
G.-J. de Vreede et al. (Eds.): CRIWG 2004, LNCS 3198, pp. 215–222, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Empirical Evaluation of Collaborative Support
for Distributed Pair Programming

Jesus Favela1, Hiroshi Natsu1, Cynthia Pérez1, Omar Robles1, Alberto L. Morán2,
Raul Romero1, Ana M. Martínez-Enríquez3, and Dominique Decouchant2

1 Departamento de Ciencias de la Computacion, CICESE, Ensenada, Mexico
{favela,hnatsu,orobles,cbperez,romero}@cicese.mx

2 Laboratorire LSR, Grenoble, France
{Alberto.Moran,Dominique.Decouchant}@imag.fr

3 Depto. de Ing. Electrica, CINVESTAV-IPN, D.F., México
ammartin@mail.cinvestav.mx

Abstract. Pair programming is an Extreme Programming (XP) practice where
two programmers work on a single computer to produce an artifact. Empirical
evaluations have provided evidence that this technique results in higher quality
code in half the time it would take an individual programmer. Distributed pair
programming could facilitate opportunistic pair programming sessions with col-
leagues working in remote sites. In this paper we present the preliminary results
of the empirical evaluation of the COPPER collaborative editor, developed ex-
plicitly to support pair programming. The evaluation was performed on three
different conditions: pairs working collocated on a single computer; distributed
pairs working in application sharing mode; and distributed pairs using collabo-
ration aware facilities. In all three cases the subjects used the COPPER collabo-
rative editor. The results support our hypothesis that distributed pairs could find
the same amount of errors as their collocated counterparts. However, no evi-
dence was found that the pairs that used collaborative awareness services had
better code comprehension, as we had also hypothesized.

1 Introduction

Pair Programming is a software development technique that is part of the Extreme
Programming methodology. In pair programming two developers work side by side,
on a single computer, to jointly produce an artifact (design, algorithm, code, etc.). It
has been reported that this technique can be accounted for the development of higher
quality software in half the time it required a single programmer [1,8].

The two programmers work as a unit, as a single mind responsible for all aspects of
the artifact. One programmer, the driver, controls the pen, mouse, or keyboard to
write the code. His colleague actively observes the work produced by the driver, look-
ing for defects, alternatives and considering the implications of the strategy being
followed. The pair changes roles periodically. Both participants are active throughout
the process and share the responsibility for the work being produced [7].

The successful application of this technique requires the use of an appropriate
workplace: “The programmers should be able to sit side by side and program, looking
simultaneously at the computer screen, sharing the keyboard and the mouse” [7].
While they work together, the couple should be able to share the keyboard without

216 Jesus Favela et al.

changing seats. Extreme programmers need to be constantly in touch with their team
and for this, their workspace has to be open and facilitate communication among
peers as well as casual and informal encounters.

An important trend in software development has been the globalization of the
software industry [2]. With increased frequency, software developers are required to
work in groups that are geographically distributed. Under these circumstances the
requirement for pair programmers to be in the same location seems an important limi-
tation of this approach. For this reason we have developed the COPPER synchronous
collaborative writing tool, designed specifically to support pair programming among
distributed collaborators [5]. In this paper we report the preliminary results of an em-
pirical evaluation performed to determine the feasibility of distributed pair program-
ming and the services offered by COPPER in this regard.

2 The COPPER Pair Programming Editor

COOPER is a synchronous collaborative editor designed to support pair programming
[5]. It is a based on a client-server architecture and composed of two main subsys-
tems: the Collaborative Editor, and the User and Document Presence module
(UD&P). On the client, these subsystems form an application used to write programs,
access document services and communicate with peers.

The editor can be used disconnected from each other (in individual mode) or con-
nected in pairs (in synchronous collaborative mode). Users can be either co-located or
distributed on the Internet. The editor implements a turn-taking synchronous editor
(see Figure 1). The user holding the floor (or editing right) uses the editing window
(Figure 1F) to work on the currently loaded document.

Common document management and editing functionality is provided by means of
the application‘s Menu bar and the toolbar (Figure 1A). Actions performed in the
editor are propagated to the collaborator’s client. As an example of their use, consider
the Open button (third button left to right) of the toolbar. When pressed, an Open
dialog (Figure 1G) appears, providing access to documents stored in the Document
server. This dialog presents an integrated file hierarchy with documents from the local
machine and from other distributed WebDAV servers [6]. This allows for seamless
navigation and document retrieval from the individual or collaborative work envi-
ronment. Several documents can be edited at the same time, even if these documents
come from different WebDAV servers.

