
COVE: A Design and Implementation of
Collaborative Object-Oriented Visualization

Environment�

Hyung-Jun Kim, So-Hyun Ryu, Young-Je Woo, Yong-won Kwon, and
Chang-Sung Jeong

Department of Electronics Engineering, Korea University, Anamdong 5-ka
Sungbuk-ku, Seoul 136-701, Korea

FAX: +82-2-926-7620, Tel: +82-2-3290-3229
hjkim@snoopy.korea.ac.kr

csjeong@charlie.korea.ac.kr

Abstract. In this paper, we present a collaborative visualization en-
vironment(COVE).Our COVE provides not only collaborative but also
paralleled computing environments based on distributed object model
at once. It is built as a collection of concurrent objects which interact
each other and consist of two types of objects : collaborative object and
application object, which are used to construct collaborative and par-
alleled computing environments respectively. Collaborative objects en-
able COVE to execute various collaborative functions, while application
objects enable it to execute various visualization modes in a parallel
computing environment. COVE provides a flexible and extensible frame-
work by plugging the proper application objects into COVE, and making
them interact with one another through collaboration objects. COVE is
built on DOVE(Distributed Object-oriented Virtual computing Environ-
ment), a new parallel programming environment based on distributed ob-
ject model. In DOVE, virtual environment is constructed as a collection
of concurrent objects, each of which has its own computing power, inter-
acts with one another by remote method invocation and those objects can
be handled as the same way as local objects. Also, heterogeneity, object
group, multiple method invocation to object group, object life manage-
ment,and naming service of object manager are supported to provide a
transparent programming environment for parallel and distributed ap-
plication. We designed collaborative work manager, session manager and
application manager for managing cooperative work and ray casting algo-
rithm is adapted for visualization algorithm. Our implementation result
shows that various DOVE functionalities make COVE more extensible,
scalable and efficient in distributed computing environment.

� This work has been supported by KIPA-Information Technology Research Center,
University research program by Ministry of Information & Communication, and
Brain Korea 21 projects in 2003

J. Favela and D. Decouchant (Eds.): CRIWG 2003, LNCS 2806, pp. 42–57, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.3
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [594.962 841.96] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 2400 dpi
 Downsampling für Bilder über: 3600 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Abbrechen
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Error
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile (Ø©M)
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.3
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends true
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo true
 /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 2400
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

COVE: A Design and Implementation 43

1 Introduction

During the last decade, increases in computing power of desktop computers and
high-speed computer networks made it possible to build multimedia collaborative
application for multi users. Such applications can solve the restriction of space
for data storage, memory, and computing power, and support co-working and
exchanging information between remote users. So the need of multimedia collab-
orative application is increasing in various field. So far, some kinds of multimedia
collaborative applications supporting multi users have been developed by using
several different programming paradigm, primarily socket programming model.
But recently, object-oriented programming model which solves problem by in-
teractions of objects is prevalent and distributed object models such as OMG
CORBA [5], JAVA/RMI [6] and DCOM [7] have been spotlighted to tackle the
problems inherent in distributed computing on a heterogeneous environment.
Distributed object model provides an easy programming environment by sup-
porting transparency of distributed objects, plug and play of software as well as
the advantages of object oriented programming such as reusability, extensibility,
and maintainability through abstraction, encapsulation and inheritance. How-
ever, it lacks some functionalities for distributed and parallel applications, since
they are based on client-server model. It does not support group operations, and
has some difficulties in implementing efficient parallelism by using asynchronous
communications.

In this paper, we present a new collaborative visualization environment,
COVE(Collaborative Object-oriented Visualization Environment) which enables
multiple remote users participate in and discuss cooperative visualization work
together. COVE is built based on our DOVE(Distributed Object-oriented Vir-
tual computing Environment) [18], new parallel programming environments
called based on distributed object model. DOVE build a virtual environment
as a collection of concurrent and autonomous objects interacting with one an-
other via method invocation. It appears to a user logically as a single virtual
computer for a set of heterogeneous hosts connected by a network as if objects
in remote sites reside in one virtual computer.

We designed COVE as a collection of collaborative work manager, session
manager, Front-End and Collaborative application on the basis of DOVE for
managing cooperative work and ray casting algorithm is adapted for collabora-
tive visualization application.

The outline of our paper is as follows: In section 2, we describe previous
works which are related to our work. In section 3, describe COVE architecture
based on distributed object model. In section 4, we present our implementation
result of COVE which use ray casting as a visualization algorithm. Finally, a
conclusion will be given in section 5.

