
G.-J. de Vreede et al. (Eds.): CRIWG 2004, LNCS 3198, pp. 271–279, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Distributed Dynamic-Locking
in Real-Time Collaborative Editing Systems*

Xianghua Xu, Jiajun Bu, Chun Chen, and Yong Li

College of Computer Science, Zhejiang University
Hangzhou 310027, P.R.China

{xuxh_cs,bjj,cchen,lyzju}@cs.zju.edu.cn

Abstract. In this paper, a Customizable and Dynamic Locking (CDL) scheme
is proposed for concurrency control in Internet-based real-time collaborative
editors. The idea of dynamic-locking is that: locking mechanism dynamically
determines locking set according to locking policies and latest collaborative ac-
tivities happened in the shared workspace, and pre-locks objects for succeeding
editing and preventing from other user’s edit. Dynamic locking is optional: user
decides whether and when to use locking mechanism. In the proposed scheme,
locking policy is separated from locking mechanism. Locking policies can be
customized for different collaboration tasks. Locking scope is dynamically de-
termined according to locking policies and collaborative activities among users.
Multiple users can select different policies in the same collaborative session,
and change locking policies at different phases of collaboration as well. Proto-
cols and algorithms for locking conflict resolution and consistency maintenance
are also presented in this paper.

1 Introduction

Internet-based collaborative editing systems are a special class of distributed applica-
tions which allow a distributed community of users to simultaneously edit a shared
document[9]. A replicated architecture is usually adopted in which the shared docu-
ments are replicated at local storage of each collaborating site. With the replicated
architecture, multiple users can concurrently edit their local copies of the shared
document and get their operations reflected on their local interfaces immediately. One
of the most significant challenges in the design and implementation of replicated
collaborative editing systems is consistency maintenance of replicated documents in
face of concurrent updates[10].

Locking is a widely used concurrency control technique in distributed computing
and database systems to ensure data integrity by prohibiting concurrent conflicting
updates on shared data objects [8]. Locking has also been used for consistency main-
tenance of shared documents in various collaborative editing systems. From users’
points of view, locking can be classified into two categories: compulsory locking and

* This material is based upon work funded by Zhejiang Provincial Natural Science Foundation

of China under Grant No. Z603231.

272 Xianghua Xu et al.

optional locking. Locking is compulsory in the sense that a lock must be requested
before editing an object, whereas a system with optional locking allows users to up-
date any unlocked objects without necessarily requesting a lock on it. Locking can
also be classified into explicit lock and implicit lock. In explicit locking, lock and
unlock are requested by a user before and after an editing operation, whereas implicit
locking is requested by systems when an object is selected and released after deselect-
ing. The relationship between compulsory-optional and explicit-implicit locking is
shown in Table 1. The existing compulsory locking can be explicit or implicit either,
whereas optional locking can only be explicit. In previous researches, the optional-
implicit locking was unmentioned.

In explicit locking scheme, the granularity can be object, region, or whole docu-
ment. It’s determined by users at runtime. In implicit locking scheme [7], the granu-
larity is statically determined by systems in advance. Obviously, explicit locking is
more suitable for collaborative environment as it is more flexible than implicit lock-
ing. However, explicit locking leaves too much burdens on user since users need to
request for lock before updating. Comparatively, implicit locking mechanism releases
users from locking and unlocking, while losing flexibility and adaptability.

In optional locking, when to lock and how to lock are all decided by user at run-
time. Because multiple users are often editing different regions in many occasions,
these will not cause concurrent editing conflict problems. Therefore, optional lock is
more appropriate choice for collaborative application than compulsory locking. How-
ever, this requires users to entirely determine when to lock and how to lock. More-
over, multi-users’ working areas are often interweaving with each other and con-
stantly changing in the evolution of collaboration. Hence, how to determine the
locking scope is a burden on user.

Therefore, we propose a dynamic locking approach in this paper. The main idea is:
users can define the locking policy to be used in the system and decide when to use
dynamic locking; lock mechanism dynamically determined locking scope at runtime
according to the locking policies user defined. The key issues in dynamic locking
approach is how to dynamically determine the locking scope and how to resolve the
locking conflict and maintain the consistency of locking data in a distributed collabo-
rative environment. In this paper, we focus attention on the locking conflict problem.
How to determine the appropriate locking scope will be discussed in another paper.

