Random Walks on Graphs:
An Overview
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Motivation: Basis for recommendation

purnamrita's Amazon.com™ » Recommended for you
(If you're not purnamrita, click here.)
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Motivation: Personalized search

In the front door, where you
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Why graphs?

The underlying data is naturally a graph

Papers linked by citation

Authors linked by co-authorship

Bipartite graph of customers and products
Web-graph

Friendship networks: who knows whom

o O 0O 0O O



'What are we looking for

® Rank nodes for a particular query

2 Top k matches for "Random Walks" from Citeseer

9 Who are the most likely co-authors of "Manuel
Blum”.

2 Top k book recommendations for Purna from
Amazon

0 Top k websites matching "Sound of Music”

9 Top k friend recommendations for Purna when she
joins "Facebook"




‘Talk Outline

" Basic definitions

a
Q

" Properties

= Applications




Definitions

nxn Adjacency matrix A.
9 A(i,j) = weight on edge from /to j
9 TIf the graph is undirected A(i,j)=A(j,i), i.e. A is symmetric

nxn Transition matrix P.

a9 Pis row stochastic

2 P(i,j) = probability of stepping on node j from node i
= A>iLJ)/ ZA()

nxn Laplacian Matrix L.

4 L(Lj)=ZAGL))-AL)

9 Symmetric positive semi-definite for undirected graphs
9 Singular



‘ Definitions
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‘ What is a random walk
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‘ What is a random walk ﬁg
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‘ What is a random walk ﬁg
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‘ What is a random walk ﬁg
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Probability Distributions

x,(i) = probability that the surfer is at node /at time
T

x,,(1) = Z(Probability of being at node j)*Pr(j->i)
=2 %,(J)*P@.0)

X,y = XP= X, *P*P= x *P*P*P = _.=x,P"

What happens when the surfer keeps walking for a
long time?

14



Stationary Distribution

When the surfer keeps walking for a long time

When the distribution does not change anymore
di.e. Xy = X,

For "well-behaved” graphs this does not depend on
the start distributionl!

15



‘What is a stationary distribution?
Intuitively and Mathematically
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‘ What is a stationary distribution?
Intuitively and Mathematically

® The stationary distribution at a node is related to the
amount of time a random walker spends visiting that
node.

17



‘ What is a stationary distribution?
Intuitively and Mathematically

® The stationary distribution at a node is related to the
amount of time a random walker spends visiting that
node.

= Remember that we can write the probability
distribution at a node as

Q0 x.,= xP

18



What is a stationary distribution?
Intuitively and Mathematically

The stationary distribution at a node is related to the
amount of time a random walker spends visiting that
node.

Remember that we can write the probability
distribution at a node as

3 x,= XP

For the stationary distribution v, we have
a0 v, =v,P

19



What is a stationary distribution?
Intuitively and Mathematically

The stationary distribution at a node is related to the
amount of time a random walker spends visiting that
node.

Remember that we can write the probability
distribution at a node as

a9 x,=xP

For the stationary distribution v, we have
0 v, =v,P

Whoa! that's just the left eigenvector of the
transition matrix |

20



‘Talk Outline

" Basic definitions
2 Random walks
9 Stationary distributions

" Properties
Q

= Applications
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Interesting questions

Does a stationary distribution always exist? Is it
unique?
2 VYes, if the graph is "well-behaved”.

What is "well-behaved”?
2 We shall talk about this soon.

How fast will the random surfer approach this
stationary distribution?
9 Mixing Timel

22



'Well behaved graphs

® TIrreducible: There is a path from every node to every

other node.
/ ® / @
o\\P '\\P
Irreducible Not irreducible
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'Well behaved graphs

“ Aperiodic: The GCD of all cycle lengths is 1. The GCD
is also called period.

Periodicity is 3 Aperiodic

24



Implications of the Perron Frobenius
Theorem

If a markov chain is irreducible and aperiodic then

the largest eigenvalue of the fransition matrix will be

equal to 1 and all the other eigenvalues will be strictly

less than 1.

0 Let the eigenvalues of P be {¢| i=0:n-1} in non-increasing
order of o .

Q0 g=1>0>0=...5=0

n

25



Implications of the Perron Frobenius
Theorem

If a markov chain is irreducible and aperiodic then
the largest eigenvalue of the transition matrix will be
equal to 1 and all the other eigenvalues will be strictly
less than 1.

0 Let the eigenvalues of P be {g| i=0:n-1} in non-increasing
order of g, .

4 g=1>0>0>=...5=0

These results imply that for a well behaved graph
there exists an unique stationary distribution.

More details when we discuss pagerank.

26



Some fun stuff about undirected
graphs

A connected undirected graph is irreducible

A connected non-bipartite undirected graph has a

stationary distribution proportional o the degree
distribution!

Makes sense, since larger the degree of the node
more likely a random walk is to come back to it.

27



‘Talk Outline

" Basic definitions
2 Random walks
9 Stationary distributions

" Properties

O Perron frobenius theorem
(|

= Applications
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Proximity measures from random walks

/

® How long does it take to hit node b in a random walk
starting at node a ? Hitting time.

