
cision.

Authorization Authorization is a weaker form of de-
cision where a person within the organization as-
sumes responsibility for the state of a workcase.
In paper-based workflows this is usually done by
signing. On an computer based workflow, the in-
terface for a authorizing activity is presented as a
two choice boxes: authorize or don’t authorize.

Waiting Waiting is a degenerated form of activity in
which the workcase is waiting for some trigger to
proceed for the next activity. In some cases, the
waiting precedes a batch activity: the workcase is
waiting for a batch activity to be activated. Wait
activity also may occur before the synchronization
of parallel branches in the flow: the workcase is
waiting for the activity on the other branch to finish
before it can proceed to the next step.

Proxy Activities Proxy activities are a kind of wait
activity that represents the workflow counterpart
of an external activity. The workflow system rep-
resents the fact that some external activity over
which it has no control or monitoring capabilities
by placing the workcase in a proxy activity.

Temporal Scheduling Determines the point in time
or at least the ordering in which a set of activities
will be performed. For example, a procedure may
determine that three activities can be performed
in parallel, but at the enactment level, one may
have to sequentialize them due to the lack or re-
sources. The temporal scheduling would determine
which sequencialization will be followed. Temporal
scheduling may also be enacted as a batch activity
in which many workcases are scheduled in such a
way as to optimize resource utilization, for example.

Actor Assignment Actor assignment is the activity
of determining who will perform a particular activ-
ity instance. It can be performed by the system
using some scheduling algorithm, or it may involve
optimization (as a batch activity), or it may involve
subjective judgment and complex knowledge. As
an example of the later, a consulting company may
need a non-structured actor assignment activity to
decide who will take care of a case. That deci-
sion may involve workload, who has experience with
that kind of problem, who has experience with that
client, who needs to be exposed to new challenges
and so on.

Knowing what type of activity should be performed
will allow a workflow system to provide better tools
for the actors performing those activities, and specially
tolls for the actors to deal with exceptions that may
happen during the execution of the activity. For ex-
ample a common exception for data gathering activities
happens when the external source does not have all the
information requested. A well designed workflow system
should allow for incomplete information to be entered,
and allow for the missing information to be entered at
a later time.

EXCEPTIONS

As a working definition in this paper we will call EX-
CEPTIONS the departures of the history of a workcase
from its prescribed (or normal) flow. The first con-
sequence of this working definition is that exceptions
are things that appear at the enactment level, when
activity instances are being executed. That does not
mean that exceptions cannot be thought about at the
model level, and in fact we will propose such approach
further on, but one must realize that exceptions are
mainly enactment-level phenomena.

We believe that exceptions are important and costly
phenomena in an organization. Important because they
are common [Ham90, SM89], and costly because they
demand a lot of effort to be dealt with.

There are very few works that discuss and classify ex-
ceptions [Saa94, SM89, SMS94] and even those describe
exceptions from an organizational point of view, whereas
we are interested in exceptions from a workflow system
point of view: how can a workflow system be impaired
by exceptions, or help in dealing with the many kinds
of exceptions that will happen? Below, we discuss some
dimensions in which to classify exceptions from a work-
flow point of view.

Information x Infrastructure Exceptions

The first important distinction on exceptions is whether
the source of the exception is the workflow system itself,
or the outside reality. There are exceptions that derive
from the fact that the WFMS is in some way faulty: a
software bug in the system, a problem in the computer
network underlying the system, workstations off line,
database servers off line, printer off line, and so on.
All these forms of exceptions would not appear if the
organization were not using a WFMS in the first place.

We call them INFRASTRUCTURE exceptions.

The other class of exceptions, that we will call INFOR-
MATION exceptions, has no relation with the workflow
system itself. They refer to the reality, that is, there
is something different in this workcase that makes it
deviate from its prescribed flow.

The designer of a WFMS must prepare the system to
deal with infrastructure exceptions, since they will affect
the system itself. For example, since portions of the net-
work can be unreachable, a well designed WFMS must
allow for operations like: storing filled forms locally until
connection to a central database are restored, printing
the electronic forms into paper and accepting the data
entered into these paper forms at a later stage, and so
on.

