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Motivation: why go deep? 

• Deep Architectures can be representationally efficient 
– Fewer computational units for same function 

 
• Deep Representations might allow for a hierarchy or 

representation  
– Allows non-local generalization 
– Comprehensibility 

 
• Multiple levels of latent variables allow combinatorial 

sharing of statistical strength 
 

• Deep architectures work well (vision, audio, NLP, etc.)! 
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Different Levels of Abstraction 

• Hierarchical Learning 
– Natural progression from low 

level to high level structure as 
seen in natural complexity 

 

– Easier to monitor what is being 
learnt and to guide the machine 
to better subspaces 

 

– A good lower level 
representation can be used for 
many distinct tasks 
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Generalizable Learning 

• Shared Low Level 
Representations 

– Multi-Task Learning 

– Unsupervised Training 
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• Partial Feature Sharing 

– Mixed Mode Learning 

– Composition of 

Functions 
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A Neural Network 

• Forward Propagation : 

– Sum inputs, produce activation, feed-forward 
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A Neural Network 

• Training : Back Propagation of Error 

– Calculate total error at the top 

– Calculate contributions to error at each step going 
backwards 

t2 

t1 
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Deep Neural Networks 

• Simple to construct 

– Sigmoid nonlinearity for hidden layers 

– Softmax for the output layer 

• But, backpropagation does not 
work well (if randomly initialized)  
– Deep networks trained with 

backpropagation (without 
unsupervised pretraining) perform 
worse than shallow networks 

(Bengio et al., NIPS 2007) 
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Problems with Back Propagation 

• Gradient is progressively getting more dilute 

– Below top few layers, correction signal is minimal 

• Gets stuck in local minima 

– Especially since they start out far from ‘good’ 
regions (i.e., random initialization) 

• In usual settings, we can use only labeled data 

– Almost all data is unlabeled! 

– The brain can learn from unlabeled data 
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Deep Network Training (that actually works) 

• Use unsupervised learning (greedy layer-wise 
training) 
– Allows abstraction to develop naturally from one layer 

to another  
– Help the network initialize with good parameters 

 

• Perform supervised top-down training as final step 
– Refine the features (intermediate layers) so that they 

become more relevant for the task 
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• Probabilistic generative model 

• Deep architecture – multiple layers 

• Unsupervised pre-learning provides a good 
initialization of the network  

– maximizing the lower-bound of the log-likelihood 
of the data 

• Supervised fine-tuning 

– Generative: Up-down algorithm 

– Discriminative: backpropagation 

Deep Belief Networks(DBNs) 
Hinton et al., 2006 
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DBN structure 
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DBN Greedy training  

• First step: 

– Construct an RBM with 
an input layer v and a  
hidden layer h 

– Train the RBM 

Hinton et al., 2006 
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DBN Greedy training  

• Second step: 

– Stack another hidden  
layer on top of the RBM 
to form a new RBM 

– Fix      , sample     from  
             as input. Train 
       as RBM. 
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19 

DBN Greedy training 

• Third step: 

– Continue to stack layers  
on top of the network,  
train it as previous step, 
with sample sampled  
from  

• And so on… 
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Why greedy training works? 

• RBM specifies P(v,h) from 
P(v|h) and P(h|v) 

– Implicitly defines P(v) and 
P(h) 

• Key idea of stacking 

– Keep P(v|h) from 1st RBM  

– Replace P(h) by the 
distribution generated by 
2nd level RBM 

Hinton et al., 2006 
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Why greedy training works? 

• Easy approximate inference 

– P(hk+1|hk) approximated from the 
associated RBM 

– Approximation because P(hk+1) 
differs between RBM and DBN 

• Training: 

– Variational bound justifies greedy 
layerwise training of RBMs 
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Hinton et al., 2006 
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Denoising Auto-Encoder 

• Corrupt the input (e.g. set 25% of inputs to 0) 

• Reconstruct the uncorrupted input 

• Use uncorrupted encoding as input to next level 

KL(reconstruction|raw input) 
  Hidden code 
(representation) 

Corrupted input Raw input reconstruction 

(Vincent et al, 2008) 
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Denoising Auto-Encoder 

• Learns a vector field towards 
higher probability regions 

• Minimizes variational lower 
bound on a generative model 

• Corresponds to regularized 
score matching on an RBM 

Corrupted input 

Corrupted input 

(Vincent et al, 2008) 
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Stacked (Denoising) Auto-Encoders 

