
G.-J. de Vreede et al. (Eds.): CRIWG 2004, LNCS 3198, pp. 92–104, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Ariane: An Awareness Mechanism for Shared Databases*

Vaninha Vieira1, Marco A.S. Mangan1,2, Cláudia Werner1, and Marta Mattoso1

1 Computer Science Department, COPPE, Federal University of Rio de Janeiro – Brazil
C.P. 68511, Rio de Janeiro, RJ, Brazil – 21945-970

{vaninha,mangan,werner,marta}@cos.ufrj.br
2 Faculdade de Informática, PUCRS - Rio Grande do Sul, RS, Brazil

Abstract. Awareness is an essential requirement in collaborative activities. This
paper presents Ariane, a generic and reusable awareness infrastructure, inde-
pendent of a specific application or DBMS. Ariane improves the availability of
awareness information to different cooperative applications by monitoring the
application persistence mechanism. A prototype of Ariane was developed using
the Java Data Objects (JDO) persistence mechanism and aspect-oriented pro-
gramming techniques, which were employed in order to increase the potential
reusability of the solution. A preliminary evaluation of the prototype, applied in
an environment for cooperative software development based on components,
confirmed that no additional code is necessary to monitor JDO complaint appli-
cations. Besides, Ariane proposes a multidimensional data structure for aware-
ness information, the awareness cube. On-line analytical processing tools can
be employed to perform queries to retrieve aggregated value from small grained
awareness information.

1 Introduction

Awareness in cooperative work means the knowledge and the understanding of things
that happen or have happenned in the context of the group which are relevant for the
accomplishment of the activities of the participants. The lack of awareness could
result in several problems, such as unmotivated people, conflicts, duplicated or incon-
sistent work [1][2].

Most of the awareness mechanisms proposed in the technical literature develop
specific solutions for particular problem domains. These approaches are hard to gen-
eralize in different situations, compelling cooperative application designers and de-
velopers to recreate awareness solutions in every new application [3].

In cooperative applications, users commonly interact through shared artifacts ma-
nipulation [4]. In order to guarantee the artifacts sharing and durability, database sys-
tems are regularly used for persistence. The knowledge of the changes performed in
the application database helps to clarify the interactions occurred in the group and
further improve the group awareness.

This paper presents Ariane, an awareness mechanism based on the monitoring of
application databases. The main innovation of Ariane is that it is a generic and flexi-
ble mechanism, independent of any specific application or database system. To

* This work was partially funded by CAPES and CNPq agencies.

Ariane: An Awareness Mechanism for Shared Databases 93

achieve flexibility and independence, Ariane was developed using Java Data Objects
(JDO) [5], a standard proposal for transparent persistence in Java applications, com-
bined with Aspect Oriented Programming (AOP) techniques [6]. These technologies
enable the selective activation or deactivation of the awareness mechanism, according
to the application needs. In addition, extensions to the mechanism can be developed
with reduced effort. A contribution of Ariane is the proposal of an awareness cube, a
multidimensional structure to store awareness information which enables OLAP and
data mining tools to be used over past awareness information to analyze group inter-
action and to discover hidden knowledge about the work of the group.

Ariane is a component of the OdysseyShare project [7][8]. OdysseyShare is a col-
laborative version of the Odyssey Software Development Environment (Odyssey
SDE) [9], which supports component-based software development. OdysseyShare
aims to provide a set of tools for group interaction support to be used in Odyssey
SDE. The main contribution of Ariane to OdysseyShare is the monitoring of its per-
sistence mechanism, providing collections of awareness information. These collec-
tions are explored by awareness widgets of OdysseyShare, which are responsible for
data filtering and organization in order to produce appropriate information to different
user categories of the OdysseyShare SDE.

This paper is organized as follows: the next section introduces the awareness prob-
lem in cooperative applications; Section 3 describes Ariane, its awareness process and
architecture; Section 4 presents the Ariane prototype and its use in OdysseyShare;
related work is discussed in Section 5; and, finally, Section 6 concludes this paper
with some final considerations.

