
Building Groupwares over Duplicated Object
Systems

Hechmi Khlifi1, Jocelyn Desbiens1, and Mohamed Cheriet2

1 INRS–Télécommunications, Université du Québec, Place Bonaventure, 900, de la
Gauchetière, Ouest, Niveau C, C.P. 644, Montréal (Québec) Canada, H5A 1C6,

{khlifi,desbiens}@inrs-telecom.uquebec.ca
2 École de Technologie Supérieure, Université du Québec, 1100 rue Notre-Dame,

Ouest, Montréal (Québec) Canada, H3C 1K3,
mohamed.cheriet@etsmtl.ca

Abstract. Groupware toolkits let developers build applications for syn-
chronous and distributed computer-based conferencing. Duplicated ob-
ject systems1 (or DoS), on the other hand, manage distributed objects
over the Internet and, since they include high-level features such as com-
munication facilities, load balancing, fault tolerance, and hierarchical
messaging, may be leveraged as building blocks for rapidly developing
groupware toolkits. This paper describes how we built such a group-
ware starting from a particular DoS. The system contains a run-time
architecture that automatically manages the creation, interconnection,
and communications of the distributed processes involved in the working
sessions, a set of groupware facilities allowing users to collaborate, to
take action on state changes, and to share relevant data, and a session
management and user control mechanisms accommodating the group’s
working style.

1 Introduction

Building groupware for synchronous, distributed conferencing can be a frus-
trating experience. If only conventional single-user GUI toolkits are available,
implementing even the simplest systems can be lengthy and error-prone. A pro-
grammer must spend much time on tedious but highly technical house-keeping
tasks, and must recreate interface components to work in a multi-user setting.
Aside from the normal load of developing a robust application, the program-
mer of groupware must also attend to the setup and management of distributed
processes, inter-process communication, state management and process synchro-
nization, design of groupware widgets, creation of session managers, concurrency
control, security, and so on.

Consequently, a variety of researchers have been exploring groupware toolk-
its [9]. Their purpose is to provide tools and infrastructures powerful enough
1 Object duplication is a distributed object paradigm created and put forward by
Quazal Inc., a Montréal based company where one of the author worked for one and
a half year.

J.M. Haake and J.A. Pino (Eds.): CRIWG 2002, LNCS 2440, pp. 245–254, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



246 H. Khlifi, J. Desbiens, and M. Cheriet

to let a programmer develop robust, high quality groupware with reasonable
effort. Some inroads have been made, but we are far from a complete solution.
Realistically, most of today’s groupware toolkits are best seen as breakthrough
research systems used to either explore particular architectural features of group-
ware toolkits, or as platforms to build experimental groupware prototypes. While
they have not reached the maturity of single-user GUI toolkits, these pioneering
efforts have laid a foundation for the next generation of toolkit design.

The solution we propose to this problem is to build the groupware upon a
DoS. The DoS handles all the low-level technical network details. This allow us
to construct real-time distributed multi-point groupware applications, where two
or more people in different locations would be able to visually share and manip-
ulate their online work. Typical applications produced by this system would be
electronic whiteboards, games, multi-user text and graphics editors, distributed
presentation software, textual chat systems, and so on.

In the second section of this paper we define and describe the principals
features of Duplicated Object Systems. In the third section, we describe how
Synchromedia 2, a distance-learning system, has been built using a DoS.

2 Duplicated Object System

2.1 DoS: Overview

A Duplicated Object System3 is a distributed object architecture where informa-
tion is “pushed” across the network rather than using the less scalable “pull”
approach. The basic philosophy is that a collaborative application consists of
a collection of objects which need to be distributed and duplicated across the
stations participating in the session. Furthermore, the object content needs to
be coherent and upon modification propagated to other stations.

In a collaborative application, shared objects need to be duplicated across
the network so that the participants may see each other. Object duplication is
the mechanism used by a DoS to achieve this. The use of duplicated objects
gives a DoS significant advantages over other technologies when it comes to the
features offered and the ease of programming as they allow high level features
such as fault tolerance, load balancing, and object migration to be presented to
the user in an easy to use manner.

A duplicated object has the status of either duplication master or duplica.
The duplication master of an object is the controlling instance of the object,
while its duplicas are copies of the master object. If a participant joins a ses-
sion that is already in progress, duplicas of the existing duplicated objects that
the new participant requires will be automatically created on that participant’s
station. The object duplication model used by a DoS allows the programmer to
define where objects are required to be duplicated via several different imple-
mentations, as detailed below.
2 Synchromedia: Tele-education and tele-research global university. École de Technolo-
gie de l’Information. Université du Québec.