2 Related Work

In this section, we describe several existing distributed computing systems and
heterogeneous collaborative environments based on them.

44 H.-J. Kim et al.

2.1 Distributed Computing Environment

Distributed programming model can be broadly classified into message passing
model and distributed object model. In message passing model, a program is di-
vided into components or tasks, which may run on different nodes of machines.
The tasks communicate with each other by explicitly sending and receiving mes-
sages. In distributed object model, often called method invocation model, a pro-
gram consists of distributed objects which interact with one another by method
invocation. PVM [9] and MPI [8] are distributed programming systems based
on message passing model, while CORBA [5] and Legion [10] based on method
invocation model.

MPI is a single standard programming interface mainly designed for de-
veloping high performance parallel applications with emphasis on a variety of
communication pattern and communication topology. However, MPI lacks in
functionalities such as process control, resource management and fault-tolerance.
PVM is one of the most widely used distributed computing systems based on
the message passing model, and connects together separate physical machines
into a virtual computer by providing process control, simple message passing
and dynamic process group management. In PVM, a daemon process, which
runs on each host of a virtual machine, is used not only as process controller but
also message router, which may result in communication bottleneck as all tasks
heavily depend on daemon processes.

Legion is an architecture based on a distributed object model and designed
to build system service which provides a virtual machine using shared object,
shared name space, fault-tolerance. Legion uses data flow model as parallel com-
putation model, and parallelisms are implicitly supported by the underlying
runtime system. However, management of data dependency graph for every in-
vocation as well as scheduling nodes of the graph may incur additional com-
putation overhead, and no support for object group may cause communication
inefficiency. CORBA is a vender-independent standard which aims at interoper-
ability and portability of distributed applications. CORBA defines a distributed
object model for accessing distributed objects. It includes an Interface Descrip-
tion Language, and a specification for the functionality of run-time systems that
enable access to objects. But CORBA is based on client-server model rather than
a parallel computing model, and hence it is not adequate to provide a virtual
machine. Also, it is not well suited to distributed applications where performance
requirements demand asynchronous communication and group operations.

2.2 Previous Collaborative Environments

In CVE system, multiple users can interact with each other in real-time, even
though they may be physically located in different places around the world. This
virtual environment provides users a sense of realism by incorporating realistic
3D graphics and stereo sound into the computer-human interface to create an
immersion experience. CVE system gives the users a shared sense of space, and
shared sense of time. It also provides users with the natural ways of communi-
cations and interaction.They achieve their collaborative works with several their

COVE: A Design and Implementation 45

own unique characters and purposes. For example, In SmartCu3D [1] system,
an Internet CVE system, distributed users communicate one another with Be-
havior Based Interaction Management. DISCOVER [2] is CVE project to train
teams for emergencies on ships or rigs. SciCentr [3] CVE system is intended
to become a meeting place, a workplace, and a showcase for the power of the
Internet as a medium for informal science education aimed toward teens and
young adults. Industrial tele-training CVE [4] is designed for training the
operation of ATM switch equipment. These CVEs use specific 3D visualization
and immersion effect to help user’s collaborative work. However,it is not easy
to extend them to other area of part because they have developed with specific
their purpose. And they do not have accelerate operation for Problem Solving
which need High Performance Computing power.

Shastra [11,12] is a scientific groupware developed at Purdue University. It
is composed of multi-layer architecture, where each layer has the responsibility of
connection, communication and collaboration, and supports several tools for use-
ful scientific collaboration. However since Shastra is based on DCE(Distributed
Computing Environment), it is neither completely object-oriented nor suitable
for applications that use distributed object.

MAESTRO [13] is a distributed multimedia collaborative environment de-
veloped at Postech University. MAESTRO provides a rich multimedia collabo-
rative service API which can be used to develop a variety of multimedia applica-
tions easily. MAESTRO API and its underlying service have been modeled and
implemented using the distributed object-oriented approach. CORBA has been
used to design MAESTRO multimedia collaborative services and Orbix has been
used for its implementation.

