
Architectures for Computer Supported Collaborative Learning

Daniel D. Suthers
Department of Information and Computer Sciences

University of Hawai'i at Manoa
suthers @ hawaii.edu

Abstract

Four architectures for computer supported
collaborative learning systems are analyzed using the
model-view-controller design pattern and compared from
the standpoints of coupling between activities of the users
and suitability for educational use, as well as network
load and ease of implementation. The architectures are
illustrated with examples from the developmental history
of Belvedere, an environment for collaborative
construction of knowledge representations during
problem solving. A hybrid architecture that supports
model-level coupling is shown to provide the best design
tradeoffs.

1. Introduction

In the last decade we have witnessed a dramatic rise in
popularity of computer-mediated leaming, as evidenced
by the growth in conferences on learning technologies, the
emergence of online universities and the efforts of
traditional universities to develop online degree programs.
Consistent with research that demonstrates the value of
collaboration in learning, computer support for
collaborative leaming has become of greater interest, and
various architectures for synchronous and asynchronous
collaboration have been explored. In this paper I discuss
the suitability of four such architectures from the
standpoint of the types of coupling or decoupling between
the activities of leamers that they can support, the ease of
converting existing applications, and considerations of
network load. I illustrate the architectures with examples
from the developmental history of Belvedere [6].
Belvedere is an evolving environment for student-
construction of explicit models (knowledge
representations) while leaming in science and other
domains requiring critical inquiry (evaluation of
alternatives with respect to evidence and criteria). In
developing Belvedere, we explored all four of the
architectures described herein. I conclude that a hybrid
architecture offers the most flexibility for collaborative
leaming applications.

1.1. MVC

This Daver uses the
1 1

design pattem known as
Model-View-Controller
(MVC) to analyze the
architectures [4]. The

Figure 1. Model-View-
Controller

Model is an internal
representation of a semantic model of the problem of
interest. The View displays the model in some visual
representation. Software components implementing a
View are registered as observers of the Model, so that
changes in the Model will automatically result in an
update to the View display. A Controller enables the user
or the environment to modify the state of the Model. (A
controller can be a human-computer interface widget, or it
can be software reading from a physical sensor.) Software
implementing the Model is registered as an observer of
the Controllers, so that actions on the Controllers
automatically result in an update to the Model state (and
hence of the View).

1.2. Coupling

The architectures to be discussed differ on the degree
of coupling that they support (or require) between the
activities of different users and the state of applications
used by those users. I define three levels of coupling.

Strict "what you see is what I see" or WYSIWIS
("whiz-e-whiz"), provides all users with exactly the same
view and controller states. Strict WYSIWIS can support
the collaboration of two or at most three users whose
activities are tightly coupled. Strict WYSIWIS is
problematic for larger groups or loosely coupled
interactions because everyone sees the same cursor or set
of cursors, and view states such as scroll position are the
same for everyone. NetMeeting is an example of strict
WYSIWIS.

Relaxed WYSIWS does not insist that the state of the
view be exactly the same, provided the same view is being
presented. Different users can scroll to different viewports
on this view, and perform their own operations such as
editing or moving objects without distracting the others, at

25
0-7695-1013-2/01 $10.00 0 2001 IEEE

http://hawaii.edu

least until a model change Machine B Machine A Machine C
forces an update in the
view. An example of
relaxed WYSIWIS is
Teamwave
(www.teamwave.com/).

Model level coupling,
which I call "what you
model is what I model" or

GUI
events

I Model I

WYMIWIM ("whim-e-
whim"), guarantees only that users will see the same
semantic state of a shared model. The views may be
entirely different, even to the extent of using different
representations. For example, in Belvedere 3.x one person
can view the model as a graph and another as a matrix.

I now analyze the architectures in terms of the
distribution of MVC components and the type of coupling
between them.

2. Centralized

all of the views and controllers remained on one machine.
However, we achieved relaxed WYSIWIS by generating
multiple view-controller instances, each view-controller
instance being a CLIM application frame associated with
a client IP number. These frames were displayed on the
remote clients via X-windows. Yet this architecture still
suffered from bandwidth issues and the need for persons
at all machines to coordinate setting up the displays (e.g.,
provide xhost permission at B, then send display from A
to B), which was too complex for classroom use.

3. Replicated

In a replicated architecture [1 1 the entire application is
installed and run (i.e., replicated) on each client machine;
and some means of synchronization between them is
provided. This architecture is characterized by having all
three MVC components - model, view and controller -
replicated on each client machine (Figure 3). Examples of
replicated collaborative systems include E-Slate (E-
Slate.cti.gr), Habanero [2] , and MatchMaker [7]. All of
these systems require that applications be written with
collaboration in mind, using an API for event sharing. In
contrast, JAMM (Java Applications Made Multiuser, [l]),
provides a way to convert existing single user applications
to collaborative use without modifying the code: Java
Swing interface classes are modified to broadcast the
events on each copy of the application to the other copies.

