
Increasing Awareness in Distributed Software
Development Workspaces

Marco A.S. Mangan1,2, Marcos R.S. Borges3, and Claudia M.L. Werner1

1 Programa de Engenharia de Sistemas e Computação – COPPE/UFRJ, Brazil
{mangan,werner}@cos.ufrj.br

http://www.cos.ufrj.br/~odyssey
2 Faculdade de Informática/PUCRS, Brazil

mangan@inf.pucrs.br
3 Núcleo de Computação Eletrônica and Instituto de Matemática/UFRJ, Brazil

mborges@nce.ufrj.br

Abstract. This work presents a middleware for collaborative applica-
tions that increase product and workspace awareness information avail-
able to users of computer-aided software engineering tools. This mid-
dleware-based approach helps application developers to construct en-
hanced tools, adapted to specific needs, reusing software components
and existing applications. These enhanced tools must be designed to
overcome some of the technical difficulties of collaboration in distributed
software development scenarios, like the need of monitoring changes in
remote workspaces. This paper describes the middleware architecture
and intended usage, presents examples of enhanced tools, and proposes
future case studies.

1 Introduction

In the last decades, many organizations have adopted remotely located facilities
and outsourcing in software production. Global Software Development (GSD)
must deal with the strategic, technical and cultural issues of participants and
teams dispersed over time and physically distant [5]. Distributed Software Devel-
opment Environments (DSDEs) try to provide software developers with facilities
that help to overcome some of the difficulties imposed by the separation over
time and distance. For instance, communication and awareness breakdown inside
virtual development teams are difficulties that are dealt with such environments.
Collaboration facilities range from shared repositories, on-line and off-line com-
munication channels to coordination and awareness mechanisms.

This work deals with the difficulties of constructing such environments, and,
in particular, on obtaining and managing awareness information. The most chal-
lenging problems are that the enhanced environment should provide (a) adequate
support for software development activities and, conversely, (b) useful awareness
information for software developers. We propose a middleware-based approach
that enables the creation of shared workspaces on top of pre-existent software

G.-J. de Vreede et al. (Eds.): CRIWG 2004, LNCS 3198, pp. 84–91, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



Increasing Awareness in Distributed Software Development Workspaces 85

tools and groupware. Team participants must assess tools and the correspon-
dent application events they want to share before the collaboration activities
take place.

Once configured, the middleware is able to provide services that are similar to
those found in groupware applications. Depending on the degree of modification
of the tool or of its execution environment, and the participant’s objectives, it
is possible to provide a set of collaboration services. These range from simple
presence information to tracking of development history, product and workspace
awareness information, and even collaborative editing.

Our assumption is that collaboration can be enhanced with small modifica-
tions in real working environments. Information gathered from the environment
can be used to identify opportunities for collaboration that participants may not
be aware of.

The remainder of this article presents an overview of the class of collaborative
environments (Sec. 2) we plan to develop by using the proposed middleware
architecture (Sec. 3). We summarize roles and a process to develop awareness
enhancements in Computer-Aided Software Engineering (CASE) tools (Sec. 4)
and also present some examples of enhancements (Sec. 5). Finally, we present
the conclusion of this article and the next steps in this ongoing work (Sec. 6).

2 Distributed Software Development Environments

Distributed Software Development requires the coordination among teams and
individuals dispersed over time or physical distance. Herbsleb et al. [5] believe
that we have to understand distribution as a more ample term. Even colleagues
that work a few rooms down the corridor or in different floors of the same building
may suffer from some sort of breakdown in communication, coordination, and
awareness that are characteristic of global and distributed software development
scenarios.

Recently, some software development environments were proposed to support
GSD [2–4, 6, 7, 1]. These environments aim to combine software development task
support with some sort of teamwork support. Altmann and Pomberger’s [2] am-
ple survey of cooperative software development practices lead to a proposal of
an environment aimed at large software projects organizational support. Dis-
tributed process coordination is present at Serendipity [4] component-based en-
vironment. Palantir [1] and Gossip [3] propose environment enhancements based
on improved product awareness information over artifact changes. Real-time,
collaborative editing support is applied on distributed extreme programming in
both MILOS [6] and Tukan [7] environments.

This diversity of approaches in CSCW support and software development
scenarios is an indicator that GSD support is a complex problem. Software de-
velopment task support must be fitted to meet particularities in software devel-
opment process, technology, and methodology. It is not economically viable, if
not virtually impossible, to provide a different environment for every particular
combination of these factors. In practice, these collaborative environments offer



86 Marco A.S. Mangan, Marcos R.S. Borges, and Claudia M.L. Werner

software development tools that are not as effective as their single-user coun-
terparts. As a result, these environments neither evolve to follow new trends
in software development nor are commercially supported. Clearly, a successful
DSDE must support high levels of customization and be built on top of existent,
evolving, supported tools and applications.