• Greedy Layer wise learning 

– Start with the lowest level and stack upwards 

– Train each layer of auto-encoder on the intermediate code 
(features) from the layer below 

– Top layer can have a different output (e.g., softmax non-
linearity) to provide an output for classification 
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Denoising Auto-Encoders: Benchmarks 
Larochelle et al., 2009 



31 

Denoising Auto-Encoders: Results 
• Test errors on the benchmarks Larochelle et al., 2009 
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Predictive Sparse Coding 

• Recall the objective function for sparse coding: 

 

 

• Modify by adding a penalty for prediction error: 

– Approximate the sparse code with an encoder 
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Sparse Representation (Z) 
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Using PSD to Train a Hierarchy of Features 

• Phase 1: train first layer using PSD 
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Using PSD to Train a Hierarchy of Features 

• Phase 1: train first layer using PSD 

• Phase 2: use encoder+absolute value as feature extractor 

• Phase 3: train the second layer using PSD 

• Phase 4: use encoder + absolute value as 2nd feature extractor 

• Phase 5: train a supervised classifier on top 

• Phase 6: (optional): train the entire system with supervised 
back-propagation 
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Deep Boltzmann Machines 

 

Slide credit: R. Salskhutdinov 

Undirected connections between 
all layers  
(no connections between the 
nodes in the same layer) 

Salakhutdinov & Hinton, 2009 
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DBMs vs. DBNs 

• In multiple layer model, the undirected connection 
between the layers make complete Boltzmann machine. 

Salakhutdinov & Hinton, 2009 
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Two layer DBM example 

*Assume no 

within layer 

connection. 
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Deep Boltzman Machines 

• Pre-training: 

– Can (must) initialize from 
stacked RBMs 

• Generative fine-tuning: 

– Positive phase: variational 
approximation (mean-field)  

– Negative phase: persistent 
chain (stochastic 
approxiamtion) 

• Discriminative fine-tuning: 

– backpropagation 

Salakhutdinov & Hinton, 2009 
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Experiments 

• MNIST: 2-layer BM 
 
 

60,000 training and 10,000 testing examples 

0.9 million parameters 

Gibbs sampler for 100,000 steps 

 

After discriminative fine-tuning:  0.95% error rate 

Compare with DBN 1.2%, SVM 1.4% 
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Experiments 

• NORB dataset 

Slide credit: R. Salskhutdinov 
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Experiments 

 

Slide credit: R. Salskhutdinov 
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Why Greedy Layer Wise Training Works 

• Regularization Hypothesis 
– Pre-training is “constraining” parameters in a 

region relevant to unsupervised dataset 

– Better generalization 

 (Representations that better describe unlabeled data are more 
discriminative for labeled data) 

 

• Optimization Hypothesis 
– Unsupervised training initializes lower level 

parameters near localities of better minima than 
random initialization can 

 

(Bengio 2009, Erhan et al. 2009) 
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Convolutional Neural Networks 

Local Receptive 

Fields 

Weight 

sharing 

Pooling 

(LeCun et al., 1989) 
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Deep Convolutional Architectures 

State-of-the-art on MNIST digits, Caltech-101 objects, etc. 



60 

Nonlinearities and pooling 

• Details of feature processing stage for PSD 

Local contrast  

normalization 

Max-pooling 

 

Rectification Convolution  

or filtering 

(Jarret et al., 2009) 
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Convolutional DBNs 

(Lee et al, 2009; Desjardins and Bengio, 2008; Norouzi et al., 2009) 

Convolutional RBM:  Generative 
training of convolutional structures 
(with probabilistic max-pooling) 
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Spatial Pyramid Structure 

• Descriptor Layer: detect and locate 
features, extract corresponding 
descriptors (e.g. SIFT) 

 

• Code Layer: code the descriptors 
– Vector Quantization (VQ): each code has 

only one non-zero element 

– Soft-VQ: small group of elements can be 
non-zero 

 

• SPM layer: pool codes across 
subregions and average/normalize into 
a histogram 

(Yang et al., 2009) 
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Improving the coding step 

• Classifiers using these features need 
nonlinear kernels 
– Increases computational complexity 

 

• Modify the Coding step to produce 
feature representations that linear 
classifiers can use effectively  
– Sparse coding 

– Local Coordinate coding 

(Yang et al., 2009) 
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Experimental results 

• Competitive performance to other state-of-
the-art methods using a single type of 
features on object recognition benchmarks 

• E.g.: Caltech 101 (30 examples per class) 

– Using pixel representation: ~65% accuracy (Jarret 
et al., 2009; Lee et al., 2009; and many others) 

