Random Walks on Graphs: An Overview

Purnamrita Sarkar

Motivation: Link prediction in social networks

2

Motivation: Basis for recommendation

purnamrita's Amazon.com > Recommended for you

(If you're not purnamrita, click here.)

Recommendations Based on Activity

View & edit Your Browsing History

Recommendations by Category

Your Favorites Edit

Books

More Categories

 Apparel & Accessories

 Baby

 Beauty

 Camera & Photo

 Computer & Video

 Games

 Computers & PC

 Hardware

 DVD

 Electronics

 Gourmet Food

 Health & Personal Care

Industrial & Scientific

Motivation: Personalized search

Web

Where Are My Car Keys?

In the front door, where you left them last night.

Why graphs?

The underlying data is naturally a graph

- Papers linked by citation
- Authors linked by co-authorship
- Bipartite graph of customers and products
- Web-graph
- Friendship networks: who knows whom

What are we looking for

- Rank nodes for a particular query
 - Top k matches for "Random Walks" from Citeseer
 - Who are the most likely co-authors of "Manuel Blum".
 - Top k book recommendations for Purna from Amazon
 - Top k websites matching "Sound of Music"
 - Top k friend recommendations for Purna when she joins "Facebook"

Talk Outline

Basic definitions

- Random walks
- Stationary distributions

Properties

Applications

Definitions

- nxn Adjacency matrix A.
 - A(i,j) = weight on edge from *i* to *j*
 - □ If the graph is undirected A(i,j)=A(j,i), i.e. A is symmetric

nxn Transition matrix P.

- P is row stochastic
- P(i,j) = probability of stepping on node j from node i = A(i,j)/∑_iA(i,j)
- nxn Laplacian Matrix L.
 - $\Box L(i,j)=\sum_{i}A(i,j)-A(i,j)$
 - Symmetric positive semi-definite for undirected graphs
 - Singular

Definitions

0	1	0
0	0	1
1/2	1/2	0

Adjacency matrix A

What is a random walk

Probability Distributions

- x_i(i) = probability that the surfer is at node *i* at time *t*
- x_{t+1}(i) = Σ_j(Probability of being at node j)*Pr(j->i)
 =Σ_jx_t(j)*P(j,i)

•
$$x_{t+1} = x_t P = x_{t-1} * P * P = x_{t-2} * P * P * P = ... = x_0 P^t$$

What happens when the surfer keeps walking for a long time?

Stationary Distribution

- When the surfer keeps walking for a long time
- When the distribution does not change anymore
 i.e. x₁₊₁ = x₁
- For "well-behaved" graphs this does not depend on the start distribution!!

The stationary distribution at a node is related to the amount of time a random walker spends visiting that node.

- The stationary distribution at a node is related to the amount of time a random walker spends visiting that node.
- Remember that we can write the probability distribution at a node as

 $\square \mathbf{x}_{t+1} = \mathbf{x}_t \mathbf{P}$

- The stationary distribution at a node is related to the amount of time a random walker spends visiting that node.
- Remember that we can write the probability distribution at a node as

 $\square \mathbf{x}_{t+1} = \mathbf{x}_t \mathbf{P}$

• For the stationary distribution v_0 we have

 $\Box \mathbf{v}_0 = \mathbf{v}_0 \mathbf{P}$

- The stationary distribution at a node is related to the amount of time a random walker spends visiting that node.
- Remember that we can write the probability distribution at a node as
 x_{t+1} = x_tP
- For the stationary distribution v₀ we have
 v₀ = v₀P
- Whoa! that's just the left eigenvector of the transition matrix !

Talk Outline

Basic definitions

- Random walks
- Stationary distributions

Properties

Perron frobenius theorem

Applications

Interesting questions

- Does a stationary distribution always exist? Is it unique?
 - Yes, if the graph is "well-behaved".
- What is "well-behaved"?
 - We shall talk about this soon.
- How fast will the random surfer approach this stationary distribution?
 - Mixing Time!