2 Awareness in Cooperative Applications

A cooperative application should produce awareness information about things that
happen or have happened in the group context, reporting this information to group
members, in order to improve the interaction between members of a group and to
enable them to coordinate their own activities. The awareness information can be
related to: the group composition (Who are the group participants? What are their
skills? Are they available?), the group objectives (What are the activities that should
be executed? How will each participant contribute?), and the group activities execu-
tion and coordination (What activities have already been finished? What needs to be
done? Are the members having problems?). Awareness mechanisms are defined as
techniques implemented by a system that aim to support the generation of awareness
information through the monitoring of the overall group activities, and the distribution
of that information to interested group members.

Through awareness information, participants can coordinate their own activities re-
lating them to activities of other participants, discovering and solving problems such
as conflicts, duplicated or inconsistent work. Besides, the group coordinator can bene-
fit from awareness information to identify and resolve high levels of conflicts, prema-
ture decisions and lack of participation [10]. If the coordinator had mechanisms that
gave him relevant information about events, he probably would find it easier to lead
the group to a successful accomplishment [10].

The role a participant plays in the group is important to determine the kind of
awareness information he/she is interested in. Ariane considers three main roles: op-
erators, coordinators and analysts. Operators are those who execute the group activi-

94 Vaninha Vieira et al.

ties working in a cooperative way through a shared workspace. They are interested in
information about occurrences related to their own activity, as for example actions
over artifacts they are or were working on. Most awareness mechanisms proposed in
the technical literature are designed to help this kind of users, specially when they are
working synchronously.

Coordinators are users who are responsible for activities related to make the group
work well and focused on their tasks [10]. They need summarized and aggregated
information about planned and executed activities to identify situations where their
intervention might be necessary, such as when a user has a low level of participation,
when there are high level of conflicts or low level of interaction between participants.
Borges and Pino [10] have identified these activities and related awareness informa-
tion to propose awareness tools to support this kind of users.

Analysts are advanced users who are responsible for analyzing the overall work of
different groups in an organization in order to discover things about the group that
help them making decisions or defining strategies for the group. High level analysis
queries might be “Which users are the most participatives?”, “Which users have abili-
ties to play the coordinator role?”, “How can I improve the productivity of my
groups?”, “Which users work better with whom?” and so on. To answer these kind of
questions is not easy. The technical literature lacks discussions and solutions to sup-
port this kind of user in cooperative applications.

The specific objective of Ariane is to support the gathering and distribution of
awareness information related to asynchronous interaction for coordinators and ana-
lysts. The next section describes the proposed mechanism.

3 The Ariane Awareness Mechanism

The Ariane awareness mechanism was designed to provide awareness information in
a flexible and non-intrusive way taking advantage of the application persistence proc-
ess to collect awareness information. Thus, no change is required in the application
code since persistence is a functionality that is implemented in most applications.

Monitoring the application database can provide a great deal of information about
the actions performed by the group members. However, some actions can not be
monitored. To be monitored the action must generate communication between the
application and the database. Thus, actions such as mouse moving or bar scrolling are
not captured by Ariane.

Ariane is based on event notification. Events are structured messages containing
information needed to promote awareness. There are four event types: Session Event,
refers to actions of opening and closing a connection to a database, Transaction
Event, indicates that a begin transaction, commit or rollback action occurred in the
database, Change Event, reports create, update and delete actions, and Query Event,
concerns retrieve actions. Change and query events can refer to either the database
data or the database schema.

The event structure in Ariane follows the 5W+1H format, which indicates who
executes what action, the date/time when the action occurred under an artifact
(where) for what reason (why) and how it happened. The why and how questions are
very difficult to answer in an automatic way, because the former implies a knowledge
about what the user was thinking when he/she executed the action, and the latter im-
plies a knowledge of the application model. These questions were considered in the

Ariane: An Awareness Mechanism for Shared Databases 95

event structure of Ariane, but they still lack appropriate answers. The next subsections
will describe the awareness process used by Ariane and the Ariane architecture.

3.1 Awareness Process

The Ariane awareness process (Fig. 1) consists of four phases: event production, dis-
tribution, consumption and analysis, and ten activities described in the following.