Sieve [14] is Java-based collaborative modular visualization environment
(CMVE) for construction of interactive visualization. Sieve provides many bene-
fits to data-analysis through data-flow network creation. It supports data analy-
sis over the Web by multiple users’ collaborating in real-time. Furthermore, Sieve
demonstrates several experimental techniques for using the JavaBeans compo-
nent architecture to build collaborative interactive systems.(ex.Interaction, Mod-
ule Configuration, Collaboration and Persistence and Publication) Sieve presents
the user with a large, scrollable workspace onto which data sources, processing
modules, and visualization components may be dropped, linked, and edited.
Modules representing data sources may be written for a wide range of raw data
formats and sources. These may include objects which parse files retrieved over
the Web, objects which access SQL or other databases, and objects which retrieve
data from remote servers using CORBA, Java’s RMI library, or proprietary pro-
tocols. It has good portability for heterogeneous platforms and Object Oriented
Model because it uses Java and CORBA. However it does not support High per-
formance Parallel computing. So this system is not good for the task modules
which need high computing power.

CoVis [15] is Collaborative Visualization Learning system with remote high
school students, teachers and scientists. It was developed at Northwestern Uni-
versity by funding of NSF. Participating students study atmospheric and envi-
ronmental sciences through inquiry-bases activities. Using state of the art sci-

46 H.-J. Kim et al.

entific visualization software, specially modified to be appropriate to a learning
environment, students have access to the same research tools and data sets used
by leading-edge scientists in the field. The CoVis Project provides students with
a range of collaboration and communication tools. The merit of this system
is to support various and helpful functionality for Science Studying. This pro-
vides: desktop video teleconferencing ; shared software environments for remote,
real-time collaboration; access to the resources of the Internet; a multimedia
scientist’s notebook; and scientific visualization software. However, this is too
specified to only Science Learning. it is not easy to extend and apply to other
goal and area. So, it is not suitable to generic collaborative framework that
supports collaboration of ordinary application to multi-user.

CSpray [16] stands for Collaborative Spray rendering and is an extension of
Spray, a visualization application, into a collaborative environment. Spray ren-
dering is a framework which has been developed for visualization using a spray
can; cans are filled with smart paint particles(sparts) that are sprayed into the
data to highlight interesting features. Features are displayed when sparts be-
come activated and leave visualization objects in their path. In order to support
collaboration, CSpray is obtained several features. In CSpray, several users in
a visualization session may analyze a set of distributed data by creating spray
cans loaded sparts. Spray cans may be made public or kept private. Public cans
are visible and accessible by other participants. Participants can see the spray-
ing action of other users in their local window. More than one participant may
be spraying any given time. Once in a while, the attention of the entire group
may be directed at what one of the participants is doing. Participants may also
join and leave the session at any time. However, CSpray is based on a message
passing paradigm, so it has no virtues of object oriented paradigm.

Recently, WWW has become a popular word for application programmers.
And there have been another approaches to develop collaborative applications
on WWW environment. JETS(Java Enabled Telecollaboration System) which
was developed at University of Ottawa is one of those approaches on WWW
environment. JETS [17] is a collaboration system based on Java applet. Because
Java applet is a mobile code, JETS has the advantages of no previous download
or installation. What user in the client part should do is just browsing and
navigating through web page. However JETS has the problems such as security
restriction and performance problem of Java applet.

3 COVE Architecture

3.1 Overall Architecture

COVE(Collaborative Object-oriented Visualization Environment) is a frame-
work for collaborative visualization application which has three layered architec-
ture. It consist of three layers such as Collaborative Application(CA) layer, Col-
laboration Environment(CE) layer and Parallel Computing Environment(PCE)
layer.(see Figure 1.) CA layer provides visualization and computation application
modules such as ray caster, ray tracer, image processing module and learning

COVE: A Design and Implementation 47

Parallel Computing Environment(PCE) layerParallel Computing Environment(PCE) layer