Replicated architectures improve on use of network
resources because display data is not transmitted over the
network: only Controller events need to be distributed.
Also, the client can be used without the network.
Replicated architectures based on the automatic broadcast
of controller events (as in JAMM) have the disadvantage
that they are most naturally suited for strict rather than

on one machine, and hence is classified
as centralized because the model and

G U1
events

Figure 2. Centralized architecture

A centralized architecture provides only one
application, and distributes copies of the GUI (view and
controller) by sending window system events to all
participating client machines. The actual model, view and
controller all remain on one host machine (Figure 2) .

A well known example is NetMeeting, in which the
applications run on one Wintel machine and other
participating Wintel machines see these applications with
strict WYSIWIS. Only one person can use the mouse or
keyboard at a time. This architectures' primary advantage
is that it is possible to take arbitrary applications and
make them collaborative ut run time by capturing and
broadcasting window system events: developers need not
know in advance which applications will be shared.

The Centralized architecture's transmission of complete
display information and interface events over the network
does not make efficient use of bandwidth. In some
implementations (exemplified by NetMeeting) it also
enforces too strict a form of WYSIWIS for learning
applications. Although tight coupling may be appropriate
for one-on-one training such as demonstrating the use of a
software system, in collaborative learning applications it
is more appropriate to allow leamers to shift freely
between working in Darallel and -
working together. Machine A

Belvedere 1.x was implemented in
Common Lisp in the Common Lisp
Interface Manager (CLIM) using a
modified centralized architecture,
which addressed the latter problem.
The application ran as a single process

View Control
controller events

Machine B

Control View

Figure 3. Replicated architecture

26

http://www.teamwave.com

relaxed WYSIWIS. This disadvantage can be avoided by
selecting relevant events when manually building a
collaborative application. Yet synchronization via
controller events may be at the wrong level of
abstraction for many learning applications. Learners will
be more interested in each others' semantic changes
(model updates) rather than in the manipulations of the
GUI by which other learners achieve these semantic
changes. MatchMaker's synchronization is at the model
level: one can select which objects are to be
synchronized, and even turn synchronization on and off at
runtime.

The Belvedere 2.x series used a replicated architecture
more complex than that pictured. Version 2.1 is described
in [SI. We reimplemented Belvedere as a stand-alone Java
application with a self-contained MVC architecture. We
then provided the application with a Listener on a
dedicated port to listen for events from the other clients.
Each client also had a component that informed the
outside world of changes to its model. However, rather
than informing the other clients directly, this component,
known as the Belvedere Object Request Broker Interface
or BORBI, communicated with a server providing
persistent storage of the model. We shall see that in this
respect Belvedere 2.x represented a hybrid of Replicated
and Distributed architectures. BORBI updated the remote
database for each change, and also informed a Java
process on the server. This Connection Manager kept a
table of all active clients and the workspaces they had
opened, and would broadcast change events to the
Listeners of clients that had opened the workspace being
changed. Belvedere 2.x also provided a simple Chat
facility: users of any given workspace received messages
typed into Chat by others working on that workspace.
Belvedere 2.x's replicated architecture transmitted model
change events rather than controller events. This reduces
network traffic and opens up the possibility of model-
based coupling or WYMISIM. The shared persistent store
is a step towards supporting asynchronous collaboration.
The architecture of Belvedere 2.2 also forms the basis for
a coached collaborative distance learning system known
asCOLER[3].

4. Distributed

A distributed architecture is characterized by the
distribution of the MVC components across multiple
hosts. Typically, the Model lives on a shared server and
each client has its own View and Controller (Figure 4).

The most familiar example of the distributed
architecture may be database-backed web sites such as
airline reservation systems and other e-commerce systems.
The user's web browser provides the view and controller
and the server stores the data. This type of distributed

Machine B Machine A Machine C

Control Control

Figure 4. Distributed architecture

architecture shares some features with Centralized in that
specifications of the View and Controller are actually
constructed on a server and sent to the client. Hence some
of the problems of ineffective use of bandwidth apply.

A somewhat more network-efficient implementation is
exemplified by Enterprise Java Beans (EJB). Simply
stated, EJB enables one to run the Model as a Java Bean
on a server, and have this bean shared by multiple clients
consisting of View-Controller software. The View and
Controller originate on the clients and are not sent over
the network. One can program the View-Controller as if
the model were running on the client machine. EJB
handles the distribution of the model on the network and
WYMIWIM updating. Other services such as
transactional behavior are provided automatically. During
the past two years, my students Hongli Xiang and Bo
Yang experimented with an EJB architecture for
Belvedere 3.0. We found that EJB provides a high initial
learning curve, yet once this is overcome one can program
a distributed application quickly.