The event production phase takes place with the following activities: (i) the moni-
toring of the communication between the application and the database to capture ac-
tions performed by application users (awareness producers); (ii) the generation of
event messages containing the 5W+1H information, which are gathered from the
actions captured; and (iii) the storage of the events in the event repository.

In the event distribution phase, there is only one activity: (iv) the events are
transported to awareness components previously registered as event listeners.

The event consumption phase has an activity where (v) visual awareness compo-
nents prepare and present the awareness information in an appropriate representation
to final users (awareness consumers). These awareness consumers might be playing
the role of an operator or a coordinator, as defined in the previous section.

The event analysis phase aims to prepare the generated events for use in tools
based on the On-Line Analytical Process (OLAP) model. To achieve this, the first
step is to prepare the awareness information and store it in a special storage structure
based on multidimensional modeling techniques called awareness cube. To populate
the awareness cube the events must be (vi) extracted from the event database , (vii)
transformed into the multidimensional format, and (viii) loaded in the awareness
cube.

Fig. 1. The Ariane Awareness Process

96 Vaninha Vieira et al.

Using the awareness cube an analyst can: (ix) use any OLAP tool to execute ana-
lytical queries, or (x) apply data mining techniques to discover knowledge about the
group interaction.

The analysis phase in our awareness process and the proposal of a multidimen-
sional structure is a first step to support the analyst role. As we have said in the previ-
ous section, support for analyst users is not stressed in previous awareness mecha-
nisms. The multidimensional model enables flexible visualization of the information,
since the user can freely choose and change the axis and rotations for data visualiza-
tion. Users can choose the granularity they want to visualize the data and the way they
want to see the information (pivot table, graphics, etc).

Awareness filters must be applied in every phase to decrease the information over-
load. In the event production phase, the actions collected are filtered by their type, so
that only actions related to persistent artifacts are monitored. Additional filters are not
considered in this phase because the focus is to monitor the overall communication
between the application and the database. Therefore, the sequence of actions are kept
and can be rebuilt afterwards by the same, or another, application. The distribution
phase uses event types to filter events that should be delivered. Events are classified
by their type and the visual awareness components must register their interest in spe-
cific event types, so that they only receive events from the type that they are regis-
tered for.

In the consumption phase, filters should be created according to the final user pro-
file and must be implemented by the visual awareness components. Finally, in the
analysis phase, filters are provided by the OLAP tools.

3.2 Architecture of Ariane

Fig. 2 illustrates the architecture of Ariane. The components designed and imple-
mented by Ariane are represented by ellipses, and they are the frames named client
and awareness server. Visual awareness components appear to emphasize their role in
the awareness solution. However, cooperative application developers must design and
implement specific visual components that match the awareness needs of the applica-
tion users.

The general operation of the architecture occurs as follows: first, operators (pro-
ducers and consumers) interact with instances of a cooperative application, which
uses a persistence mechanism to store their artifacts in a database (this flow is repre-
sented in Fig. 2 by dotted arrows). A sensor is plugged in to the persistence mecha-
nism and listens to the communication between the application and the database,
reporting all collected information to the awareness server. In the awareness server,
the event handler component checks the event type, creates an event message and
sends the event to all registered components, including the storage handler compo-
nent. The storage handler is responsible for storing the event in the event DB, read-
ing the events already stored, and answering queries performed by visual awareness
components. The visual awareness components receive events from the event handler
(in a synchronous mode related to the action occurence) and from the storage handler
(in an asynchronous mode). They extract the awareness information from the event
messages, prepare and present them to the consumer users, considering their roles and
profile. Periodically, ETL (Extract-Transform-Load) processor component catches

Ariane: An Awareness Mechanism for Shared Databases 97

events from the event DB and loads them in the awareness cube, where the analysts
can use OLAP tools to execute ad-hoc analytical queries.

4 Ariane Prototype Development

In order to validate the feasibility of the Ariane approach, a prototype of the mecha-
nism was developed in the Java platform. Communication between clients and the
awareness server uses Remote Method Invocation (RMI) [11]. The next sections dis-
cuss details related to the development of the main components of Ariane.