Collaboration Environment(CE) layerCollaboration Environment(CE) layer

Collaborative Application(CA) layerCollaborative Application(CA) layer

Cove Runtime SystemCove Runtime System

Method invocation layerMethod invocation layer

Message passing layerMessage passing layer

Communication layerCommunication layer

Host 1Host 1 Host 2Host 2 Host 3Host 3 Host 4Host 4Object
manager

Object
manager

Object
manager

Object
manager

Collaboration
manager

Collaboration
manager

Session
manager
Session
manager

Session
manager
Session
manager

FrontEndFrontEnd FrontEndFrontEnd FrontEndFrontEnd FrontEndFrontEnd

Ray Caster Ray Tracer
Image processing

module
Learning system

module

Fig. 1. Overall COVE architecture

system module. These modules can be easily plugged into a FrontEnd object
which is provided by CE layer. Using this module plug-in feature, user can eas-
ily construct flexible collaborative application. CE layer provides several useful
collaborative components to construct more efficient and easy-to-use collabo-
rative visualization environment:FrontEnd, Session manager and Collaboration
manger. PCE layer provides feature of distributed object model and consist
of three sublayer such as method invocation layer, message passing layer and
communication layer. method invocation layer supports functionality of remote
method invocation and it uses function of message passing layer for sending and
receiving an invocation request message and result reply. Communication layer
provides various communication protocols to upper two layers. PCE layer also
manages usable computation resources. For the purpose of managing computa-
tion resources, PCE layer uses special distributed object called Object Manager.
Object Manager exists per Host, and provides crucial services such as object
creation and naming service. PCE layer implementation is based on DOVE [18].

3.2 Parallel Computing Environment(PCE)

Distributed Object Model. COVE is based on distributed object model
which consists of several distributed objects interacting with each other using
method invocation mechanism. Distributed object is divided into interface ob-
ject and implementation object. (See figure 2.) The interface object is distributed
to applications which are to use the distributed object, and it provides interac-
tion point to its corresponding implementation object. Users can issue a method
invocation to the distributed object by invoking the method of its interface ob-
ject, a local representative of the distributed object. Method invocation to the
interface object is converted to the invocation message by stub object, and sent
to the corresponding implementation object by COVE run-time system. On the
opposite side, the receiver’s run-time system unmarshals the invocation mes-
sage, and invokes the appropriate method of the target implementation object

48 H.-J. Kim et al.

COVE run-time system

Object
Manager

Object
Manager

Implementation
object

Object
Manager

group

Interface
objects

Stub
objects

Implementation
object

Skeleton
object

execute execute

COVE distributed object COVE distributed object

COVE

Fig. 2. Distributed object model

through skeleton object. A reply message is sent from the implementation ob-
ject back to the interface object, and returned like a normal function call. This
mechanism, which is called remote method invocation(RMI), allows transparent
access to the object irrespective of whether it resides in local or remote site.
In COVE, distributed object behaves either as client or server to interact with
other distributed objects. In other words, it executes the implementation object
for incoming RMI requests, while during the execution of the implementation
object, it generates a remote invocation to the other distributed object using
the interface object as a client. In COVE, object manager exists per host and
it provides a set of indispensable services, such as object creation, deletion and
naming services, to build a transparent and easy-to-use clustered computing
environment. A set of object managers constitutes a single object group which
determines the domain of the virtual parallel environment that might encompass
a huge number of machines and networks. The main features of COVE object
model are as follows.

Concurrency Enhancement Scheme. COVE provides three kinds of RMI
to support various synchronization modes during data exchange between re-
mote objects: synchronous, deferred synchronous and asynchronous RMIs. In
synchronous RMI, sender is blocked until the corresponding reply is arrived. In
deferred synchronous call, the sender can do other work immediately without
awaiting the reply of the RMI, but later at some point must wait for the reply
in order to use the return values. In asynchronous RMI, the sender can proceed
without awaiting the reply similarly as in deferred synchronous one, but the
corresponding upcall method is invoked on the arrival of its reply. These syn-
chronization schemes are fully supported by multilayered architecture in PCE
layer. In distributed system, group communication pattern is often used, since
it provides simple and powerful abstraction. In COVE, group communication
mechanism is supported by introducing a new construct, object group, as means

COVE: A Design and Implementation 49

FrontEnd

Computation

module

GUI

Visualization

module
FrontEnd

Raycaster

GUI

Data display

FrontEnd

Raytracer

GUI

White board

Collaboration

manager

Session

manager

Session

manager

Host1 Host2

Host3 Host4

Fig. 3. Components of Collaborative Environment

of grouping objects and naming them as one unit for RMIs. An interface object
can be bound to its corresponding object group, and a RMI issued on the in-
terface object is transparently multicast to each implementation object in the
group. Interface object to the object group has the same interfaces as the one
to the single object, and provides an interaction point with multiple objects in
the object group so that user treats it just like a single object. Therefore, the
concept of object group allows users to do more simple programming, and to
have chance to get better performance if the underlying communication layer
supports multicasting facilities.

3.3 Collaborative Environment (CE)

COVE(Collaborative Object-oriented Visualization Environment) is a frame-
work for collaborative visualization application. Users on remote site can partic-
ipate in cooperative visualization work, exchange various information they have
and discuss current visualization work in COVE. All those collaborative func-
tionalities of COVE is implemented as several components in CE layer. Each
component in CE is designed as distributed object which is supported by PCE
layer and communicates with each other by remote method invocation. Each
object has its own name provided by PCE layer and this makes it possible
to distinguish all objects from each other guaranteeing its unique existence in
COVE environment.