Data exceptions x signal exceptions

Data exceptions appear when some of the data present
in a workcase is incorrect or missing. For example, the
budget classification of a purchase order was wrongly
filled, or the shipping address of a customer is missing,
and so on. Data exceptions are usually detected in the
activity where that data is needed and are usually han-
dled by redoing the activity that generated the incorrect
data, or the activity that failed to collect the missing
data.

Signal exceptions are exceptions that are bought up by
external, asynchronous information that in some way
changes the set of conditions about a workcase. For
example a customer may cancel an order that is al-
ready being processed. This involves canceling all the
prescribed following activities, undoing some activities
that can be undone, starting activities that are not part
of any procedure, like suing the customer for the costs,
changing activities and attributions in workcases totally
unrelated to this case (for example because of the can-
cellation, resources that where tied up with this case can
be released to other workcases), and so on.

Signal exceptions may cause a lot of changes on the
workcases, or they may be easily dealt with, depending
on what kind of signal exception is received, and in
what stage the workcase is in when the exception was
received. For example, a customer realized he needs
more goods than the number he actually ordered, and
thus he changes his previous order. If production of
this order has not been scheduled yet, then accepting
the change may only involve redoing the credit checking
on the customer to be sure that he can pay for the
extra goods. On the other hand, if the production has
already started then dealing with the change in the order
may involve rescheduling other orders, or postponing
the production of the extra goods for a later time, and
SO on.

EHAs — Exception handling actions

Exceptions are dealt with with possibly very complex
sequence of operations, and ad hoc activities. But in
some more standard exceptions (for example the not
so crippling infrastructure exceptions, and data excep-
tions) the exception handling process starts with what
we will call as EXCEPTION HANDLING ACTION,
abbreviated as EHAs. EHAs are not the whole of the
exception handling process, but are simple operations
that are provided by the workflow system and that ini-
tiates the redirection process that would eventually lead
to the resolution of the exception.

An example of EHA is sending a workcase back to who-
ever was responsible for filling a particular piece of in-
correct information. The tt send to responsible EHA
redirects the workcase so that a previously done activity
must be redone in order to correct a wrong information
in the workcase. We see EHAs as run-time functionali-
ties that are provided by the workflow system indepen-
dent of the procedures that are currently implemented.
The EHAs are activated by enactment-level users when
they realize that a workcase must deviate from its pre-
scribed flow.

Since EHA are the primary way in which a enactment
level user will start a exception handling situation, they
should be part of the tools available to enactment-level
user. We believe that WFMS that do not implement
any EHA are incapable of dealing with exceptions at

all.

There are a multitude of EHAs that should be made
available in a workflow system. We can list some of the
most common EHA.

e Redo instances of activities that have already been
executed. This may happen when incomplete or
incorrect data is detected at a later activity and
must therefore be altered. This include return to
sender, return to responsible for data and return to
customer EHAs.

e Attach an explanation to a document or compo-
nents of the document. Sometimes enatment-level
users must explain the context in which one form
or a field of form was filled to other users down the
flow. That transfer of context could explain, for
example, the meaning the first users attribute to
some of fields in the form, or explain why there is
some data exception in this workcase.

e Add or change information in the workcase. This
may happen when a enactment-level user detects
missing or incorrect data (data exceptions) and cor-
rect them himself, without looping back to previous
activities in the workcase. This may happen if the
office worker realizes the correction of the data can
be easily done (a missing shipping address can be
discovered by phoning the customer) even though
the activity being performed by that office worker
may not have the right to change or add that infor-
mation.

e Skipping over some activities of the flow, as may
happen when an special urgent case has to be put
through in haste, or when some parts of the orga-
nization are unreachable due to an infrastructure
exception.

e Reassigning an activity to some other actor. This
EHA can be used to reassign the workload of a
worker that called in sick, whose workstation is
down, or it can be used by a worker that realizes
that someone else is more capable to deal with this
case and thus asks for help from that person.

e Infrastructure specific EHAs that have been imple-
mented by the designer of the WFMS (if they are
not automatic), like store locally until network is
ok, or merge local and global databases and so on.

e Forwarding the workcase to people that have the
rights to make broad decisions about them.

e Temporarily or permanently dumping the workcase
out of the system. This involve printing all docu-
ments in the workcase, and for the system’s record,
start considering the case as temporarily inactive,
permanently inactive or even remove all records
about the workcase from the system. This EHA
can be used to deal with some more severe infras-
tructure and signal exceptions.