DSDEs are usually developed using one of two approaches. In the first one,
the starting point is a working software development environment on top of
which some enhancements are produced to create a more collaborative envi-
ronment. Typically a collaborative library or toolkit is adopted, e.g., Tukan is
developed over a Smalltalk environment and COAST [7]. In the second approach,
the starting point is a distributed programming platform (e.g message passing,
distributed objects, or shared memory) or a collaborative library. The software
engineering support is completely programmed from the scratch, e.g., MILOS.
Both approaches require a large programming effort. We propose a third ap-
proach, based on the existence of a collaborative middleware.

3 Middleware Architecture

The proposed middleware architecture (Fig. 1) is composed of three types of ele-
ments connected by an event notification service. The first element is the CASE
tool, or application, that supports a specific set of operations and deals with
end-user input and output. The CASE tool provides a rich context for software
engineering activities that is explored as a source of awareness information.

The second element, the collaborative extension, also provides end-users
with input and output. Mainly, the extension provides some visualization about
events in remote workspaces. We have successfully implemented collaborative ex-
tensions that provide diverse awareness information: telepointers, radar-views,
group and task awareness widgets.

The third element, the collector, monitors operational events in the CASE
tool and its run-time events. The collector is activated by some application oper-
ation, captures data from the application current state, and places new objects in
the event notification system. The collector should be a simple program, so that
it should be easy to maintain and develop. We have successfully implemented
collectors using different approaches: monitoring the application windowing sys-
tem information, input devices, and persistence mechanisms, and also using tool
extension mechanisms and aspect-oriented techniques [8].

The event notification system offers storage, distribution, and query facilities.
The current implementation is based on tuple spaces, a distributed programming
paradigm [10]. A high-performance tuple space server [14] can hold a large num-
ber of independent objects (called tuples) and offers three basic primitives: write,
read, and take. The write primitive places a new tuple in the tuple space. Read
and take are query primitives that receive a query template as a parameter and
return a tuple from the space that satisfies the template. Take is a destructive
query, which means that the tuple is removed from the space.

We summarize the flow of information in the architecture through a de-
scription of four supported activities: capture, secure, analyze, and distribute



Increasing Awareness in Distributed Software Development Workspaces 87

Fig. 1. Middleware architecture.

awareness information events. Since the CASE tools chosen by the team partici-
pants already define the work environment, the main problem is how to capture
the necessary application events. Current DSDEs are programmed specifically to
provide points of capture for the necessary events. In order to provide loose cou-
pling of applications, the architecture use collectors, software programs that are
programmed to collect significant application and environment events. Collectors
are activated by subscription of one or more collaborative extensions. The selec-
tion of collaborative extensions requires the existence of appropriated collectors.
On the other hand, the availability of collectors constrains the applicability of
extensions to a given CASE tool.

An event is defined by the awareness information need of some extension
element. Events can range from simple input and output activity in the end-user
workstation to more elaborate information about operations over the objects
present in the workspace. For instance, a real-time shared workspace extension
may provide a telepointer implementation that relies on mouse move events
collected from the CASE tool run-time environment.

The main concern in this architecture proposal is how to program collectors
without interfering with the application perceived performance. A sensor may
not be able to capture accurately every relevant event and its programming can
be a challenging task, even if the application source code is available. On the
other hand, we assume that risk because programming sensors is less complex
than programming a new DSDE.

Event occurrences are expected to be very high. A database is assumed to
secure all event occurrences for posterior analysis. On a distributed setting, more
than one database may be necessary for different groups and organizations to
control their own data. Event analysis is to be made based on causality of actions
and common operation of artifacts. Some analysis results may be feed back into
the work environment (distribute). A sideshow window may be adopted to notify
team participants of relevant information, thus, reducing the need for another
interference in the applications. Collaborative editing is the more challenging
extension because we need to feed remote events back into the application, which
is not always possible.



88 Marco A.S. Mangan, Marcos R.S. Borges, and Claudia M.L. Werner

4 A Process to Increase Awareness in DSDEs

This process aims to organize guidelines to developers producing a DSDE. The
process definition prescribes four different roles. Each role requires a set of skills
and attributes some responsibilities. Process enactment requires the identifi-
cation of which roles each participant will have. We expect these roles to be
performed by different persons. This allows work specialization and reduces the
complexity of a DSDE.