2 Dynamic-Locking Approach

2.1 Basic Definitions

A real-time collaborative editing system can be represented as (S, U), where S is the
shared workspace, U is a set of participants. There is a collection of objects (O) exist-

Table 1. Compulsory-optional vs explicit – implicit.

 Explicit Implicit

Compulsory � �

Optional �

Distributed Dynamic-Locking in Real-Time Collaborative Editing Systems 273

ing in S shared by U. S is a metaphor for compositing together with U to manipulate a
collection of objects (O) and their attributes. The concepts related to user’s activities
in S are defined as follow:

Operation (Op) is the action issued by user to manipulate the objects. Each operation
is stamped by time-vector as defined in [3, 5]. A dependent (causal) relationship or
independent (concurrent) relationship between any two operations can be determined
according to operation’s time-vector [9]. Further more, a real-time collaborative edit-
ing system is said to be consistent if it always maintains the three properties: conver-
gence, causality-preservation and intention-preservation [10].

Location (Loc) is an object that the user currently selects or edits.

Lock set (Ls) is a set of objects locked by a user. For each user, a current locking set
is maintained at each site, which represents the objects currently locked by that user.

Locking point (Lp) is defined as a locked object that is currently edited by lock
owner. A user’s Lp is a member of his locking set and also is user’s Loc.

Context value (Con) represents U’s relevancy degree on the local context affected by
Op. Con value is used in calculation of locking set and conflict resolution protocol.

Lock table (Lt) is maintained at each site. There is an entry in lock table for each user,
which points to the user’s lock set.

2.2 The Architecture of Dynamic Locking Model

Locking mechanism is the core component in dynamic locking. When a user needs to
utilize the locking mechanism, it will be enabled, and the specific locking policies are
selected. The locking procedure is described briefly as follow:

Fig. 1. Architecture of dynamic locking.

When a user selects, edits or creates an object, the locking mechanism calculates
the user’s locking set according to locking policies and user’s latest editing activities,
then, locks objects belong to the locking set, and then, time-stamp and broadcast the
locking operation to other sites. When the user begins to edit next object, new locking
set will be recalculated and locked, and the previous locks will be released.

Locking mechanism

Editing operation Policies tailoring Lock enable/disable

Lock
policies

Shared data
objects

Lock table
Lock set

Locking set
computing

Locking
conflicts
resolution

Editing
activities
analysis

274 Xianghua Xu et al.

When a remote locking operation is received, the locking mechanism performs
conflict-check with operations in HB. If conflict occurs, it will be resolved according
to the conflict resolution protocol. Otherwise, objects belonging to the locking set
will be locked by the remote user.

For each editing operation, the locking mechanism does some works of activity
statistics. The statistic result is used by itself for the calculation of locking set.

2.3 Example of User’s Activity Analysis

When multiple users participate in an editing or design task (except the task like
brainstorm), each user is often responsible for a subtask assigned. Although the sub-
task may be only a rough division of the collaboration task, the history of editing
operation will present out the pattern of task division, and, such pattern can be repre-
sented as rough and irregular division of the shared workspace. Hence, we can extract
the pattern by the analysis of users’ activities. Here we propose a simplified method
for a 2D shared workspace.

First, we divide the 2D shared workspace into M x N small rectangle grids, de-
noted as S[M][N]. For each collaborative session, we maintain an array, defined as
AFU[M][N], for each user U. AFU[M][N] is used to express the frequency of U’s
editing activity affect on S[M][N] . Hence, AFU[M][N] represents a subtask pattern of
user U mapped on S[M][N]. AFU[m][n] expresses the frequency of U’s editing activi-
ties at sub-workspace S[m][n]. For a group users: u1, u2 and u3, which participate in
the same editing session, AFU1[M][N], AFU2[M][N] and AFU3[M][N] represent the
pattern of group editing work.

For a given user U and a Op issued by U:

1]][[AF]][[AF += jiji UU , for all S[i][j] Op, where I �[0,M-1], j [0,N-1]

For an Op issued by user U, U’s context relevance (Cr) for Op is defined as:

∑
∀

−∈−∈=
OpjiS

U NjMiji
�]][[

U]1,0[],1,0[],][[AFCr

Given a group of users, u1, u2, … , uk, participating in a group editing session. For

an operation Op generated by user us, the local context value (Con) of Op is defined

as:

∑
≠=

=
K

stt

Ut

U
Op
U

Cr

Cr
Con

S

S

,1

 ,]1,0[∈Op
US

Con

The context value (Con) represents U’s relevance on the local context affected by
Op. Con value is used in calculation of locking set and conflict resolution protocol in
following section.