To develop COVE, we need to define several collaborative components to
construct more efficient and easy-to-use collaborative visualization environment.
The first, we need a CollaborationManager managing and controlling entire col-
laborative environment. The second, we need a SessionManager managing a
collaborative visualization session. And the third, we need a FrontEnd which
can interact with user via GUI and manage visualization and computation mod-
ule according to user interaction directly. FrontEnd has a standard interface for
connections with various visualization and computation modules. So the user

50 H.-J. Kim et al.

can easily plug in FrontEnd with the modules which serve the purpose of col-
laborative work, such as ray caster, ray tracer, wire frame viewer and so on.
The relationship between above three COVE components are shown in figure 3.
Design and implementation details for COVE components are as follows.

CollaborationManager. CollaborationManager is a COVE component, which
manages and controls entire collaborative environment. It maintains information
about all other components and provides object registration service, session cre-
ation service, and environment information service in COVE. Also, it maintains
and updates all SessionManager alias and FrontEnd alias as a list. Therefore
CollaborationManager has the responsibility for registering and deregistering
FrontEnd, creating SessionManager, terminating SessionManager, and sending
session list and user list to FrontEnd requesting them. Besides above functional-
ities, it provides mechanism to guarantee unique object alias for each component
in COVE environment.

SessionManager. SessionManager is a COVE component managing and main-
taining all information concerning session as well as joining and leaving session
service. All information about remote user joining the session is stored in Session-
Manager and data distribution service and access control service are achieved
by contacting SessionManager. To distribute visualization data and result data
to all other remote users more fast and efficiently, each SessionManager has a
FrontEnd group consisting of FrontEnds contained in the same session. Session-
Manager registers FrontEnd alias to its FrontEnd list and also add it to FrontEnd
group whenever joining-session request is received by a FrontEnd. When data
distribution service is requested by a FrontEnd, SessionManager receives and
sends requested data to all remote users in a FrontEnd group at once by mul-
ticasting which PCE layer support. When designing collaborative application
supporting multi-users, we should add data access control to it. For access con-
trol service in COVE, we adopted floor control pattern. Floor control is a manner
to determine the access order to shared data of each FrontEnd. We implemented
several modes of floor control, such as round-robin mode, baton-passing mode
and etc so that user can choose whatever floor control he wants.

FrontEnd. FrontEnd is a COVE component which interacts with user via GUI
and manage visualization and computation modules according to user interac-
tion. It contains GUI for user interaction such as creating and joining a session,
rendering image, exchanging visualization data, choosing flow control and etc.
When a user interaction is retrieved from GUI, FrontEnd processes it by calling
predefined callback function. FrontEnd supports efficient way for data exchang-
ing between remote users. When a FrontEnd joins a session, it is simultaneously
added to FrontEnd group. By joining FrontEnd group, one FrontEnd can send
and receive collaboration data via group method invocation. This increases com-
munication performance in a collaborative application as the same data should
be transferred repeatedly to all users unless there is group method invocation.

COVE: A Design and Implementation 51

FrontEnd Group

FrontEnd1

FrontEnd2
FrontEnd3

FrontEnd4

Collaboration Session
 Manager

data distribution

Fig. 4. Session manager: FrontEnd1 requests new session creation to Collaboration-
Manager and CollaborationManager creates a new SessionManager and session. FE1
joins created session and it becomes a session leader. When a FrontEnd participates in
one session, it is added to FrontEnd group of that session, and data distribution to all
FrontEnds can be done at once by using FrontEnd group which support multicasting

Besides this, FrontEnd manages visualization and computation modules for co-
operative work. In COVE, these modules are developed regardless of COVE en-
vironment. All collaboration-related processes such as data exchanging and task
distribution are assigned to FrontEnd. Various modules are simply plugged-in
to FrontEnd and this makes COVE more extensible and easy-to-use for various
kinds of visualization applications.

3.4 Collaborative Application (CA)

CA layer provides various modules for collaborative application such as ray
caster, ray tracer, image processing module, learning system module and so
on. These modules can be easily plugged into a FrontEnd object which is pro-
vided by CE layer. Using this module plug-in feature, user can easily construct
flexible collaborative application. In this paper, Ray casting is chosen as an ap-
plication visualization algorithm. We designed three collaborative visualization
mode in Ray Caster of COVE application - parallel mode, rotated mode, mul-
tiple mode. Each mode uses extended space-leaping method [21] to accelerate
rendering speed and is designed to have its own unique feature for fast and
efficient rendering in collaborative environment. In COVE, we currently pro-
vide only simple text chatting functionality for communications between remote
users. Adding more complicated and enhanced communication system to COVE
is left as future work.