Well behaved graphs

Irreducible: There is a path from every node to every other node.

Irreducible

Not irreducible

Well behaved graphs

Aperiodic: The GCD of all cycle lengths is 1. The GCD is also called period.

Implications of the Perron Frobenius Theorem

- If a markov chain is irreducible and aperiodic then the largest eigenvalue of the transition matrix will be equal to 1 and all the other eigenvalues will be strictly less than 1.
 - $\hfill\square$ Let the eigenvalues of P be $\{\sigma_i | i=0:n-1\}$ in non-increasing order of σ_i .

$$\Box \quad \sigma_0 = 1 > \sigma_1 > \sigma_2 > = \dots > = \sigma_n$$

Implications of the Perron Frobenius Theorem

- If a markov chain is irreducible and aperiodic then the largest eigenvalue of the transition matrix will be equal to 1 and all the other eigenvalues will be strictly less than 1.
 - $\hfill\square$ Let the eigenvalues of P be $\{\sigma_i|\ i=0:n-1\}$ in non-increasing order of σ_i .

$$\Box \quad \sigma_0 = 1 > \sigma_1 > \sigma_2 > = \dots > = \sigma_n$$

- These results imply that for a well behaved graph there exists an unique stationary distribution.
- More details when we discuss pagerank.

Some fun stuff about undirected graphs

- A connected undirected graph is irreducible
- A connected non-bipartite undirected graph has a stationary distribution proportional to the degree distribution!
- Makes sense, since larger the degree of the node more likely a random walk is to come back to it.

Talk Outline

Basic definitions

- Random walks
- Stationary distributions

Properties

- Perron frobenius theorem
- Electrical networks, hitting and commute times
 - Euclidean Embedding
- Applications

Proximity measures from random walks

- How long does it take to hit node b in a random walk starting at node a ? Hitting time.
- How long does it take to hit node b and come back to node a? Commute time.

Hitting and Commute times

- Hitting time from node i to node j
 - Expected number of hops to hit node j starting at node i.
 - Is not symmetric. h(a,b) > h(a,b)

$$h(i,j) = 1 + \Sigma_{k \in nbs(A)} p(i,k)h(k,j)$$

Hitting and Commute times

- Commute time between node i and j
 - Is expected time to hit node j and come back to i
 - c(i,j) = h(i,j) + h(j,i)
 - Is symmetric. c(a,b) = c(b,a)

Relationship with Electrical networks^{1,2}

Consider the graph as a n-node resistive network.

- Each edge is a resistor of 1 Ohm.
- Degree of a node is number of neighbors

^{1.} Random Walks and Electric Networks , Doyle and Snell, 1984

^{2.} The Electrical Resistance Of A Graph Captures Its Commute And Cover Times, Ashok K. Chandra, Prabhakar Raghavan, Walter L. Ruzzo, Roman Smolensky, Prasoon Tiwari, 1989

- Inject d(i) amp current in each node
- Extract *2m* amp current from node j.
- Now what is the voltage difference between i and j?

Whoa!! Hitting time from i to j is exactly the voltage drop when you inject respective degree amount of current in every node and take out 2*m from j!

- Consider neighbors of i i.e. NBS(i)
- Using Kirchhoff's law
 d(i) = Σ_{kENBS(A)} Φ(i,j) Φ(k,j)

$$\phi(i,j) = 1 + \frac{1}{d(i)} \sum_{k \in NBS(i)} \phi(k,j)$$

 Oh wait, that's also the definition of hitting time from i to j!

$$h(i,j) = 1 + \sum_{k \in NBS(i)} P(i,k)h(k,j)$$

Hitting times and Laplacians

1. The Electrical Resistance Of i Graph Captures Its Commute And Cover Times, Ashok K. Chandry, Prabhakar Raghavan, Walter L. Ruzzo, Roman Smolensky, Prasoon Tiwari, 1989