WORKFLOWS AS EXCEPTION HANDLING TOOLS

We believe that it is very interesting to view workflow
systems as tools that allow people in the organization to
deal with exceptions. Exceptions are not only the rule
(in the sense that although a particular exception is very
unlikely, the probability of having an exception of any
kind may be really high [Ham90, SM89]), but dealing
with them is a task for what people in the organization
could use some help.

To be able to help the actors dealing with exceptions,
a WFMS should be conceived with that in mind, by
providing tools, ideas, concepts, methodologies and so
on, both at the enactment level and at the model level.
We will discuss how to deal with data exceptions at the
enactment-level and with signal exceptions at the model
level.

Exception handling support at the enactment level

Exception handling at the enactment level involves two
steps: detection of the exception, and handling of the ex-
ception [SM89]. For data exceptions, detections means
the realization that some piece of data in the workcase is
incorrect or missing, usually during the execution of an
activity that need the data. A WFMS can help the user
to detect data exceptions by, for example, bringing the
user’s attention to data that significantly deviate from
stored examples, historical means, and so on.

Once the exception has been detected, it has to be dealt
with. As we mentioned above, dealing with an exception
begins with a the user performing an EHAs: obtaining
and entering the missing data, or sending the workcase
back to whoever was responsible for the wrong data,
forwarding the workcase to whoever has the right to
authorize the further processing of the workcase in the
absence of the missing data, or any other of the many
EHA discussed above. Thus providing the enactment-
level user with as many EHAs as possible seems to be a
good way of empowering them to deal with exceptions.

Another way a WFMS can help the handling of excep-
tions, is through its knowledge of the activities being
performed. Certain types of exceptions are more com-
mon to certain types of activities. By knowing this, a
WFMS can provide its enactment-level users with fine
tuned EHA for particular classes of activities. For ex-
ample, a common exception in external data gathering
activities is incomplete information. A system should al-
low for incomplete information to be entered, and should
also forecast that either a corresponding signal excep-
tion will occur (the customer will call to provide the
missing information) or a data exception will happen
(when the missing information becomes needed).

Data processing activities are a potential source of data
exceptions: the workers may not know all the rules
for generating new data, the meaning of the rules may
change across different departments in the organization
[Gal77], and so on. So it is important that a WEFMS
remembers who produced which information within a
data processing activity, since some of the information
may be incorrect and a further contact with whoever
generated them will probably be necessary to correct
them. By keeping track of who did what, the system
would allow a worker further down the line to perform
a return to responsible EHA.

External activities, since they are outside the control of
the system, are a source of exceptions both data and sig-
nal: the system has no way of checking the consistency
of the data generated within the external activity; nor it
can forecast problems that will appear. Thus, internal
activities that represent these external activities (proxy
activities) and internal activities that follow external
activities must be carefully conceived to deal with both
data exceptions and signal exceptions generated during
the execution of the external activity.

Exception handling at the model level
Exception handling at the model level amounts to plan-

ning on how to deal with expected signal exceptions. We
believe that there are exceptions that can be expected

to happen, and at the model level one can specify how to
deal with those expected exceptions. There are signal
exceptions that are very common, and as a matter of
methodology, the designer of the organization’s proce-
dures should include dealing with them when designing
the procedures.

Common signal exceptions are: inquire (what is the
stage of a workcase); change data (some of the data
provided by the initiator of the workcase has changed);
urgency (the initiator wants the workcase to be pro-
cessed with urgency); and cancellation (the initiator
wants to cancel the request underlying the workcase).