3 Or DoS for short.



Building Groupwares over Duplicated Object Systems 247

2.2 Object Duplication

To enable participants to see each other, duplicated objects need to be duplicated
to those stations that require the object. However, to enable a session to be scaled
and to operate efficiently, each station connected to a session should only have
copies of the objects that it really needs. This ensures that the use of resources
such as CPU and bandwidth are minimized, which allows for a greater number
of simultaneously connected users. In a DoS, there are possibly four mechanisms
used to duplicate objects to the stations where they are required: a duplication
master may create a duplica on a particular station, a station may fetch a duplica
of a specific duplication master, an object may be automatically duplicated to
all participating stations, or duplication spaces may be used to dictate where
objects should be duplicated to. The flexibility of the duplication model allows
the programmer to use any combination of these four mechanisms to control the
duplication of objects across the stations connected to the session. This gives the
programmer the ability to decide how many duplicas of each object are published
and to which stations so that objects are only duplicated to the stations where
they are needed. The level of control that the developer has also facilitates the
optimization of resource usage, such as the available memory and bandwidth.

If an object is required to be known globally, the easiest way to be certain that
it is duplicated to all stations participating in the session is to ensure that the
user-defined class inherits from the appropriate DoS class. This will guarantee
that the object will be duplicated to each station connected to the session.
If an object is not required to be known globally then the programmer must
dictate the conditions under which an object is duplicated. This can be done by
simply directly calling the appropriate method to create a duplica on another
station or to fetch a duplica from another station. In certain situations, this
may be the simplest manner in which to duplicate objects. However, if objects
are simultaneously created, migrated, or deleted, due to operations such as fault
tolerance and load balancing, object duplication can become very complex and
the implementation of duplication spaces will usually present an easier solution
to the management of object duplication.

3 Building a Groupware over a DoS: Synchromedia

Synchromedia is a distance-learning project involving four universities and about
ten researchers. It is made up of a collection of collaborative tools (whiteboard,
chat, audio/video, shared directories, and virtual laboratory) allowing students
to work together and to interact as if they were in a real classroom.

Synchromedia is a typical example of a groupware made from a DoS. The
Dos we used is NetZ [7]. Figure 1 is a snapshot of the user’s interface.

3.1 Communications in Synchromedia

Communication across a large network presents a number of difficulties that need
to be overcome in order to produce an efficient and operable system. The types



248 H. Khlifi, J. Desbiens, and M. Cheriet

Fig. 1. User’s interface

of problems encountered are the numerous combinations of connection types and
processing power that each station may have which leads to non-uniform station
capacities and available bandwidth. In addition, the variety of transport types
means that stations with no common transport cannot communicate directly
with each other. In the case of Synchromedia, the DoS communication model
deals with these problems thus relieving the programmer of these complex issues.

To solve the problem of different transport types, a DoS performs automatic
message routing as required. Therefore, if a station cannot directly communicate
with a station to which it wishes to send a message, the DoS will automatically
route the message via another station. This is useful to circumvent firewalls and
to enable two stations that do not have a common transport type to communi-
cate.

3.2 Maintaining Consistency in Synchromedia

Synchromedia is made of duplicated objects. Collaborative work consists on
the sharing of a collection of duplicated objects. Each duplicated object has
a master and duplicas. The master is responsible of updating the itself and its
duplicas. When a user perform an action on the master, the master take charge of
distributing the effect of this action on all its duplicas. If the action is performed
on a duplica, this duplica notify its master about it and the master distribute
its effect of the action to all other duplicas.

This approach permit to avoid the emergence of inconsistency rather then
allow it and reestablish consistency as some other systems do [3,4]. For each
duplicated object, a DoS uses ordering to avoid inconsistency. Ordering consists



Building Groupwares over Duplicated Object Systems 249

on accepting actions that may cause inconsistency and postponing their exe-
cution to a moment that will not cause the emergence of inconsistency. This
approach is also known as serialization [3]. Various approaches exist that can
ensure consistency requirements based on logical time [6] (FIFO, CAUSAL and
TOTAL). FIFO order implies that messages from the same source to the same
destination are delivered in their order of generation. CAUSAL [6] order implies
that messages that are linked by a causal relation are delivered in FIFO order.
TOTAL order implies that all destinations receive all messages in the same order
regardless of their emission order.

A DoS uses a TOTAL ordering scheme for each duplicate object. This scheme
guarantee that all copies of any duplicated object remain consistent during the
collaborative work. In that way the whole collaborative work remain consistent.

Although the TOTAL ordering scheme usually increase response times and
notification times, its use within a DoS improves this weakness. In fact, each
duplicated object is treated separately so that the queuing time is reduced. In
addition, masters of duplicated objects are distributed all over the network so
that the the processing charges is shared between many stations.