Commute times and Lapacians

Commute times and Laplacians

- Why is this interesting ?
- Because, this gives a very intuitive definition of embedding the points in some Euclidian space, s.t. the commute times is the squared Euclidian distances in the transformed space.¹

L⁺: some other interesting measures of similarity¹

• $L_{ij}^{*} = x_i^{T}x_j^{T}$ = inner product of the position vectors

• $L_{ii}^{+} = x_i^{T}x_i = square of length of position vector of$ *i*

$$\frac{l^+{}_{ij}}{\sqrt{l^+{}_{ii}l^+{}_{jj}}}$$

1. A random walks perspective on maximising satisfaction and profit. Matthew Brand, SIAM '05

Cosine similarity

Talk Outline

Basic definitions

- Random walks
- Stationary distributions

Properties

- Perron frobenius theorem
- Electrical networks, hitting and commute times
 - Euclidean Embedding

Applications

- Recommender Networks
- Pagerank
 - Power iteration
 - Convergencce
- Personalized pagerank

Recommender Networks¹

An example association graph

1. A random walks perspective on maximising satisfaction and profit. Matthew Brand, SIAM '05

nd, SIAM '05 42

Recommender Networks

- For a customer node *i* define similarity as
 - □ H(i,j)
 - □ C(i,j)
 - Or the cosine similarity

$$\frac{\mathcal{L}_{ij}^{+}}{\sqrt{\mathcal{L}_{ii}^{+}\mathcal{L}_{jj}^{+}}}$$

- Now the question is how to compute these quantities quickly for very large graphs.
 - Fast iterative techniques (Brand 2005)
 - Fast Random Walk with Restart (Tong, Faloutsos 2006)
 - Finding nearest neighbors in graphs (Sarkar, Moore 2007)

Ranking algorithms on the web

- HITS (Kleinberg, 1998) & Pagerank (Page & Brin, 1998)
- We will focus on Pagerank for this talk.
 - An webpage is important if other important pages point to it.

• Intuitively
$$v(i) = \sum_{j \to i} \frac{v(j)}{\deg^{out}(j)}$$

 v works out to be the stationary distribution of the markov chain corresponding to the web.

Pagerank & Perron-frobenius

- Perron Frobenius only holds if the graph is irreducible and aperiodic.
- But how can we guarantee that for the web graph?
 Do it with a small restart probability c.
- At any time-step the random surfer
 - jumps (teleport) to any other node with probability c
 - □ jumps to its direct neighbors with total probability *1-c*.

$$\tilde{\mathbf{P}} = (1 - c)\mathbf{P} + c\mathbf{U}$$
$$\mathbf{U}_{ij} = \frac{1}{n} \forall i, j$$

Power iteration

- Power Iteration is an algorithm for computing the stationary distribution.
 - Start with any distribution x_0
 - Keep computing $x_{t+1} = x_t P$
 - Stop when x_{t+1} and x_t are almost the same.

Power iteration

- Why should this work?
- Write x₀ as a linear combination of the left eigenvectors {v₀, v₁, ..., v_{n-1}} of P
- Remember that v_0 is the stationary distribution.

•
$$X_0 = C_0 V_0 + C_1 V_1 + C_2 V_2 + ... + C_{n-1} V_{n-1}$$

Power iteration

- Why should this work?
- Write x₀ as a linear combination of the left eigenvectors {v₀, v₁, ..., v_{n-1}} of P
- Remember that v_o is the stationary distribution.

•
$$x_0 = c_0 v_0 + c_1 v_1 + c_2 v_2 + ... + c_{n-1} v_{n-1}$$

 $c_0 = 1$. WHY? (slide 71)

Convergence Issues

- Formally $||\mathbf{x}_0 \mathbf{P}^{\dagger} \mathbf{v}_0|| \leq |\mathbf{A}|^{\dagger}$
 - □ ∧ is the eigenvalue with second largest magnitude
- The smaller the second largest eigenvalue (in magnitude), the faster the mixing.
- For A<1 there exists an unique stationary distribution, namely the first left eigenvector of the transition matrix.