4.1 Sensors

Ariane is proposed as a flexible and generic awareness mechanism, independent of a
specific Database Management System (DBMS) or application. The first concern in
the development of the prototype was to define where exactly the Sensor should be
placed in such a way that it could monitor and collect the actions in a non-intrusive
way, requiring no changes in the application and in the DBMS. To accomplish this,
we analyzed the communication between a generic application and a DBMS...

Java was our development platform, therefore, we decided to monitor Java applica-
tions using a standard interface for persistence: Java Data Objects (JDO) [5], that

Fig. 2. Architecture of Ariane

98 Vaninha Vieira et al.

specifies a set of interfaces that define transparent persistence. Using JDO, the appli-
cation is capable of persisting artifacts using any JDO compliant DBMS. Currently,
JDO has many implementations (commercial and open source) and is being consid-
ered as a standard for persistence in Java desktop applications. Also, is crucial to
make sure that the collection of awareness information is done over the object-
oriented application data model and not the underlying persistence relational data
model. This issue is fundamental in the event consumption phase when the awareness
information gathered can easily be understood by the application users, since its se-
mantic is in the same level of the application semantics.

The Sensor must be connected to a JDO-compatible persistence mechanism (JDO
implementation) to monitor the events. The second main issue concerning the proto-
type development was how to implement the Sensor without changing a specific JDO
implementation “by hand”? We must consider that better and more robust JDO im-
plementations are commercial and their source codes are not available to be changed.

To solve this issue, Ariane implements the Sensor as an aspect. Aspects constitute
the programming unit in the software development paradigm called Aspect Oriented
Programming (AOP) [6]. Aspects describe and implement application crosscutting
concerns, clearly separating them from the application base code. A weaver mecha-
nism merges the aspect code with the application base code so that they are compiled
as one single unit. Ariane uses AspectJ [12], that extends the Java language with AOP
constructs. AspectJ enables weaving over bytecodes, therefore it is not necessary to
access, to know or to understand the JDO implementation source code, since the Sen-
sor, as an aspect, specifies the monitoring code based on JDO standard interfaces .
Fig. 3 ilustrates the overall idea of how AOP works in Ariane.

������

��	
����
�
���
��

����������

��	
�����������
��

�
��
���
���
��

������

������������

��	
����
�
���
��

����������

��	
����
�
���
��

����������

��	
�����������
��

�
��
���
���
��

������

Fig. 3. Weaving of sensor code and JDO Integration interfaces using AOP

One important advantage in using the AOP approach is that it makes possible to
implement additional sensors. Thus, different event types could be defined (as, for
example, mouse moving or key pressing) or even the monitoring of different persis-
tence mechanisms or the application itself could be implemented is a similar way.

4.2 Event Handler

The event handler receives, from the sensor, information about the action and creates
correspondig events according to the 5W+1H format. These events are propagated to

Ariane: An Awareness Mechanism for Shared Databases 99

the storage handler and to all visual awareness components that have registered inter-
est in the event type. This propagation was developed following the model used in the
Java Abstract Windowing Toolkit (AWT) and Java Beans [13]. The events are classi-
fied by their types and each event has a corresponding event class and listener inter-
face. The visual awareness components should implement the listener interface re-
lated to their desired event types and should register themselves as interested in the
event handler. When a new event is created, the event handler verifies all registered
listeners for that event type and sends them a notification message.

4.3 The Awareness Cube

Multidimensional modeling is a discipline that structures data with the purpose of
analysis and performance and is a common format in OLAP tools [14]. The modeling
of the awareness cube is based on two structures proposed in the technical literature:
the CRUD Cube [15] and the DataWebHouse [14]. The awareness cube was modeled
using the star scheme, a widely used form of multidimensional modeling. This
scheme consists of one central table, named the fact table, which generally contains a
huge amount of data and is linked to several peripheral tables, named dimension ta-
bles, which qualify the data. In Ariane, the fact table stores the events and the dimen-
sion tables store the 5W+1H information, increased with as much information as the
Sensor can capture.

A standard ETL processor was used to load the awareness cube with data extracted
from the event database using an ETL procedure.