The Document server offers a centralized information repository, which provides
document storage, editing access control, user authentication and permissions to avoid
unauthorized accesses, and document presence extensions through an instant messag-
ing client, which “listens” and informs the UD&P system the results of operations
performed on the documents [4].

Each editor client “owns” the documents opened by its user, and it is the only one
allowed to perform operations, such as Save, Save As, and Close, on these documents.
When the connection is broken, each client keeps their “own” documents, and the
user can continue working on them in individual mode. While in this mode, clients
are ready to send or receive invitations to begin collaborating.

Floor management (or editing access control) is represented using a “traffic light”
metaphor (Figure 1B), which is activated when working in collaborative mode. This
component includes an action button to request and grant floor control.

Empirical Evaluation of Collaborative Support for Distributed Pair Programming 217

Fig. 1. The COPPER Pair Programming System.

Collaboration awareness is provided by means of a radar view (Figures 1C and
1D), editing window titles (Figure 1E), the status bar (Figure 1H), and the floor or
editing control access component (described earlier). The radar view provides a gen-
eral overview of the document being edited; it shows document changes in real time,
and serves as a document navigation tool; selecting a particular line of the document
in the radar view causes the current editing window to display the segment of the
document where the selected line is present.

Editing window titles (Figure 1E) display the name and location of the document,
as well as the identities of the owner of the document and of the collaborator (if pre-
sent).

The status bar (Figure 1H) provides information on the last operation performed by
any of the collaborators, as well as on the date and time it was performed.

The client-side module of the UD&P subsystem is used to send and receive mes-
sages to/from collaborators, manage the user’s own presence and provide this pres-
ence information to other collaborators. Additionally, it extends this functionality to
interact with the documents in a similar way as one would interact with users [4]:
adding or deleting documents from the document (presence) list, and sending “group”
messages to subscribed users of a document. Furthermore, subscribed users receive
messages from the UD&P service whenever the document’s availability and status
information changes. Finally, this module implements the functionality offered by
WebDAV, to perform basic editing operations on subscribed documents (e.g. locking
a document to avoid users from concurrently modifying the same document).

3 Experimental Design and Procedure

We conducted an experiment to explore the potential and limitations of distributed
pair programming. To guide our research we established two working hypothesis:

H1: Distributed pair programmers working remotely will find the same number of
defects as collocated programmers in the same amount of time.

218 Jesus Favela et al.

H2: Distributed pair programmers using COPPER will have better code compre-
hension as distributed pair programmers using application sharing in NetMeeting.

The first hypothesis aims at establishing that pair programming can be as success-
ful when the group is distributed as when they are collocated, if appropriate technical
support is provided. The second hypothesis is established from our believe that tools
like NetMeeting, which offer limited collaboration awareness services are not ade-
quate to support the intense level of interaction required for synchronous tasks such as
software programming or design.

The subjects of the study were 12 graduate students in computer science and profi-
cient in the Java programming language. The students were randomly grouped in 6
pairs. All subjects attended a one hour session that included an introductory lecture on
pair programming, an explanation of the COPPER editor and time for hands-on ex-
perience with the system. In addition, the subjects completed a questionnaire which
focused on their previous programming experience.

We used a within-subjects design; with all six groups asked two perform three dif-
ferent programming tasks in three different setups.

3.1 Experimental Setup

The modality in which the subjects performed the task was our independent variable.
The experiment required both subjects to collaborate in performing three different
programming tasks, each task was performed under a different condition.

Collocated Condition. In this condition, the two programmers were in the same office
and shared a single computer running the COPPER editor in single-user mode. The
programmers shared the display and keyboard as in traditional pair programming
tasks.

NetMeeting Condition. In this condition, the programmers were in different offices,
each of them with a workstation. The subjects had a voice connection through a tele-
phone for the duration of the task. The telephone was left in speakerphone mode to
free them from having to carry the handset. The subjects used the COPPER editor in
single-user mode and shared the application through MS NetMeeting.

COOPER Condition. The physical setup of this condition was similar to the Net-
Meeting condition. The only difference was that rather than using NetMeeting to
share a single application, they used the COPPER editor in collaborative mode. In this
way, they had access to the collaboration awareness features of COPPER, such as the
radar view, and the use of the semaphore for floor control.

The programmers were videotaped in all three conditions. In addition, there was a
researcher in each office who was present at the time of the experiment. This re-
searcher kept control of the time and recorded the number of times the programmers
exchanged control of the floor as well as the errors identified, corrected and intro-
duced in the code. To track the progress of the programming team without looking
over their shoulders, the researchers had a monitor in a separate desk connected to the
programmer’s workstation.