Distributed Dynamic-Locking in Real-Time Collaborative Editing Systems 275

2.4 Locking Policy and Locking Set

Locking policy and Context value are two key factors in computation of locking set.
Users can describe specific locking policy according to characteristics of application
and subjective requirement. Locking policy is expressed as:

Policy(PolicyName, Type, [[scale] | [prediction]])
Type = [Rect | Circle | Irregular | Bool]
Scale = [RegionSize: 1,2,…,n]
Prediction = [Attr(Obj) = value] |[Prediction [Bool] Prediction]

[BoolPolicyName]

Bool = [and | or]

There are three types of locking policy: object’s geometry constraints (rectangle,
circle, irregular); object’s attribute constraints (such as object owner, owner’s privi-
lege); combination of geometry and attribute constrains. In geometry constraints, a
max region size and a scale are defined. The max region is dynamically mapped into
actual region at runtime: (max-region, scale) X (Con-value) � (actual-region). Here
we illustrate the locking policy with following examples:
• Policy(rule1, Rect, [[200,200]: 1, 2, 3]), define a rectangle scope which will be

mapped to a actual scope by scale [1,2,3] and Con.
• Policy(rule2, Bool, [Owner(Op) = Owner(O)]), describe an attribute constraint:

only the owner’s objects included.
• Policy(combinedRule, Bool, [rule2 and rule3]), define a combined rule of rule1

and rule2.

Computation of locking set: when a policy was enabled, locking mechanism is re-
sponsible for determination of locking set. When a user is selecting or editing an
object, a current locking set is calculated out simultaneously, then the objects belong-
ing to the set are locked immediately and locking set is broadcast to other sites. How-
ever, the locking set may conflicts with a concurrent editing Op or locking set re-
ceived from other sites in face of concurrent locking and editing operations.

3 Dynamic Locking Protocol and Conflict Resolution Protocol

3.1 Dynamic Locking Protocol and Algorithm

Dynamic Locking Protocol (DLP):
1. When a Locking set is generated at a local site:

Locking set will be granted at local site and propagated to all remote sites. A lock-
ing subset, which belongs to old Locking set but not to new Locking set, is re-
leased.

2. When a Locking set arrives at a remote site:
a. If it does not conflict with any Op in HB (History Buffer of executed operation),

the new Locking set is granted and compared with old Locking set. A locking
subset, which belongs to old Locking set but not to new Locking set, is released.

b. If it conflicts with Ops in HB, the conflicts are resolved by conflict resolution
protocol.

According to DLP, we present a Dynamic Locking algorithm:

276 Xianghua Xu et al.

Function DynamicLock(Op, U)
/* Op: a local/remote operation currently executed. U:
Op’s issuer; Ls(U): U’s locking set, depicts a group of
object locked by U; Loc(U): the location of U in S; HB:
history buffer of executed operation. */

//for the local generated operation
If (Op is a local op) Then
//How to compute context value and locking set is
//application-oriented problem, hence the algorithms
//will not given here
Con = ComputeContext(Op);
NewLs = ComputeLs(Op);
//a subset of objects needs to be locked and unlocked
Ladd = NewLs – Ls(U);
Lfree = Ls(U) – NewLs;
Ladd–>lock();
Lfree–>unlock();
// Pack Ls and Con into Op which will be sent to remote
site
Op–>Ls = NewLs;
Op->Con = Con; Broadcast(Op);
//setting the new lock set of U
Ls(U) = NewLs;
HB->Add(Op);
Else //for the remote operation
//If Op is a concurrent operation with other operation
If (IsConcurrent(Op, HB)) Then
Resolve conflict by LCRP protocol;
Else
NewLs = Op–>Ls;
//a subset of objects needs to be locked and unlocked
Ladd = NewLs – Ls(U);
Lfree = Ls(U) – NewLs;
Ladd–>lock();
Lfree–>unlock();
EndIf
HB->Add(Op)
EndIf

3.2 Locking Conflict Resolution Protocol and Algorithm

The concurrent conflicts are resolved according to Locking Conflict Resolution Pro-
tocol (LCRP):

For each Op in HB conflicting with remote Op,
1. If Op’s Lock point is same as remote op’s Lock point, then conflict is resolved by

negotiation.
2. If Con(Op) = Con(remoteOp) then the conflicting subset of Ls(U(Op)) /

Ls(remoteOp) will be released/ungranted.
3. If Con(Op) > Con(remoteOp) then the conflicting subset of Ls(remoteOp) will be

ungranted.
4. If Con(Op) < Con(remoteOp) then the conflicting subset of Ls(U(Op)) will be

released.