4.4 An Example of Use of the Ariane Prototype

Some tests were conducted with the Ariane prototype using the OdysseyShare SDE.
OdysseyShare SDE is developed in Java and can use several persistence mechanisms.
JDO compliant or, partially compliant, mechanisms include the JDO Genie [16] and
the persistent object manager GOA [17]. GOA is currently the OdysseyShare main
persistence mechanism due to its capability of manipulating distributed and mediated
databases [18], and XML documents [19].

We choose to monitor the JDO Genie persistence mechanism since it is considered
one of the best and more popular JDO implementations available. To connect the
Ariane sensor and the JDO Genie, the AspectJ weaver was executed over the main
.jar file of the JDO Genie generating a new .jar file, weaved with the Sensor function-
ality. The new JDO Genie .jar file started to be used by OdysseyShare instead of the
old one. No changes had to be done in OdysseyShare in order to include the monitor-
ing functionality. To OdysseyShare users, the monitoring occurs in a transparent way
and they proceed using the application as before.

Two widgets were constructed to present the awareness information gathered from
monitoring OdysseyShare: (i) ConnectionReport (Fig. 4) that shows Session Events,
reporting which user has connected to which database, open connection time (open
column) and the time they have disconnected (close column), and (ii) EventMonitor, a
tabular interface that shows all events, and all 5W+1H information gathered, acting as
the application log.

100 Vaninha Vieira et al.

Fig. 4. Visual Awareness Component displaying server connection events

Fig. 5. Visual Awareness Components (a) GAW [20] and (b) Awareness Gauge [21]

The events produced by Ariane can be used as data sources to facilitate the creation
of additional visual awareness components that match the needs of the application
users. The same information can be visualized in different ways as, for example, us-
ing a Group Awareness Widget (GAW) [20], a visual component that shows users
connected to a system during a period of time (Fig. 5a), or the Awareness Gauge
Events/Poll [21], a component that presents an amount of events occurred in periods
of time (Fig. 5b). Therefore, Ariane helps to reduce the effort of visual awareness
component developers, since they can just concentrate their efforts in presentation
issues.

An additional possibility for event visualization is provided by OLAP tools
(Fig. 6). These tools provide functionalities that help analysts to understand patterns
and trends in large collections of data. An analyst aware of the group objectives and
activities can benefit from this information to evaluate group performance and detect
situations where an intervention is needed.

Ariane: An Awareness Mechanism for Shared Databases 101

Fig. 6. Awareness Cube – Example of query using an OLAP tool

5 Related Work

There are several awareness mechanisms proposals. Most of them are strongly cou-
pled to a specific cooperative application. Few approaches propose generic and reus-
able awareness mechanisms, such as SISCO [22], NESSIE [23] and BW [1]. Also,
none of the works found reports the use of OLAP to improve awareness in coopera-
tive applications.

SISCO is a cooperation filter for a multi-user generic object-oriented database
(OODBMS). Awareness information is gathered by trapping all accesses made to the
shared objects from both cooperation-aware and unaware database clients. The filter
is responsible only for the cooperation mechanisms, therefore the underlying database
is left unaltered. However, the SISCO prototype implementation was done through
extensions to a specific OODBMS, the Oggetto. Thus, it is restricted to applications
that use that OODBMS. Also, SISCO imposes changes in applications that must con-
nect to the filter instead of the DBMS. Since Ariane monitors a standard persistence
mechanism, there are no restrictions related to the DBMS used by the application and
no changes in the application are necessary.

NESSIE is an awareness infrastructure for cooperative environments. Key ele-
ments of NESSIE are an application independent generic infrastructure, an open and
extensibleprotocol including dynamic event types, and a set of sensors and configur-
able indicators, both for discrete and contextual event notifications. However, the
events captured by NESSIE sensors come from changes occurred in a specific
NESSIE client or the events are explicitly communicated by the applications using
HTTP and CGI scripts. In Ariane, events are generated in an automatic and non-
intrusive way, being gathered from the current persistence process of the application.

Finally, BW is a framework that supports asynchronous awareness of past events
and has been designed to be used when developing new groupware applications and
also to improve existing ones. By being a framework, BW does not implement all
functionality needed to promote awareness, demanding extensions to be done in the
groupware application in order to use its services. Also, BW forces applications to
communicate directly event ocurrencies. Ariane can be used as a plug-in component,
which can be connected to or disconnected from the application, without changing its
behavior.