Pagerank and convergence

The transition matrix pagerank uses really is

$$\mathsf{P} = (1-c)\mathsf{P} + c\mathsf{U}$$

The second largest eigenvalue of P
 can be proven¹ to be ≤ (1-c)

 Nice! This means pagerank computation will converge fast.

The Second Eigenvalue of the Google Matrix, Taher H. Haveliwala and Sepandar D. Kamvar, Stanford University Technical Report, 2003.

Pagerank

We are looking for the vector v s.t.

$$\mathbf{v} = (1-c)\mathbf{v}\mathbf{P} + c\mathbf{r}$$

r is a distribution over web-pages.

If r is the uniform distribution we get pagerank.

What happens if r is non-uniform?

Pagerank

We are looking for the vector v s.t.

v = (1 - c)vP + cr

r is a distribution over web-pages.

If r is the uniform distribution we get pagerank.

What happens if r is non-uniform?

Personalization

Personalized Pagerank^{1,2,3}

The only difference is that we use a non-uniform teleportation distribution, i.e. at any time step teleport to a set of webpages.

In other words we are looking for the vector v s.t.

$$\mathbf{v} = (1 - c)\mathbf{v}\mathbf{P} + c\mathbf{r}$$

r is a non-uniform preference vector specific to an user.

v gives "personalized views" of the web.

- 2. Topic-sensitive PageRank, Haveliwala, 2001
- 3. Towards scaling fully personalized pagerank, D. Fogaras and B. Racz, 2004

^{1.} Scaling Personalized Web Search, Jeh, Widom. 2003

Personalized Pagerank

- Pre-computation: r is not known from before
- Computing during query time takes too long
- A crucial observation¹ is that the personalized pagerank vector is linear w.r.t r

$$\mathbf{r} = \begin{pmatrix} \alpha \\ \mathbf{0} \\ \mathbf{1} - \alpha \end{pmatrix} \Rightarrow \mathbf{v}(\mathbf{r}) = \alpha \mathbf{v}(\mathbf{r}_0) + (\mathbf{1} - \alpha)\mathbf{v}(\mathbf{r}_2)$$
$$\mathbf{r}_0 = \begin{pmatrix} \mathbf{1} \\ \mathbf{0} \\ \mathbf{0} \end{pmatrix}, \mathbf{r}_2 = \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{1} \end{pmatrix}$$

Topic-sensitive pagerank (Haveliwala'01)

- Divide the webpages into 16 broad categories
- For each category compute the biased personalized pagerank vector by uniformly teleporting to websites under that category.
- At query time the probability of the query being from any of the above classes is computed, and the final page-rank vector is computed by a linear combination of the biased pagerank vectors computed offline.

Personalized Pagerank: Other Approaches

- Scaling Personalized Web Search (Jeh & Widom '03)
- Towards scaling fully personalized pagerank: algorithms, lower bounds and experiments (Fogaras et al, 2004)
- Dynamic personalized pagerank in entity-relation graphs. (Soumen Chakrabarti, 2007)

Personalized Pagerank (Purna's Take)

- But, whats the guarantee that the new transition matrix will still be irreducible?
- Check out
 - The Second Eigenvalue of the Google Matrix, Taher H. Haveliwala and Sepandar D. Kamvar, Stanford University Technical Report, 2003.
 - Deeper Inside PageRank, Amy N. Langville. and Carl D. Meyer. Internet Mathematics, 2004.
- As long as you are adding any rank one (where the matrix is a repetition of one distinct row) matrix of form (1^Tr) to your transition matrix as shown before,

Talk Outline

Basic definitions

- Random walks
- Stationary distributions

Properties

- Perron frobenius theorem
- Electrical networks, hitting and commute times
 - Euclidean Embedding

Applications

- Recommender Networks
- Pagerank
 - Power iteration
 - Convergence
- Personalized pagerank
- Rank stability

Rank stability

- How does the ranking change when the link structure changes?
- The web-graph is changing continuously.
- How does that affect page-rank?