3.3 Management of Presence in Synchromedia

DoS don’t provide appropriate mechanisms for the control of presence. Although
they provide a joiner-based mechanism for the management of sessions, they
don’t allow the control of groups and users. Groupware developers have to im-
plement their own mechanisms for controlling users and groups.

As part of the project Synchromedia, we designed and implemented a mech-
anism for the management of presence in groupware. This mechanism manage
sessions according to the joiner-based approach, though we added the option of
launching sessions in the absence of users. This option give more independence
to the system towards its users. As far as the management of users and groups
are concerned, we adopted an organization of work meeting the needs of col-
laborative work at the university level. Users are organized in groups, and are
administrated and controlled according to their roles.

Organization of Work. The work in Synchromedia is organized according to
the four next guidelines:

1. a single work space includes all participants in the collaborative works. This
space correspond to the university in the real context;

2. in this work space, there may be as many work groups as one wishes. Each
work group includes all users working on the same theme and having the
same objectives (students and teacher). Work groups are not necessarily
mutually exclusive. This means that a user may belong to more than one
work group;

3. the users of a work group collaborate during a work meeting (i.e., a course).
A users can work simultaneously in many work meetings if he is member of
the corresponding work groups;



250 H. Khlifi, J. Desbiens, and M. Cheriet

4. the users have different rights. These in turn depend on the user’s role. For
instance, a teacher may perform some actions that are not permitted to
student. During a work meeting , each work group is administrated by an
administrator (i.e., the teacher).

Figure 2 illustrates the organization of work mentioned above.

work space

user

administrator

privileged user

work group in a work meeting

Fig. 2. Organization of work

Administration of Users and Groups in Synchromedia. The administra-
tion of users and groups in Synchromédia is made according to a new model that
we called DRBAC (Dynamic Role Based Access Control). This model is derived
from the Role Based Access Control model (RBAC) [8,1,2,5]. RBAC is used to
describe security mechanisms that mediate users’ access to computational re-
sources based on role constructs. A role defines a set of allowable activities for
users authorized its use. It can be thought of as a job title or position within
an organization, which represents the authority needed to conduct the associ-
ated duties. The introduction of roles in the security mechanisms considerably
reduces the cost and complexity of administration ([1] presents an exhaustive
study of this issue). As shown in figure 3, RBAC associates users with roles and
roles with permissions. A permission is the right to perform a given action on a
given object. A user who is authorized to a role, is consequently authorized to
all permissions underlying of this role.

DRBAC is derived from RBAC. It takes advantage of RBAC to reduce the
administration cost. In addition, it provides new features that meet the group-
wares requirements. DRBAC distinguishes between two states of the system:



Building Groupwares over Duplicated Object Systems 251

permission

user

role

objectaction

Fig. 3. RBAC approach

static state and execution state. The static state is the state of the system be-
fore initiating the collaborative work. The execution state is the state of the
system during the collaborative work. The figure 4 presents these two states.

In the static state, we introduce a new association action/user that doesn’t
exist in the RBAC. We call this association administration as it refers to actions
that one user may perform on another user. For instance preventing a user from
writing on the whiteboard is an administration that a teacher can perform on
a student. In this way, DRBAC associates, in one hand, users to roles and, in
the other hand, roles to permissions and administrations. Those associations are
immutable during the static state, however they may change during the execution
state. A new association appears also in the execution state. This association
links users directly to permissions and administrations. This association is very
important as far as it results of the administrations performed by privileged
users on others users. For instance if the teacher allows a student to write on the
whiteboard, a new association between this student and the permission write
on the whiteboard appears even though this permission is not allowed to the
role student . The associations between users in one side and permissions or
administrations in the other side are temporary and don’t last after the end of
the collaborative work.

The introduction of the execution state with the DRBAC model permit a
better control of users while working. It permits a real time administration of
users. For instance a teacher is given a mean to modify student’s rights and
privileges, i.e., he may allow or prevent a student from writing on the whiteboard.

DRBAC predicts that users are organized in groups. The creation and de-
struction of groups are also permissions that can be linked to some roles. In



252 H. Khlifi, J. Desbiens, and M. Cheriet

role

action object

role

objectaction

execution statestatic state

user user

Fig. 4. DRBAC approach

addition, groups may be definite statically and users are given or not the right
to gain access to them.