We summarize the role descriptions as follows. CASE tool developer is
responsible for the development of a particular CASE tool development. This
role may be responsible for providing generic tool extension mechanisms. En-
hancement developer is responsible for a particular collaborative extension.
Integration developer is responsible for develop adapters between a partic-
ular CASE tool and a particular extension implementation. This role requires
a highly skilled programmer. In some cases, this role may need the assistance
of the CASE tool developer. Environment composer is responsible for the
selection and composition of a CASE tool and collaborative extensions in order
to produce an enhanced tool, that is adequate for a particular scenario.

We suggest the following steps to enact the proposed approach: People As-
sessment, the environment composer role lists involved people, roles, and indi-
vidual goals; Tool Assessment, for each person, obtain a list of the tools she
uses; Context Assessment, for each tool, obtain a list of the actions types and
object types each person wants to share and be aware of; Extension Selection,
to select extensions that present context information for the tool set. Extension
developers may be activated in this step to produce new extensions. Collector
Selection, to select collectors that collect context information for the tool set.
CASE tool developers and integration developers roles may be activated on this
last step to produce new collectors. Currently, we are working on the production
and adaption of documents and tools to support the proposed process.

5 Enhancement Examples

In order to evaluate the proposed approach, we are developing some prototypes
that try to reproduce the collaboration support of DSDEs on top of pre-existing
CASE tools. We have selected two CASE tools implementations: the Odyssey
SDE’s [9] Unified Modeling Language (UML) diagram editor (Fig. 2(a)) and the
Eclipse IDE’s text editor (Fig. 2(b)). All tools involved are Java applications.

For the first tool, we initially proposed the following scenario: two developers
need to peer-review a software model. They agree to work together at the same
time, one developer exposes the design rationale and the other places questions
and tries to point out problems while both review the system requirements. One
designer is a senior designer that will take notes during the session. They are not
in the same place, but both have the same CASE tool and access to the same
shared repository. The session will last for about one hour, at an agreed upon
date and time, and communication will be held over a voice chat.



Increasing Awareness in Distributed Software Development Workspaces 89

(a) (b)

Fig. 2. (a) Radar view (small window at left hand side) and telepointers (cursor hands
at center) and (b) Group awareness widget extensions.

This setup could be enacted without further support, although the partic-
ipants would need a communication overhead to give each other indication of
which diagram and model element they are presently reviewing. The application
of strict-WYSIWIS screen sharing (as present in MILOS and commercial appli-
cations) is not adequate to this scenario because the participants need to access
other applications in their workstations (e.g. a text editor to see the require-
ments document and to take notes) and may need to cross-check information of
one diagram in another diagram. To overcome such problems, DSDEs such as
Tukan and Serendipity provide support for relaxed-WYSIWIS application shar-
ing. Unfortunately, both Tukan and Serendipity do not support UML diagrams
and navigation support that are present in the Odyssey SDE.

The scenario indicates that one participant needs to be aware of the current
positioning of the other participant. Relevant application events are mouse, win-
dow, and viewport resizes and moves. Two classic widgets for real-time collab-
orative authoring were implemented as collaborative extensions: a telepointer
and a radar view software components. A collector was designed to capture
the relevant events directly from the application platform’s windowing system.
The extension implementation is a refactoring of support available in groupware
frameworks and kits [12] [11].

For the second tool, we propose the enhancement of awareness information
on the following scenario: a developer is currently making changes to software
code. The changes will take some days to be completed and she may need to ask
some questions to other developers about the code. She is concerned with being
aware of: (a) who is making changes in the same file that she is working on and
(b) someone who had made contributions in the same files in the past.

The information she needs is available from the configuration management
repository’s log file. She would have to pull information and interpret it. Log
entries are not user friendly and she would need to browse the file to organize
the data. We come out with the refactoring of an awareness widget that provides



90 Marco A.S. Mangan, Marcos R.S. Borges, and Claudia M.L. Werner

group awareness information [13]. The widget represents a timeline for each
developer reported in the log file and uses colored bars to represent activity. The
developer is able to quickly find out that three other developers have worked
with the file, and that one of them is working in parallel. The collector monitors
changes in real-time, therefore there is no need to poll the repository to see recent
activity logs. The extension is integrated as a view in the Eclipse environment,
promoting greater availability and organization of awareness information. The
view can easily be hidden and displayed with a simple mouse click.

Available extensions can be applied in both CASE tools, i.e., the telepointers
can be applied in the Eclipse tool and the group awareness can be applied to the
Odyssey SDE. An appropriate collector implementation is the main requirement.
In the examples, the first collector is generic to Java GUI applications, the second
collector must be redefined to the Odyssey SDE, changing the monitoring object
from file changes to model changes.