– Using SIFT representation: 73~75% accuracy (Yang 
et al., 2009; Jarret et al., 2009, Boureau et al., 
2010, and many others) 
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Convolutional DBN for audio 
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(Lee et al., 2009) 
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Convolutional DBN for audio 
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CDBNs for speech 

Learned first-layer bases 

Trained on unlabeled TIMIT corpus 
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Experimental Results 

• Speaker identification 

 

 

• Phone classification 

TIMIT Speaker identification Accuracy 

Prior art (Reynolds, 1995) 99.7% 

Convolutional DBN 100.0% 

TIMIT Phone classification Accuracy 

Clarkson et al. (1999) 77.6% 

Gunawardana et al. (2005) 78.3% 

Sung et al. (2007) 78.5% 

Petrov et al. (2007) 78.6% 

Sha & Saul (2006) 78.9% 

Yu et al. (2009) 79.2% 

Convolutional DBN 80.3% 

(Lee et al., 2009) 
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Phone recognition using DBNs 

• Pre-training RBMs followed by fine-tuning 
with back propagation 

(Dahl et al., 2010) 
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Phone recognition using mcRBM 

• Mean-covariance RBM + DBN 

Mean-covariance RBM 

(Dahl et al., 2010) 
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Phone recognition results 

Method PER 

Stochastic Segmental Models  36.0% 

Conditional Random Field 34.8% 

Large-Margin GMM 33.0% 

CD-HMM  27.3% 

Augmented conditional Random Fields  26.6% 

Recurrent Neural Nets 26.1% 

Bayesian Triphone HMM 25.6% 

Monophone HTMs 24.8% 

Heterogeneous Classifiers 24.4% 

Deep Belief Networks(DBNs)  23.0% 

Triphone HMMs discriminatively trained w/ BMMI  22.7% 

Deep Belief Networks with mcRBM feature extraction 20.5% 

(Dahl et al., 2010) 
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Language modeling 

• Language Models 
– Estimating the probability of the next word w 

given a sequence of words 

• Baseline approach in NLP 
– N-gram models (with smoothing):   

 

 

• Deep Learning approach 
– Bengio et al. (2000, 2003): via Neural network 

– Mnih and Hinton (2007): via RBMs 
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Other NLP tasks 

• Part-Of-Speech Tagging (POS) 
– mark up the words in a text (corpus) as corresponding 

to a particular tag 
• E.g. Noun, adverb, ...  

• Chunking 
– Also called shallow parsing 
– In the view of phrase: Labeling phrase to syntactic 

constituents 
• E.g. NP (noun phrase), VP (verb phrase), … 

– In the view of word: Labeling word to syntactic role in 
a phrase 
• E.g. B-NP (beginning of NP), I-VP (inside VP), … 
 

(Collobert and Weston, 2009) 
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Other NLP tasks 

• Named Entity Recognition (NER) 

– In the view of thought group: Given a stream of 
text, determine which items in the text map to 
proper names 

– E.g., labeling “atomic elements” into “PERSON”, 
“COMPANY”, “LOCATION” 

• Semantic Role Labeling (SRL) 

– In the view of sentence: giving a semantic role to a 
syntactic constituent of a sentence 

– E.g. [John]ARG0 [ate]REL [the apple]ARG1  (Proposition Bank) 

• An Annotated Corpus of Semantic Roles  (Palmer et al.) 

 

 

(Collobert and Weston, 2009) 
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A unified architecture for NLP 

• Main idea: a unified architecture for NLP 

– Deep Neural Network 

– Trained jointly with different tasks (feature sharing 
and multi-task learning) 

– Language model is trained in an unsupervised 
fashion 

• Show the generality of the architecture 

• Improve SRL performance 

(Collobert and Weston, 2009) 
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General Deep Architecture for NLP 

 Basic features (e.g., word, 

capitalization, relative position) 

Embedding by lookup table 

Convolution (i.e., how each 

word is relevant to its context?) 

Max pooling 

Supervised learning 

(Collobert and Weston, 2009) 
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Results 

• MTL improves SRL’s performance 
(Collobert and Weston, 2009) 
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Summary 

• Training deep architectures 

– Unsupervised pre-training helps training deep 
networks 

– Deep belief nets, Stacked denoising auto-
encoders, Stacked predictive sparse coding, Deep 
Boltzmann machines 

• Deep learning algorithms and unsupervised 
feature learning algorithms show promising 
results in many applications 

– vision, audio, natural language processing, etc. 
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Thank you! 
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