Integration of DRBAC. In order to integrate the DRBAC to Synchromedia,
we have developed the following three components:

– Static DRBAC database: this database is used to specify the users, their
roles and their memberships. To each role is assigned a set of permissions
and administrations. If a user is active in a role, he is allowed to perform all
actions linked to this role.
– Activation manager: this manager is responsible for controlling users within

the execution state of the system. It is directly integrated in Synchromedia.
To each duplicated object User , are associated two structures : a permission
table and an administration table. The permissions table contains the per-
missions of the corresponding user and the administrations table contains
the administrations of the corresponding user. After login, user’s permis-
sions and administrations are downloaded from the static control database
to the structures and distributed to all users of his/her group. When the
user attempts to perform an action, the system verifies his permissions table
before allowing the action to be done. Permissions could be changed at run-
time by an authorized user. The administration table of authorized users
contains the administrations that allow them to modify others’ permissions.
Permissions are actually implemented in the form of a matrix. Rows of a
permission matrix correspond to objects and columns to actions performed
on those objects. The content of a cell (i, j) is a variable that may take one
of the three following values: 0, 1, or -1, 0 meaning that the corresponding



Building Groupwares over Duplicated Object Systems 253

user is not allowed to perform the action i onto the object j, 1 meaning that
he is allowed to perform that action, and -1 meaning that the action is not
defined for the object. Table 5 gives an example of the permissions matrix
of a student in Synchromedia.

Write Erase Change entries Stop
Whiteboard 1 1 -1 -1
Virtual lab -1 -1 0 0

Fig. 5. Student’s permission table

As well as permissions, administrations are also implemented in the form of
matrix. Rows of an administration matrix correspond to roles and columns
to actions performed on the users of those roles. The content of a cell (i, j)
is a variable that may take the values: 0 or 1, 0 meaning that the owner
of this administration table is not allowed to perform the action i onto the
users of the role j, and 1 meaning that he is allowed to do so. Table 6 gives
an example of the administration matrix of a teacher in Synchromedia.

Allow writing Prevent writing Eject
Assistant 1 1 0
Student 1 1 1

Fig. 6. Teacher’s administration table

– Administration tool: the administration tool is an interface designed for the
administration of the static control database. It’s purpose is to let the ad-
ministrator define and modify users, groups, roles, and permissions for the
current session.

4 Conclusion

By abstracting the network layer, a DoS allows groupware developers to concen-
trate their development efforts on content and tools rather than network issues.
Via high-level features such as communication facilities, load balancing, fault tol-
erance, and hierarchical messaging, an DoS-enabled groupware effectively deals
with the Internet’s inherent unreliability, high latencies, bandwidth limitations,
and resource constraints.

In Synchromedia, we have designed and implemented our own mechanism for
the management of presence. The main idea behind this mechanism is to allow
privileged users to administrate their groups during the collaborative work.

Our future work will be focused on the following two directions:



254 H. Khlifi, J. Desbiens, and M. Cheriet

– Comparison between the three run-time architectures used to build group-
wares (centralized, replicated, and DoS architecture). The criteria of compar-
ison are: response time and notification time. This comparison can be made
using a mathematical model, a simulation or by making some experiences
and taking measurements.
– Further development of the DRBAC model, especially to formally define the

different components of this model and to introduce the static and dynamic
constraints that may apply. The existence of a well-defined model will make
easier the implementation of groupwares and give more flexibility to their
use.

Acknowledgments. Netz product was provided by Quazal Inc. from Montréal,
special thanks to all the team up there. This research work was supported by
grants from FODAR (University of Québec Academic Fund and Development
Fund) and the MEQ (Department of Education of Québec).

References

[1] D.F. Ferraiolo, J.F. Barkley, and D.R. Kuhn. A role based access control model
and reference implementation within a corporate intranet. ACM Transactions on
Information Systems Security, 1, February 1999.

[2] D.F. Ferraiolo, J. Cugini, and D.R. Kuhn. Role based access control: Features and
motivations. 1995.

[3] S. Greenberg and D. Marwood. Real time groupware as a distributed system:
Concurrency control and its effect on the interface. In Proceedings of the ACM
CSCW 94 Conference on Computer Supported Cooperative Work, pages 207–217,
October 1994.

[4] A. Karsenty and M. Beaudoin-Lafon. Slice: a logical model for shared editors. In
Real Time Group Drawing and Writing Tools, pages 156–173, McGraw-Hill, New
York, 1995.

[5] D.R. Kuhn. Mutual exclusion of roles as a means of implementing separation of
duty in role-based access control systems. In Second ACM Workshop on Role-Based
Access Control, 1997.

[6] L. Lamport. Time, clocks and the ordering of events in a distributed system.
Communications of the ACM, pages 558–565, july 1978.

[7] Quazal. Net-z 2.0 - technical overview.
[8] R.S. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E. Youman. Role-based access

control models. IEEE Computer, 29(2):38–47, 1996.
[9] T. Urnes and R. Nejabi. Tools for implementing groupware: Survey and evaluation.

Technical Report No. CS-94-03, York University, 1994.


	Introduction
	Duplicated Object System
	DoS: Overview
	Object Duplication

	Building a Groupware over a DoS: Synchromedia
	Communications in Synchromedia
	Maintaining Consistency in Synchromedia
	Management of Presence in Synchromedia

	Conclusion