4 Implementation and Experiment

4.1 Ray Casting Application Implementation

For the experiments and evaluation, we developed a collaborative volume ren-
dering application which uses ray casting algorithm on COVE(Its GUI is seen

52 H.-J. Kim et al.

(a) remote user1 (b) remote user2

Fig. 5. Interface of Collaborative Visualization Application on COVE: (a)shows win-
dows of one remote user and (b) shows of another remote user

All User

FE
Ray

caster

FE
Ray

caster

FE
Ray

caster

FE
Ray

caster

FE
Ray

caster

FE
Ray

caster

FE
Ray

caster

FE
Ray

caster

All User Multicast

FE

Ray caster

Volume Data

Master

Fig. 6. Illustration of Parallel Visualization

at the Fig. 5). This application has three rendering modes such as parallel vi-
sualization mode, rotated visualization mode and multiple visualization mode.
detail of each mode is as follow.

Parallel Visualization Mode. As ray casting is a highly time consuming pro-
cess, many ray casting acceleration techniques and parallel algorithms have been
developed. Parallel visualization mode is designed to render one image as fast
as possible by dividing task into small subtasks and then assigning them to all
remote users participating collaborative work. For fast and efficient ray casting,
we used extended space-leaping technique and image based parallel algorithm.

In parallel visualization mode, only rendering leader have right to render
volume image. That is to say, when rendering mode is set to this mode, only

COVE: A Design and Implementation 53

All UsersMulticastAll User

FE
Ray

caster

FE
Ray

caster

FE
Ray

caster

FE
Ray

caster

FE

Ray caster

Volume Data

Master

Fig. 7. Illustration of Rotated Visualization

leader can choose viewing direction and render image by pushing render button.
Other remote users can do nothing but provide their computing resources to
parallel collaborative work and examine the received result image. This is for high
performance of parallel rendering process by preventing remote users’ individual
usage of computing resources.

Our parallel visualization consists of three phases as follows: In the first phase
we find active pixels and active depths by using forward projection as follows:
Initially, the volume data is partitioned among various processes. Each process
finds non-empty voxel runs for its partitioned volume slice, and then executes for-
ward projection using line drawing algorithm for each voxel run, finally returning
active pixels to the master process. In the second phase, for job assignment, the
active pixels obtained in the first phase are distributed among participators on
COVE from the leader of the session. The value of each active pixel on the screen
is calculated as follows: Generate a ray through the active pixel into the data
space. Starting at the nearest active depth where the ray intersects non-empty
voxel, follow the ray while sampling the volume at constant interval. Accumulate
the color and opacities of these sampled values. Stop following the ray when it
is known that it cannot significantly change its value, or when it intersects the
farthest active depth. In the third phase, the resulting partial images obtained
from the second phase are merged to yield the final image in the master process.

Rotated Visualization Mode. Ray casting algorithm visualizes 3-dimensional
feature of an object on the screen. When visualizing 3-dimensional object, it is
necessary to display the same object from various viewing direction by incremen-
tally rotating it. Animated visualization mode is designed to produce multiple
images of one object from different viewing direction at once. All remote users are
assigned his own viewing direction from leader and render images corresponding
to given viewing direction simultaneously and then result images are exchanged

54 H.-J. Kim et al.

User 1 User 5

multicasting

User 1 User 2 User 3 User 4 User 5

FE

Raycaster

FE

Raycaster

FE

Raycaster

FE

Raycaster

FE

Raycaster

Fig. 8. Illustration of Multiple Visualization

to each other. This mode enables remote users see incrementally rotated images
within constant time regardless of the number of images.

In animated visualization mode, only rendering leader have right to render
volume image as parallel visualization mode. This is for high performance of
rotated rendering process by preventing remote users’ individual usage of com-
puting resources.