Properly implemented, a distributed architecture
requires only model update events to be sent over the
network, making this architecture more efficient in terms
of network resources. Since coupling is at the level of the
model, the distributed architecture can support
WYMIWIM: users can collaborate on the same model
while using entirely different visual representations of the
model. This motivated our experimentation with an EJB-
based distributed architecture for Belvedere 3.0.

From a user's perspective, the primary disadvantage of
a truly distributed architecture is the reliance on the
network. The ability to run as a stand-alone application
has important advantages, particularly in a classroom
environment where the network may be unreliable and the
teacher must be able to continue class activities after
discovery of an outage, with no more than a minute's
delay before chaos ensues! This motivates our current
hybrid architecture.

5. Hybrid

Belvedere 2.x introduced a hybrid between Replicated
and Distributed architectures (Figure 5) . In this
architecture, synchronization is at the model level via a

27

persistent model.
Applications can run
standalone with their
own models, saving
state to the local file
system, or can connect
to a persistent store that
provides WYMIWIM
updating between
active clients.

Machine B - =+t Control

- I

Machine A

Belvedere 3.0 differs
from the previous versions of Belvedere in one important
respect: it provides multiple views on a given model. One
can construct an evidence model using any of Graph,
Matrix or Tree visual representations. Updates in one
view are immediately available in the others, and one can
switch between views freely as one works. A collaborative
version of Belvedere 3.0 requires model-level coupling,
as the views may be entirely different. We are
implementing Belvedere 3.0 using the Hybrid architecture
to achieve model-level coupling along with the flexibility
of running either networked or stand-alone.

6. Conclusions

I defined three architectures for collaborative learning
systems in terms of the location of model, view and
controller components and the means of coupling between
applications, and identified advantages and disadvantages
for each. I described a hybrid architecture that endows
each client application with its own model/view/controller
components, yet couples these via a shared model on a
server. While slightly more complex to implement, this
architecture addresses the tradeoff between independence
and coupling of applications. More importantly, coupling
at the level of model state enables applications to use
different visual representations for their views on this
model, enabling learners to work within the view that best
meets their current needs while still being able to
collaborate with others. The architectures were illustrated
with a series of implementations of Belvedere. Ongoing
work is exploring the design of coupling between shared
knowledge representations and computer mediated
communication media such as threaded discussion. Future
work may be needed to understand how collaboration may
be affected by the use of multiple views.

7. Acknowledgements

Machine C
I 1
I -
feG Control

Figure 5. Hybrid architecture

8. References

[I] Begole, J . , C. A. Struble, et al. (1997). Transparent Sharing
of Java Applets: A Replicated Approach. 1997 Symposium
on User Interface Software and Technology, New York, NY,
ACM Press.

Seguin, C. (1998). Java Object-Sharing in Habanero.
Cornmunications of the ACM, Vol. 41 # 6, June 1998, pp

[3] Constantino-Gonzalez, M.A. and Suthers, D.D. (2000). A
Coached Collaborative Leaming Environment for Entity-
Relationship Modeling. In Gauthier, G., Frasson, C. and
VanLehn, K. (Eds.) Intelligent Tutoring Systems
Proceedings of the 5"' International Conference, ITS 2000,
Montreal, June, pp 324-333. Available:
http://liIt.ics.hawaii.edu/liIt/papers/COLER-ITSOO.pdf

[4] Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. Design Pattems: Elements of Reusable Object-
Oriented Software. Addison Wesley, 1995.

[5] Suthers, D.D. and Jones, D. (1997, August). An Architecture
for Intelligent Collaborative Educational Systems. In B. du
Boulay, R. Mizoguchi (Eds.) 8th World Conference on
Artificial Intelligence in Education (AIED'97), pp. 55-62.

integrated approach to implementing collaborative inquiry in
the classroom. In Proc. of the 2'Id International Conference
on Computer Supported Collaborative Learning (CSCL'97)
(pp. 272-279). Toronto.

(2000). "MatchMaker": Synchronising Objects in Replicated
Software-Architectures. Proc. 6th Int. Workshop on
Groupware, CRIWG 2000, Madeira, Portugal, 18 - 20
October 2000. 1EEE CS Press.

[2] Chabert, A., Grossman, E., Jackson, L., Pietrowicz, S., and

69-76.

[6] Suthers, D.D. Toth, E. E. and Weiner, A. (1997). An

[7] Tewissen, F., Baloian, N., Hoppe, U,, and Reimberg, E.

Thanks to Bin Ma, Bo Yang and Hongli Xiang for their work
on Belvedere 3.0, and to Dan Jones for his work on the
Belvedere 2.x versions. This work was partially supported by a
grant from the National Science Foundation's Leaming and
Intelligent Systems program.

28

http://liIt.ics.hawaii.edu/liIt/papers/COLER-ITSOO.pdf