In order to plan for signal exceptions at the model lan-
guage, the procedure description language must be ex-
pressive enough for the model-level user to specify the
effects of the exception at each stage of the process.
We believe this is a major deficiency in most current
procedure description languages. These languages are
only expressive enough to describe the “normal” flow
of a procedure, and provides no support to represent
external events.

Dealing with signal exceptions at the model level is both
a question of providing the necessary language tools so
the model-users can express how those exceptions should
be handled, and a question of providing the model-
level users with a methodology that guides them into
thinking about these kinds of exceptions. For example,
the Action Technology workflow language [MWFF92,
MMO92] forces model-level users to think about what has
to be done when a task is not accepted as completed by
whoever asked for it, since satisfaction is one of the steps
the language requires to be specified in describing a pro-
cedure or subprocedure. This kind of forcing the model
user to think about exceptions should be extended to
other kinds of predictable signal exceptions like the ones
described above.

Exception handling when designing a workflow system

Finally there are exceptions should be dealt with by
the designer of the WFMS itself: the infrastructure
exceptions. The designer of a WFMS must prepare the
system to deal with infrastructure exceptions since they
are potentially very common ([SMS94] lists technical
malfunction, which includes infrastructure, as the most
common exception in that survey).

CONCLUSIONS and FUTURE DIRECTIONS

This paper tried to proposes some distinctions and def-
inition about concepts related to workflow management

systems. It expanded the model/enactment distinction
into a description/execution distinction. The descrip-
tion level includes the following components: process,
data, organization and user-interface description; and
the execution level includes an enactment and a man-
agement component. The relation between the process
modeling level and the enactment level was described:
the two levels are somewhat symmetric but the presence
of exceptions may force a workcase to deviate from the
flow prescribed in the process description level. Further-
more, exactly because the enactment level user will have
to deal with the exceptions, the system must provide
her with extra functionalities that was called Exception
Handling Activities (EHAs). These EHAs in some way
transfer some amount of control of the workcase from
the system to the user, and thus a WFMS should provide
its enactment level users with a variety of EHAs, in
the hope that one particular EHA would be exactly
appropriate to deal with an exception.

One of the important components of the process de-
scription level is the activities. Process description lan-
guages have concentrated in describing mainly the flow
of a procedure, and the description of the activities
themselves has been less emphasized. This work at-
tempted to describe activities according to many di-
mensions. A particularly important one are the batch
versus workcase-based activities; we are not aware of
any procedure description language that fully addresses
the problems of having a batch activity in the flow.

Finally this paper also attempted to classify exceptions
according to many dimensions. We hope that a better
understanding of the nature of the exception and the
nature of the activity in which it occurs would allow
a designer of a WFMS to provide an EHA that would
more appropriately deal with that situation.

There are many aspects in which this work is being
extended. On of them is the development of a aug-
mented procedure description language. Some of the
flow languages available nowadays are inadequate to
define the complexities of office procedures. These lan-
guages present three problems: they are unable to rep-
resent asynchronous events, they cannot fully represent
batch activities, and they do not specify the types of
activities present in the flow. The inability to represent
asynchronous events (or signals) limits how much ex-
ception planning can be done at the description level:
if one cannot represent a cancellation signal from the
customer, how can one represent what should be done
when that signal arrives in different stages of the proce-
dure. We are currently developing a procedure descrip-
tion language combining the concept of triggers [Joo94]
and state charts [Har88] that would allow representing
the prescribed treatment of some signal exceptions.

Another direction of future research is the elaboration
of the relationship of the other components of the de-
scription level and the enactment level. Intuition would
suggest that data exceptions (in particular missing data)
are the manifestation of a broken symmetry between the
data model and the enactment level: the data model
describes what the data should be, but at the enact-
ment level it may not be possible to satisfy those re-
quirements. Furthermore, that seems to be possible to
classify some EHAs as procedure-centered, those that
cause a redirection of a workcase like redo an activity,
or send workcase to other user; and data-centered, those
EHA that changes data but do not cause redirection like
add data to the workcase or attach comment to workcase.