Multiple Visualization Mode. Both parallel visualization mode and rotated
visualization mode restrict remote users’ rendering right except rendering leader
to use remote computing resources more efficiently. But in collaborative visual-
ization environment, it is necessary to allow all remote users to render individual
images. Individual image means different data sets, different viewing direction,
different shading effect and so on. Also rendering processes on each remote site
can be implemented independently in time by user interaction. Multiple visu-
alization mode is designed to allow all remote user to have his own data set
and choose his own viewing direction he is interested in. In this mode, whenever
each remote user render an image, rendered result image is sent to all other users
to share various kind of result images. More detailed rendering process for this
mode is as follows:

When rendering mode is set to multiple visualization mode, all collaborative
participants can examine various images of different data sets, shading effects
and from various viewing direction simultaneously. And this makes it possible
that all users can share distributed information on remote sites.

COVE: A Design and Implementation 55

Table 1. Machine specifications

Machine type M1 M2 M3 M4
Model Pentium IV PC USparc1 O2 Octane
CPU P IV UltraSPARC MIPS R10000

Clock(MHz) 1740 143 150 250
Memory(MBytes) 1024 128 128 512

OS Linux 2.2 Solaris 2.5 IRIX 6.3 IRIX 6.5

Table 2. Measurement of relative performance with respect to M1 for ray casting

machine i M1 M2 M3 M4
OS Linux Solaris2.5 IRIX6.3 IRIX6.5

(spec.) (PIV-1.7G) (USparc1) (O2) (Octane)
running time 103.01 413.812 205.390 128.690
relative perf. 1.0 0.249 0.502 0.800

Table 3. Performance results of parallel ray casting on COVE

number of machines 1(M1) 2(M1,4) 4(M1,2,3,4) 8(M1,1,1,1,2,2,3,4) 11(M1,1,1,1,1,1,1,1,2,2,3,4)
expected speedup 1.0 1.8 2.551 6.351 9.551

time (sec) 103.01 70.01 50.012 20.844 13.912
COVE speedup 1.0 1.471 2.060 4.942 7.404

efficiency (%) 100.0 81.72 80.75 77.81 77.52

4.2 Experimental Results

We implemented the parallel rendering on COVE with participators which con-
sists of 12 heterogeneous machines, two Ultrasparc1, one SGI O2, a SGI Octane,
eight Pentium IV PCs running Linux connected by 100 Mbps Ethernet. Our test
data set is a 256 x 256 x 225 human head, and image screen measures 1024 x
1024 pixels. The details of hardware and software information for each machine
are shown in table 1.

Since each machine has different computing power, we have measured the
relative performance with M1 as reference machine by comparing the execution
time of the identical sequential ray casting program on each machine. Then,
the expected speed up is computed as a sum of each relative performance of
participating machines. The relative performance of the machines obtained by
executing the identical sequential ray casting program is shown in table 2. Table
3 shows the execution time, speed up and efficiency of ray casting according
to the number of machines. The efficiency represents the ratio of speedup with
respect to expected speedup. As the number of machines increases, the parallel
algorithm shows relatively good speed up with efficiency around 80% without
degrading its performance due to the communication overhead. The image which
is made through this parallel visualization is scattered to every participator. So,
they can see the image much faster using COVE’s parallel visualization than
using their own single machines.

56 H.-J. Kim et al.

5 Conclusion

In this paper, we have presented a COVE(Collaborative Object-Oriented Visu-
alization Environment) which provides a flexible and extensible framework for
collaborative visualization by integrating collaborative and parallel computing
environments based on distributed object model. It has been built as three lay-
ers : Parallel Computing Environment(PCE), Collaboration Environment(CE),
Collaborative Application(CA).

PCE has been designed to provide an easy-to-use transparent distributed
and parallel programming environment for networked heterogeneous comput-
ers. Besides the traditional client-server model, it offers a peer-to-peer parallel
model of computation by considering a parallel application as a collection of
distributed objects which interact with each other. Efficient parallelism is sup-
ported by two concurrency enhancement schemes which support various types
of synchronization methods and RMI for object group. CE has been designed to
provide an efficient collaborative environment by designing collaborative objects
such as FrontEnd, Session Manager, and Collaboration Manager, while CA pro-
vides users for application objects implementing specific functions. The plug-in
of different application object into collaborative object, FrontEnd, allows ap-
plication developers to easily construct a collaborative environment for diverse
applications. Therefore, COVE can provide a flexible and extensible collabora-
tive environment for not only visualization but also other many applications
such as image processing, distant learning, etc. Three visualization modes are
designed and implemented to support a fast and flexible analysis of visualization
data. Parallel visualization mode has been designed for the fast generation of a
volume image, rotated visualization mode for the generation of animated vol-
ume images, multiple visualization mode for the generation of different volume
images. We have shown the experimental result for parallel visualization mode
on COVE by executing the parallel ray casting algorithm rotating the volume
image on COVE.