102 Vaninha Vieira et al.

6 Conclusion

This paper presents a generic and reusable awareness infrastructure independent of a
specific application or DBMS. Ariane improves the availability of awareness informa-
tion to different cooperative applications by monitoring the application persistence
mechanism. This infrastructure can be reused in the construction of many cooperative
applications and awareness components.

Ariane monitors application actions performed over its persistent artifacts and con-
sequently over the application database itself. Ariane uses an awareness process based
on four tasks: production, distribution, consumption and analysis of events. Events are
produced by sensors, coupled to the application persistence mechanism. Event data
can be easily consumed and interpreted by different visual awareness components.
Events are stored in a database, therefore allowing the building of group memory. The
proposal of an awareness OLAP cube, a multidimensional structure to organize and
mine the event database, may help work group specialists to analyze group interac-
tions. OLAP tools allow ad-hoc queries, appropriated to decision making and analysis
of group interaction.

A prototype of Ariane was developed using the Java Data Objects persistence
mechanism and aspect-oriented programming techniques, which were employed in
order to increase the reusability potential of the solution. A preliminary evaluation of
the prototype applied in OdysseyShare SDE, an environment for cooperative software
development based on components confirmed that no additional code is necessary to
monitor JDO complaint applications. Ariane helps cooperative application developers
in the construction of new awareness solutions, since they can focus on information
processing and presentation issues.

The Ariane prototype opens up many many possibilities of research. Currently, we
are evaluating three different applications. First, a future work in the CSCW field is to
use this approach to create context-aware applications [24], using sensors to help
identify context elements. Second, in the software engineering field; another possibil-
ity would be the development of Personal Software Process (PSP) applications [25],
monitoring patterns that would reveal current practices used by a software team. An-
other application in software engineering would be the construction of operation-
based configuration management applications, that need to control all the artifact
manipulation occurred in a given period of time.

Current work tries to development of sensor implementations for different persis-
tence platforms and applications and is concerned with the organization of large col-
lections of application event data in different application domains. These data will be
explored in future analysis.

Ackowledgments

The authors would like to thank CAPES and CNPq for their financial support. The
first author also thanks the UFBA for their support.

Ariane: An Awareness Mechanism for Shared Databases 103

References

1. Pinheiro M. K., Lima J. V., Borges M. R. S.: A Framework for Awareness Support in
Groupware Systems. In: Proc. 7th International Conference on CSCW in Design, Rio de Ja-
neiro, Brasil, (2002), 13-18

2. Sohlenkamp M., Prinz W., Fuchs L.: POLIAwac: Design and Evaluation of an Awareness
Enhanced Groupware Client, AI & Society Journal, v. 14, (2000), 31-47

3. Gutwin C., Greenberg S.: A Descriptive Framework of Workspace Awareness for Real-
Time Groupware. In: Computer Supported Cooperative Work, v. 11(3-4), Special Issue on
Awareness in CSCW, Kluwer Academic Press, (2002), 411-446

4. Preguiça N., Marting J. L., Domingos H., Duarte S.: Data Management Support for Asyn-
chronous Groupware. In: Proc. of the 2000 ACM Conference on Computer-Supported Co-
operative Work, Philadelphia, PA, USA, (2000), 68-78

5. Russell C.: Java Data Objects (JDO) Specification - Final Release. In:
http://jcp.org/aboutJava/communityprocess/final/jsr012/index.html, Access in 06/2004

6. Kiczales G, Lamping J, Mendhekar A, Maeda C, Lopes C.V., Loingtier J.M., Irwin J: As-
pect Oriented Programming. In: Proc. of the European Conference on Object-Oriented Pro-
gramming, v. 1241 of LNCS, Springer-Verlag, (1997), 220-242

7. Mangan M. A. S., Araújo R. M., Kalinowski M., Borges M. R. S., Werner C. M. L.: To-
wards the Evaluation of Awareness Information Support Applied to Peer Reviews of Soft-
ware Engineering Diagrams. In: Proc. of the 7th International Conference on CSCW in De-
sign, Rio de Janeiro, Brasil, (2002), 49-54