6 Conclusion

This article presents a middleware-based approach to the enhancement of aware-
ness information available in current software development workspaces. The ap-
proach is a guideline to DSDE developers that want to build collaborative en-
vironments on top of existing CASE tools. This work proposes a new process
to develop DSDEs because current environments are not being applied in real
software development scenarios. We argue that DSDEs will not be adopted be-
cause a software team has the need for specific tools that must be enhanced and
not replaced by collaborative counterparts, which are usually not adequate for
software development. At some extent, the example enhancements demonstrate
the feasibility of this new development approach.

There are some limitations on our approach. Example enhancements are
limited to side-show windows and graphical elements superimposed to the ap-
plication window. The collection of events is easier when the tool already has a
native extensibility mechanism. In general, these extensibility mechanisms offer
quite good flexibility because they must support demanding tools, such as, com-
pilers, reverse compilers, profilers, and model analyzers. Besides these technical
limitations, we have found that the collaborative work process in the enhanced
tool is constrained by the individual work process in the original application.
Therefore, the changes in the application and work processes are conservative.

Currently, we have new collaborative extensions under development that ex-
plore the structure of software engineering models and related metrics. In this
way, we can provide a richer set of awareness information. We expect to pro-
vide a catalog of extensions, tools and collectors along with guidelines about the
applicability of extensions.

Further work will propose two evaluations: a developer evaluation and an end-
user evaluation. The first evaluation will have the process enacted by a team of
developers trying to propose enhancements to a specific scenario. They will be
oriented to adapt current extensions or suggest new extensions. The second eval-
uation will observe the reaction of developers actually using the enhancements
in specific activities.



Increasing Awareness in Distributed Software Development Workspaces 91

Acknowledgments

This work is partially supported by CNPq and CAPES grants.

References

1. Sarma, A., Noroozi, Z., van der Hoek, A.: Palantir: Raising Awareness among Con-
figuration Management Workspaces. Proc. of Twenty-Fifth Int. Conf. on Software
Engineering, May, Portland, Oregon (2003) 444–454

2. Altmann, J., Pomberger, G.: Cooperative Software Development: Concepts, Mod-
els, and Tools. Proc. Tech. of Object Oriented Languages and Systems, Santa
Barbara, Aug. (1999) 194–277

3. Farshchian, B. A.: Integrating Geographically Distributed Development Teams
Through Increased Product Awareness. Information Systems Journal, 26(3), May
(2001) 123–141

4. Grundy, J.C., Hosking, J.G.: Serendipity: Integrated Environment Support for Pro-
cess Modeling, Enactment and Work Coordination. Automated Soft. Eng., Jan.,
Kluwer Academic Publishers (1998) 27–60

5. Herbsleb, J.D., Moitra, D. (eds.): Global Software Development. IEEE Software,
March/April (2001)

6. Maurer, F., Martel, S.: Process Support for Distributed Extreme Programming
Teams. Proc. Int. Conf. on Soft. Eng., Int. Workshop on Global Software Devel-
opment, Orlando, Florida (2002)

7. Schümmer, T., Schümmer, J.: Support for Distributed Teams in Extreme Program-
ming. Succi G., Marchesi M.(eds.), Boston, MA: Addison Wesley (2001) 355–377

8. Kiczales, G.: Aspect-Oriented Programming. ACM Comp. Surveys (1996) 28(4es):
154

9. Werner, C.M.L. et al.: OdysseyShare: an Environment for Collaborative
Component-Based Development. Proc. Information Reuse and Integration Con-
ference, Las Vegas, Nevada, Oct. (2003)

10. Gelernter, D.: Generative Communication in Linda. ACM Trans. Program. Lang.
Systems (1985) 7(1): 80–112

11. Gutwin, C., Greenberg, S.: Effects of Awareness Support on Groupware Usability.
ACM Trans. on CHI (1999) 6(3): 243–281

12. Begole, J., Rosson, R., Shaffer, C.: Flexible Collaboration Transparency. ACM
Trans. on CHI (1999) 6(2): 95–132

13. Kreijns, K., Kirshner, P. A.: The Social Affordances of Computer-Supported Col-
laborative Learning Environments. Proc. 31th ASEE/IEEE Frontiers in Education
Conference, Oct., Reno (2001)

14. GigaSpaces Inc.: GigaSpaces Server. http://www.gigaspaces.com (2004)


	1 Introduction
	2 Distributed Software Development Environments
	3 Middleware Architecture
	4 A Process to Increase Awareness in DSDEs
	5 Enhancement Examples
	6 Conclusion
	References