References

1. Weihua Wang,Qingping Lin, Jim Mee NG, Chor Ping Low: “SmartCU3D: a Col-
laborative Virtual Environment System with Behavior Based Interaction Manage-
ment”, VRST’01, ACM, Nov 2001.

2. Susan Turner, Phil Turner, Liisa Dawson and Alan Munro: “DISCOVERing the
Impact of Reality”, CVE 2000, San Francisco, ACM, 2000.

3. Margaret Corbit, Bonnie De Varco: “SciCentr and BioLearn: Two 3D Implemen-
tations of CVE Science Museums”, CVE 2000, San Francisco,ACM,2000.

4. J.C. de Oliveira, S. Shirmohammadi, and N.D. Georganas: “Collaborative virtual
environment for industrial training”, Virtual Reality 2000,IEEE, 2000

5. Object Management Group Inc., The Common Object Request Broker: Architec-
ture and Specification, OMG Document Revision 2.2, February 1998.

6. T. B. Downing, Java RMI: Remote Method Invocation, IDG Books worldwide,
1998.

COVE: A Design and Implementation 57

7. E. Frank and III. Redmond, DCOM: Microsoft Distributed Component Object
Model, IDG Books worldwides, 1997.

8. MPI Forum, MPI: A Message-Passing Interface Standard, International Journal of
Supercomputer Application 8, No. 3, 1994.

9. A. Geist, A. Beguelin and et al., PVM 3 User’s guide and Reference manual,
ORNL/TM-12187, September 1994.

10. M. Lewis and A. Grimshaw, The Core Legion Object Model, University of Virginia
Computer Science Technical Report CS-95-35, August 1995.

11. Anupam,V. “Shastra – An Architecture for Development of Collaborative Applica-
tions” Thesis for the degree of Doctor, Dept. of Computer Science Univ. of Purdue,
1995.

12. Anupam,V. and Bajaj,C., “Collaborative Multimedia Scientific Design in Shastra”,
Proc. of the ACM Internation Conference on Multimedia, ACM Press, August
1993.

13. T.H.Yun, J.Y.Kong and J.W.Hong, “Maestro: a CORBA-based Distributed Mul-
timedia System”, Proc. of 1997 Pacific Workshop on Distributed Multimedia Sys-
tems, Vancouver, Canada, July, 1997, pp. 1–8.

14. Philip L. Isenhour,James Bo Gegole, Winfield S. Heagy, Clifford A. Shaffer, “Sieve:
A Java-Based Collaborative Visualization Environment”, IEEE Visualization ’97
Late Breadking Hot Topics Proceedings, Oct 22–24, 1997, pp. 13–16.

15. CoVis Project URL: http://www.covis.nwu.edu/
16. Alex Pang, Craig Wittenbrink “Collaborative 3D Visualization with CSpray”,

IEEE Computer Graphics, Vol. 17, No. 2, 1997, pp. 32–41
17. Shirmohammadi, S. and Georganas, N., “JETS: a Java-Enabled Telecollaboration

System”, Proc. IEEE ICMCS, IEEE Computer Society Press, Los Alamitos, Calif.,
1997, pp. 541–547.

18. C. S. Jeong and H. D. Kim, “DOVE: A Virtual Programming Environment for
High Performance Parallel Computing,”

19. J. Frey, S. Graham, C. Kesselman: “Grid Service Specification. S. Tuecke, K. Cza-
jkowski, I. Foster,” Open Grid Service Infrastructure WG, Global Grid Forum,
Draft 2, 7/17/2002. Lecture Notes in Computer Science, May 2000, pp. 12–21.

20. I. Foster, A. Roy, V. Sander: “A Quality of Service Architecture that Combines
Resource Reservation and Application Adaptation,” 8th International Workshop
on Quality of Service, 2000.

21. S. U. Jo and C. S. Jeong, “A Parallel Volume Visualization Using Extended Space
Leaping Method,” Para 2000, Norway, July 2000, pp. 398–403.

	Introduction
	Related Work
	Distributed Computing Environment
	Previous Collaborative Environments

	COVE Architecture
	Overall Architecture
	Parallel Computing Environment(PCE)
	Collaborative Environment (CE)
	Collaborative Application (CA)

	Implementation and Experiment
	Ray Casting Application Implementation
	Experimental Results

	Conclusion