Empirical Evaluation of Collaborative Support for Distributed Pair Programming 219

3.2 Procedure

The pairs had approximately 55min. to complete each task, which was divided in five
phases. The tasks were performed one after the other with 5 to 10 minute rest periods
between tasks for an approximate total duration of the experiment of 3 hours per cou-
ple. The tasks were executed as follows:

Phase 1. During 10 minutes the programmers were introduced to the programming
task they had to perform and the condition in which they had to work. Each person
was given an initial version of the program assigned for that task. Each program was
injected with 10 errors of different types (syntax, assignment, logic, and interface).
The subjects were told that the code included errors but not their type or number.

Phase 2. For the next 15 minutes the couple introduced the code into the editor. To
keep this time constant for all programming tasks part of the code was already in the
editing window, they were asked to type the remaining 60 lines of code. The pair was
able to choose who will be the driver and who the observer. They could also inter-
change roles during the process. Although the objective of this phase was to introduce
the code into the editor, we expected them to detect and correct some errors and be-
come familiar with the code.

Phase 3. Once the code was introduced the subjects were given a maximum of 15
minutes to correct the program, that is, to find and correct errors. This included errors
that were introduced by the researchers, and at times, errors introduced by the pro-
grammers during Phase 2.

Phase 4. In this phase the programmers were given a text describing a simple modifi-
cation to be made to the code. They were given a maximum of 15 minutes to com-
plete this phase.

Phase 5. Finally, the pair was asked to complete a survey with 12 Likert-scale asser-
tions, which included topics such as their satisfaction with the modality in which they
worked, the perception of the participation of their colleague, and their understanding
of the programming task.

3.3 Experimental Tasks

The programming tasks were designed to be simple to assure that they could be done
in the short amount of time that was provided and that the students would concentrate
on correcting errors and delivering a high quality code. To avoid learning effects the
pairs worked on the tasks in different order. Each group was asked to perform the
following three programming tasks on a different condition.

LOC. The purpose of this program is to count the number of lines of source code in a
file. The program takes a source file as input and returns the total number of lines
contained in it. In the last phase the programmers were asked to modify the program
to eliminate the number of lines with comments from the final count and also report
the number of methods in the source code.

SORT. This program reads a file containing a list of numbers in random order and
sorts them in ascending order using the selection sort algorithm. The modification
required the students to use insertion sort and present the results in descending order.

220 Jesus Favela et al.

N Figures. This is an object-oriented program that reads a file with data of geometric
figures of different types and calculates their area, using the method appropriate to
each type of figure. The extension requested was to add a new class with a different
type of figure.

3.4 Measures

Since we kept constant the amount of time dedicated to the task, we concentrated on
measuring the quality of the code since this is an area in which one would expect pair
programming to be useful. Additionally we measured code comprehension, since we
hypothesize that the help of the colleague would help a programmer understand the
code more easily and this might be negatively affected by distance and positively
affected by awareness tools.

To estimate code quality we measured the number of errors that were detected and
corrected during the task. A researcher observed the programmers as they performed
the task and recorded when and by whom errors were detected and corrected. She also
indicated when new errors were introduced.

We measured code comprehension by whether or not the pair was able to success-
fully modify the code and through the questionnaire at the end of the task where we
explicitly asked them if they understood the program and whether the help of his
colleague helped in this regard.

4 Results and Discussion

4.1 Program Quality

Table 1 shows the number of errors detected by each team for each of the three pro-
gramming tasks. The results are grouped by condition, with two teams per condition
(A and B), per task. The total number of errors detected in the Collocated mode was
24, for an average number of errors found in each task of 4 out of the ten that were
injected. The NetMeeting condition was the most productive in finding errors, with a
total of 27. In the COPPER mode 22 errors were identified. Of the 73 errors detected,
only 3 were not solved. Additionally, one error was solved without the programmers
explicitly detecting it. Five groups detected between 11 and 16 errors in the three
programming task, with one pair (No. 6), detecting only a total of 4 errors, clearly the
team with the poorest performance.

Table 1. Errors detected by each programming team.

N Figures LOC SORT
Condition Errors

detected
Team

Errors
detected

Team
Errors

detected
Team

Total

A 2 (5) 5 (1) 6 (3)
Collocated

B 5 (2) 4 (4) 2 (6)
24

A 4 (3) 5 (5) 7 (4)
NetMeeting

B 2 (6) 3 (2) 4 (1)
27

A 5 (1) 0 (6) 3 (2)
COPPER

B 5 (4) 4 (3) 5 (5)
22

Empirical Evaluation of Collaborative Support for Distributed Pair Programming 221

These results provide some evidence in support of our first hypothesis. That is, that
the number of errors detected is not reduced when the pairs are working in remote
locations. In fact, the results were slightly better for the groups that were distributed
and used NetMeeting to share the code while the tasks performed with COPPER in
distributed mode resulted in a slightly lower number of errors found.