Distributed Dynamic-Locking in Real-Time Collaborative Editing Systems 277

Fig.2 illustrates conflicts may be occurred in dynamic locking, yellow and green
areas represent the locking set of op1 and op2 respectively, blue and red dots repre-
sent the locking points of op1 and op2 respectively. Suppose Con(op1)=Con(op2). In
fig.2a, both locking points are out of conflict part of locking set, the conflicts are
resolved according to rule 1 of LCRP. In fig.2b, both locking points are the same
object, it is resolved by negotiation (rule 2). In fig.2c, op2’s locking point is within
the conflict part, it’s resolved according to rule 2, but u2’s locking point is still in-
cluded in u2’s locking set. In fig.2d, both locking points are in the conflict part, it’s
resolved according to rule 2, both locking points should be still included in their lock-
ing set respectively. Conflicts between locking and editing operation could be re-
solved similarly.

Fig.3 illustrates a simplified scenario of dynamic locking. Green and yellow are
working areas of u1 and u2 respectively. Blue area represents u1’s locking area and
the size of lock set. When u1 edits objects in his working area (Fig.3a), his locking
area will be max size defined in locking policy. When u1 edits objects in the inter-
sected area of u1 and u2 (Fig.3b), his locking area will be adjusted to medium size.
When u1 edits objects in the working area of u2 (Fig.3c), his locking area will be
adjusted to minimum size.

4 Comparison to Related Work

A variety of locking schemes have been proposed to maintain consistency in collabo-
rative editing systems. Ensemble[7], GroupKit[4], Suite[6] and REDUCE[8] are
closely related to our work.

Ensemble adopts implicit-optimistic locking scheme, whereas GroupKit adopts
explicit-optimistic locking scheme. They only support single locking granularity
predefined in systems, hence these schemes cannot meet the requirement of collabo-
ration because of lacking of flexibility.

Suite [6] provides multi-granularity locking on a general structured data model. It
employs a flexible concurrent control model to associate data semantics. When con-
flict occurs, conflict resolution rules examine the operation rights to determine who
gets the object. Specific lock policies use heuristics to decide whether a lock in use
should be taken away and granted to another requester. Suite is an optimistic and
compulsory locking scheme with multi-granularity. The granularity can be dynami-
cally decided at runtime according to predefined policy and data semantics. However,
Suite is designed for structured data model, hence it not suitable for semi-structured
or unstructured data model adopted in many collaborative applications.

(a) (b) (c) (d) (a) (b) (c)

Fig. 3. A scenario of dynamic locking. Fig. 2. A scenario of locking conflicts.

278 Xianghua Xu et al.

In Ensemble, GroupKit and Suite, locking is compulsory, in which users need to
passively abide the locking constraints implemented in system and have to use locks
before editing. In human-human collaborative interaction, however, when to lock and
how to lock mainly depend on the collaborative users and the context they shared.
Hence, the locking scheme should be user-centric, and it should be flexible so that
user can decide when to lock and how to lock according to dynamic collaborative
environment. Moreover, they all adopt a centralized server to resolve the locking
conflicts.

The optional locking, presented in REDUCE [8], GRACE [2], is most related to
our work. Optional locking is also a distributed, high responsive locking approach
used in collaborative environment. However, the locking conflict is resolved by Co-
ordinator-Based Protocol by means of a centralized coordinator and a locking trans-
formation algorithm [8]. In our work, the locking conflicts are resolved in a fully
replicated architecture, and no coordinator is needed. Moreover, in optional locking,
the locking set is decided by users, but the locking set is dynamically determined by
locking mechanism in our approach.

[1] presents an adaptive multi-granularity locking scheme used in object-oriented
database. Multiple logical granularity units are chosen with the knowledge of the data
model and changed dynamically during the execution of a transaction by means of
escalation and de-escalation technique. It aims to improve the OOB’ s throughput.
However, it’s not suitable for real-time collaborative system, because collaborative
systems are more sensitive to response-time than to system throughput, and required
to support unstructured activities with dynamic and context-specific consistency re-
quirements.