Finally there is the need to further elaborate the two
other components of the description model: the organi-
zation model and the interface model.

Acknowledgments

The second author would like to thank Clarence Ellis
and the Coordination Technology Research Group at
the University of Colorado at Boulder for discussions
on many topics developed in this paper. All errors and
omissions are sole responsibility of the authors.

REFERENCES

[AT94] M. Ader et al. WooRKS, an object oriented
workflowsystem for offices. Ithaca technical
report, Bull S.A., T.A.O. S.A., Universitd di
Milano, and Communication and Management
Systems Unit, 1994. ftp://cui.unige.ch/OO-
articles/ITHACA/WooRKS.

[AK94] K. R. Abbot and S. K. Karin. Experiences
with workflow management: Issues for the next
generation. In Proceedings of the 1994 ACM
Conference on Computer Supported Cooperative
Work (CSCW’94). ACM, 1994.

[EK93] C. Ellis and K. Kedara. Dynamic change
within workflow systems. Technical report,
University of Colorado, Computer Science Dept.,
1993.

[ELlI79] C. Ellis.
mathematical model of office information flow. In
Proceedings of the 1979 ACM Conference on Sim-
ulation Measurement and Modelling of Computer
Systems, pages 225-239, 1979.

[EN93] C. Ellis and G. Nutt. Modelling and analysis of
coordination systems. Technical report, CU-CS-639-
93, Department of Computer Science, University of
Colorado at Boulder, 1993.

[EW94] C. Ellis and J. Wainer. A conceptual model
of groupware. In Proceedings of the 1994, ACM
Conference on Computer Supported Cooperative

Work (CSCW’94), pages 79-88, 1994.

Information control nets: A

[Gal77] J. R. Galbraith.
Addison-Wesley, 1977.

[Ham90] M. Hammer. Reengineering at work: Don’t
automate, obliterate. Harvard Business Review,
July, August 1990.

[Har88] D. Harel. On visual formalisms. Communica-
tions of the ACM, 31:514-530, 1988.

(IBM95] IBM. IBM FlowMark for OS/2 Version
2, 1995. http://www.torolab.ibm.com/workgroup/
flowm018.html.

[Joo94] S. Joosten. Trigger modelling for workflow
analysis. In G. Chroust and A. Benczur, editors,
Proceedings CON ’94: Workflow Management,
Challenges, Paradigms and Products, pages 236—
247, Oldenbourg, Vienna, 1994.

[MM92] R. Medina-Mora. Action workflow technology
and applications for groupware. In D. Coleman,
editor, Group Ware’92, 1992.

[MWFF92] Medina-Mora, R., Winograd, T., Flores,
R., and Flores, F. The action workflow approach to
workflow management technology. In Proceedings of
the ACM CSCW’92, pages 281-288, 1992.

[Saa94] H. Saastamoinen. Exceptions: Three views
and a taxonomy. Technical report, Department
of Computer Science, University of Colorado at
Boulder, 1994.

[SM89] D. M. Strong and S. M. Miller. Exception
handling and quality control in office operations.
Working Paper Number 89-16, Boston University,
School of Management, Boston, MA, 1989.

[SMS94] H. Saastamoinen, M. Markkanen, and
V. Savolainen. Survey of exceptions in office infor-
mation systems. Technical report, CU-CS-712-94,
Department of Computer Science, University of
Colorado at Boulder, 1994.

[SR92] B. Singh and G. L. Rein. Role interaction nets
(rins): A process description formalism. Technical
report, MCC Technical Report CT-083-92, Austin,
Texas, 1992.

[Wor] Workflow Management Coalition. Glossary -
A Workflow Management Coalition Specification.
http://www.aiai.ed.ac.uk:80/WfMC/glossary.html.

[Zis77] M. D. Zisman. Representation, Specification
and Automation of Office Procedures. PhD thesis,
1977.

Organization Design.