4.2 Code Comprehension

In table 2 we present the results to five of the questions, related to code comprehen-
sion, from the survey completed after each task. The survey used a seven-point Likert
scale with anchors ranging from strongly disagree (1) to strongly agree (7). Although
the programmers were in general able to understand the code, the responses to ques-
tions 1, 4, and 5, the ones more directly related to the understanding of the code, indi-
cate that code comprehension was slightly better when the authors were collocated.
When comparing the two distributed conditions NetMeeting seemed to work slightly
better than COPPER.

Table 2. Perception of code comprehension.

Question Collocated NetMeeting COPPER
1. I understood the program 6 5.58 5.5
2. I found the program to be complex 2.75 2.92 2.75
3. Working with someone helped me
find more defects

6.42 6.17 6.25

4. Working with someone helped me
to modify the program

6.17 6 5.67

5. Working with someone helped me
understand the program

6.33 6.08 5.83

With respect to the actual completion of the tasks assigned to the programmers, we
have that 4 groups completed the modification when using NetMeeting, while 5
groups successfully modified the program using COPPER. Results that give a slight
edge to the COPPER mode.

The results from the questionnaires and the completion of the task do not provide
evidence that the awareness features incorporated in COPPER helped pairs under-
stand the code more than NetMeeting did. Although one more group completed the
task on time, the subjects had the perception of having better tackled the task when
working with NetMeeting.

5 Conclusions

Extreme programming techniques, and in particular pair programming, are gaining
considerable attention given their advantage at handling software development pro-
jects with vague or changing requirements. As the software industry continues to
grow and their practice becomes global, distributed teams will require appropriate
tools to support their software development practices. The development of such tools
needs to be supported by empirical research aimed at establishing the necessary ser-
vices required to support the intensive nature of the collaboration required during this
practice.

222 Jesus Favela et al.

Towards this end we have presented results of an evaluation conducted with 6
groups that were asked to complete three programming task in different conditions:
collocated, distributed and with limited collaboration awareness, and distributed and
several collaboration services. Our results seem to support our hypothesis that distrib-
uted groups could be as effective in finding programming errors as collocated ones.
On the other hand, the additional awareness provided by the COPPER tool didn’t
seem to facilitate the programmer’s understanding of the code over what simple ap-
plication sharing can accomplish. Analysis of the videos will be conducted to better
understand the advantages and disadvantages of each condition.

References

1. Cockburn A. and Williams L., The Cost and Benefits of Pair Programming. Addison
Wesley. (2001)

2. Herbsleb J.D. and D. Moitra., Global Software Development. IEEE Software. 18(2), (2001),
16-20

3. Kircher M., Jain P., Corsaro A., and Levine D., Distributed Extreme Programming. Extreme
Programming and Flexible Processes in Software Engineering, Italy, May, (2001)

4. Morán, L., Favela, J., Martínez, A., y Decouchant, D., Document Presence Notification Ser-
vices for Collaborative Writing. In Proc. of CRIWG'2001. IEEE Computer Press. Darm-
stadt, Germany, Sept. 6-8, (2001), 125-133

5. Natsu, H., Favela, J., Moran, A.L., Decouchant, D., and Martinez, A.M., Distributed Pair
Programming in the Web. In Proc. ENC’03, IEEE Comp Society, Mexico, 2003, 81-88.

6. Whitehead E. J., Collaborative Authoring on the Web: Introducing WebDAV. Bulletin of
the American Society for Information Science, 25(1), (1998), 25-29

7. Williams L. and Kessler R., All I Really Need to Know about Pair Programming I Learned
in Kindergarten. CACM, 43(5), (2000), 109-114

8. Williams L., Kessler R., Cunningham W., Jeffries R., Strengthening the Case for Pair Pro-
gramming. IEEE Software, 17(4), (2000), 19-25

	1 Introduction
	2 The COPPER Pair Programming Editor
	3 Experimental Design and Procedure
	3.1 Experimental Setup
	3.2 Procedure
	3.3 Experimental Tasks
	3.4 Measures

	4 Results and Discussion
	4.1 Program Quality
	4.2 Code Comprehension

	5 Conclusions
	References