5 Conclusions

In this paper, a Customizable and Dynamic Locking (CDL) scheme is proposed for
concurrency control in Internet-based collaborative systems. CDL is fully distributed,
highly responsive, dynamic and tailorable locking mechanism. In CDL scheme, lock-
ing policy are separated from locking mechanism. Locking policies can be custom-
ized to meet the requirements of users and application. Locking scope is dynamically
determined according to locking policies and collaborative activities among users.
Multiple users can select different policies in the same collaborative session. A user
can change locking policies at the different phases in the same session. CDL is also
optional: whether and when to use the locking mechanism is determined by users.
When the CDL is enabled, it automatically decides the dynamic locking scope ac-
cording to latest activities among collaborative users and locking policies selected.
Protocols and algorithms are devised to resolve locking conflict and maintain consis-
tency of global locking status.

The CDL scheme is implemented in CoDesign [11] to verify the feasibility. We
are currently investigating the interface, activities analysis and usability issues related
to CDL, including how the locking status is presented to the user, how to tailor the
policy for different phases of collaborative works and users’ subjective evaluation in

Distributed Dynamic-Locking in Real-Time Collaborative Editing Systems 279

using CDL. The implementing issues, such as approach of activities analyzing, lock-
ing set calculation, conflicts resolution and consistency maintenance algorithm, etc,
will be discussed in a follow paper.

References

1. C.T.K. Chang, Adaptive Multi-Granularity Locking Protocol in Objectoriented Databases,
PhD Dissertation, Department of Computer Science, University of Illinois at Urbana-
Champaign, 2002

2. D. Chen and C. Sun. Optional and Responsive Locking in Distributed Collaborative Object
Graphics Editing Systems. Proceedings of the First International Conference on Web
Information Systems Engineering (WISE’00). p.414-418.

3. C.A. Ellis and S.J. Gibbs. Concurrency Control in Groupware Systems. In Proceedings of
the ACM SIGMOD Conference on Management of Data, May 1989. Seattle, WA, USA.
p.399-407.

4. S. Greenberg and D. Marwood. Real Time Groupware as a Distributed System: Concur-
rency Control and Its Effect on the Interface. Proceedings of the ACM CSCW Conference
on Computer Supported Cooperative Work, October 22-26. North Carolina: ACM Press.

5. L. Lamport, Time, Clocks, and the Ordering of Events in a Distributed System. CACM.
21,7 (1978): p. 558-565.

6. J. Munson and P. Dewan. A Concurrency Control Framework for Collaborative Systems.
In Proc. of ACM Conference on Computer Supported Cooperative Work, Nov. 1996.
p.278-287.

7. R.E. Newman-Wolfe, et al. Implicit Locking in the Ensemble Concurrent Object-Oriented
Graphics Editor. Proceedings of the ACM conference on Computer supported cooperative
work, November 1992. Toronto, Ontario, Canada. p.265-272.

8. C. Sun, Optional and Responsive Fine-Grain Locking in Internet-Based Collborative Sys-
tems. IEEE Transactions on Parallel and Distributed Systems. 13,9 (2002): p. 994-1008.

9. C. Sun and D. Chen, Consistency Maintenance in Real-Time Collaborative Graphics Edit-
ing Systems. ACM Transactions on Computer-Human Interaction. 9,1 (2002): p. 1-41.

10. C. Sun, et al., Achieving Convergence, Causality-Preservation, and Intention-Preservation
in Real-Time Cooperative Editing Systems. ACM Transaction on Computer-Human Inter-
action. 5,1 (1998): p. 63-108.

11. X. Wang, et al. Achieving Undo in Bitmap-Based Collaborative Graphics Editing Systems.
In Proceedings of 2002 ACM Conference on Computer Supported Cooperative Work
(CSCW’02), November 16-20. New Orleans, Louisiana, USA.

	1 Introduction
	2 Dynamic-Locking Approach
	2.1 Basic Definitions
	2.2 The Architecture of Dynamic Locking Model
	2.3 Example of User’s Activity Analysis
	2.4 Locking Policy and Locking Set

	3 Dynamic Locking Protocol and Conflict Resolution Protocol
	3.1 Dynamic Locking Protocol and Algorithm
	3.2 Locking Conflict Resolution Protocol and Algorithm

	4 Comparison to Related Work
	5 Conclusions
	References