8. Werner C. M. L. et al.: OdysseyShare: an Environment for Collaborative Component-based
Development. In: IEEE International Conference on Information Reuse and Integration,
Las Vegas, USA, (2003), 61-68

9. Braga R. M. M., Werner C. M. L., Mattoso M. L. Q.: Odyssey: a Reuse Environment Based
on Domain Models. In: 2nd IEEE Symposium on Application-Specific System and Software
Engineering Technology, Richardson, USA, (1999), 50-57

10. Borges M. R. S., Pino J. A.: Awareness Mechanisms for Coordination in Asynchronous
CSCW. In: 9th Workshop on Information Techonologies and Systems, Charlotte, North
Carolina, (1999), 69-74

11. Sun: Java Remote Method Invocation (RMI), In: http://java.sun.com/products/jdk/rmi/, Ac-
cess in 06/2004

12. AspectJ: AspectJ Project Home Page. In: http://www.aspectj.org, Access in 06/2004
13. Sun: JavaBeans Specification. In: http://java.sun.com/products/javabeans/docs/spec.html,

Access in 06/2004
14. Kimball R., Merz R.: The Data WebHouse Toolkit, New York, USA, John Wiley & Sons,

Inc., (2000)
15. Sulaiman A., Souza J. M., Strauch J. C. M.: The Crud Cube. In: Technical Report ES-

616/03. COPPE/UFRJ, (2003), http://www.cos.ufrj.br/publicacoes/reltec/es61603.pdf. Ac-
cess in 06/2004

16. Hemisphere: JDO Genie. In: http://www.hemtech.co.za/jdo/index.html, Access in 06/2004
17. GOA: GOA Home Page. In: http://www.cos.ufrj.br/~goa/, Access in 06/2004
18. Souza R. P., Costa M. N., Braga R. M. M., Mattoso M. L. Q., Werner C. M. L.: Software

Components Retrieval Through Mediators and Web Search, Journal of the Brazilian Com-
puter Society, v. 8, n. 2, (2002), 55-63

19. Vieira H., Ruberg G., Mattoso M. L. Q.: Xverter: Querying XML Data with ORDBMS. In:
Web Information and Data Management. In: Fifth International Workshop on Web Infor-
mation and Data Management. ACM Press., New Orleans, USA, (2003), 37-44

20. Kreijns K., Kirschner P. A.: The Social Affordances of Computer Supported Cooperative
Learning Environments. In: 31th ASEE/IEEE Frontiers in Education Conference, Reno,
NV, (2001), 12-17

104 Vaninha Vieira et al.

21. De Souza C. R. B., Basaveswara S. D., Redmiles D. F.: Using Event Notification Servers to
Support Application Awareness. In: IASTED International Conference on Software Engi-
neering and Applications, Cambridge, MA, (2002), 691-697

22. Mariani J. A.: SISCO: Providing a Cooperation Filter for a Shared Information Space. In:
Proc. of the International ACMSIGGROUP Conference on Supporting Group Work: The
Integration Challenge, Phoenix, Arizona, USA, New York: ACM Press, (1997), 376-384

23. Prinz W.: NESSIE: An Awareness Environment for Cooperative Settings. In: Proc. of the
Sixth European Conference on Computer Supported Cooperative Work, Copenhagen,
Denmark, (1999), 391-410

24. Dey A. K.: Understanding and Using Context. In: Personal and Ubiquitous Computing
Journal, v. 5 (1), (2001), 4-7.

25. Humphrey W. S.: The Personal Software Process (PSP). In: Technical Report CMU/SEI-
2000-TR-022, http://www.sei.cmu.edu/publications/documents/00.reports/00tr022.html,
Access in 06/2004.

	1 Introduction
	2 Awareness in Cooperative Applications
	3 The Ariane Awareness Mechanism
	3.1 Awareness Process
	3.2 Architecture of Ariane

	4 Ariane Prototype Development
	4.1 Sensors
	4.2 Event Handler
	4.3 The Awareness Cube
	4.4 An Example of Use of the Ariane Prototype

	5 Related Work
	6 Conclusion
	References