Rank stability¹ (On the Machine Learning papers from the $CORA^2$ database)

Rank on 5 perturbed datasets by deleting Rank on the 30% of the papers entire database. "Genetic Algorithms in Search, Optimization and...", Goldberg "Learning internal representations by error...", Rumelhart+al -5 "Adaptation in Natural and Artificial Systems", Holland "Classification and Regression Trees", Breiman+al "Probabilistic Reasoning in Intelligent Systems", Pearl "Genetic Programming: On the Programming of ...", Koza "Learning to Predict by the Methods of Temporal ...", Sutton "Pattern classification and scene analysis", Duda+Hart "Maximum likelihood from incomplete data via...", Dempster+al 10 9 "UCI repository of machine learning databases", Murphy+Aha "Parallel Distributed Processing", Rumelhart+McClelland 10 -12. "Introduction to the Theory of Neural Computation", Hertz+al 10 -

^{1.} Link analysis, eigenvectors, and stability, Andrew Y. Ng, Alice X. Zheng and Michael Jordan, IJCAI-01

^{2.} Automating the contruction of Internet portals with machine learning, A. Mc Callum, K. Nigam, 9. Rennie, K. Seymore, In Information Retrieval Journel, 2000

Rank stability

- Ng et al 2001: $\tilde{\mathbf{P}} = (1 c)\mathbf{P} + c\mathbf{U}$
- Theorem: if v is the left eigenvector of P. Let the pages i₁, i₂,..., i_k be changed in any way, and let v' be the new pagerank. Then

$$\|\mathbf{v}-\mathbf{v}'\|_{1} \leq \frac{\sum_{j=1}^{k} \mathbf{v}(i_{j})}{C}$$

So if c is not too close to O, the system would be rank stable and also converge fast!

Conclusion

Basic definitions

- Random walks
- Stationary distributions

Properties

- Perron frobenius theorem
- Electrical networks, hitting and commute times
 - Euclidean Embedding

Applications

- Pagerank
 - Power iteration
 - Convergencce
- Personalized pagerank
- Rank stability

Thanks!

Please send email to Purna at psarkar@cs.cmu.edu with questions, suggestions, corrections ©

Acknowledgements

- Andrew Moore
- Gary Miller
 - Check out Gary's Fall 2007 class on "Spectral Graph Theory, Scientific Computing, and Biomedical Applications"
 - http://www.cs.cmu.edu/afs/cs/user/glmiller/public/Scientific-Computing/F
- Fan Chung Graham's course on
 - Random Walks on Directed and Undirected Graphs
 - http://www.math.ucsd.edu/~phorn/math261/
- Random Walks on Graphs: A Survey, Laszlo Lov'asz
- Reversible Markov Chains and Random Walks on Graphs, D Aldous, J Fill
- Random Walks and Electric Networks, Doyle & Snell

Convergence Issues¹

- Lets look at the vectors x for t=1,2,...
- Write x₀ as a linear combination of the eigenvectors of P

•
$$X_0 = C_0 V_0 + C_1 V_1 + C_2 V_2 + ... + C_{n-1} V_{n-1}$$

c₀ = 1. WHY?

Remember that 1 is the right eigenvector of P with eigenvalue 1, since P is stochastic. i.e. $P^*1^T = 1^T$. Hence $v_i 1^T = 0$ if $i \neq 0$.

1 =
$$x^* \mathbf{1}^T = c_0 v_0^* \mathbf{1}^T = c_0$$
. Since v_0 and x_0 are both distributions

1. We are assuming that **P** is diagonalizable. The non-diagonalizable case is tric**kie**r, you can take a look at Fan Chung Graham's class notes (the link is in the acknowledgements section).