® How long does it take to hit node b and come back to
node a? Commute time.

29



\ Hitting and Commute times

b

/

= Hitting time from node /to node j
0 Expected number of hops to hit node j starting at node /.
9 Ts not symmetric. h(a,b) > h(a,b)
2 h(i,j) = 1+ Z0p(i K)h(k,j)

30



\ Hitting and Commute times

b

/

* Commute time between node i and j

9 Is expected time to hit node j and come back to i

@ c(i,j) = h(i.j) + h(j.i)

0 TIs symmetric. c(a,b) = c(b,a)

31



Relationship with Electrical

nhetworks!?

Consider the graph as a n-node
resistive network.

Each edge is a resistor of 1 Ohm.

Degree of a node is number of

neighbors w0

Sum of degrees = 2*m
9 m being the number of edges

Random Walks and Electric Networks , Doyle and Snell, 1984
The Electrical Resistance Of A Graph Captures Its Commute And Cover Times, Ashok K. Char&g, Prabhakar Raghavan,
Walter L. Ruzzo, Roman Smolensky, Prasoon Tiwari, 1989



Relationship with Electrical networks

Inject d(i) amp current in
each node

Extract 2m amp current from
node j.

Now what is the voltage
difference betweeniand j ?

33



Relationship with Electrical networks

Whoall Hitting time from i to
J is exactly the voltage drop
when you inject respective
degree amount of current in
every node and take out 2*m
from j!

34



‘ Relationship with Electrical networks

= Consider neighbors of i i.e. NBS(i)

" Using Kirchhoff's law ¢ /
d(i) = Zyeq 8.5 - B(K.j) 3 3

N
* Oh wait, that's also the definition of / \1\/\/\‘ 16

hitting time from i to j! 2
h(i, j) =1+ P(i, k)h(k, j)
kO

()

35
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‘ Hitting times and Laplacians

h(i:j) = @- @j
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‘ Relationship with Electrical networks

| c(i.g) = h(i.j) + h(j,i) = 2m*R (i j)

1.  The Electrical Resistance Of i 6raph Captures Its Commute And Cover Times, Ashok K. Chandg,fr‘abhakar Raghavan,
Walter L. Ruzzo, Roman Smolensky, Prasoon Tiwari, 1989



Commute times and Lapacians

= ==
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L C(ij) = 8-,

=2m(e-e) L (e-e)
=2m (xi-xj)T(xi-xj)

“x; = (L)% e,
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Commute times and Laplacians

Why is this interesting ?

Because, this gives a very intuitive definition of
embedding the points in some Euclidian space, s.t. the
commute times is the squared Euclidian distances in
the transformed space.!

1. The Principal Components Analysis of a Graph, and its Relationships to Spectral Clustering . M. Saerens, et al, ECML '04



L*: some other interesting
measures of similarity?

L';= xx,= inner product of the position vectors

L= x'x.= square of length of position vector of /

+
[

Cosine similarity /l+iil+jj

1. A random walks perspective on maximising satisfaction and profit. Matthew Brand, STAM '05

40



Talk Outline

Basic definitions
2 Random walks
0 Stationary distributions

Properties
a2 Perron frobenius theorem

9 Electrical networks, hitting and commute times
Euclidean Embedding

Applications
Q

Q
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Recommender Networks!

An example association graph

rd " /,-- .
fernale '*, Star Wars Ep. 3
\ . f/,-

\ .:._-'- 3

! Mapoleon Crynamite,

i

.r. {. The Shawshank |
! \ Redemption

;\1 | .r/’_- *, \.‘-- .-JJ/.—

1. A random walks perspective on maximising satisfaction and profit. Matthew Brand, STAM '05
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Recommender Networks

For a customer node 7/ define similarity as
= H(i)
- (i) L

. . . M J
9 Or the cosine similarity R

1=JJ

Now the question is how to compute these quantities
quickly for very large graphs.

9 Fast iterative techniques (Brand 2005)

9 Fast Random Walk with Restart (Tong, Faloutsos 2006)

9 Finding nearest neighbors in graphs (Sarkar, Moore 2007)

43



Ranking algorithms on the web

HITS (Kleinberg, 1998) & Pagerank (Page & Brin,
1998)

We will focus on Pagerank for this talk.

9 An webpage is important if other important pages point to it.
v(J)

gour(j)

0 Intuitively v(/) =
JZ/de

9 v works out to be the stationary distribution of the markov
chain corresponding to the web.

44



Pagerank & Perron-frobenius

Perron Frobenius only holds if the graph is
irreducible and aperiodic.

But how can we guarantee that for the web graph?
9 Do it with a small restart probability c.

At any time-step the random surfer
9 jumps (fteleport) to any other node with probability ¢

9 jumps to its direct neighbors with total probability I-c.
P=(1-c)P+cU
1

U, =-0/,4
i T J

45



Power iteration

Power Iteration is an algorithm for computing the
stationary distribution.

0 Start with any distribution x,
a0 Keep computing x,,= x,P

0 Stop when x,,and x.are almost the same.

46



Power iteration

Why should this work?

Write x, as a linear combination of the left eigenvectors
{vo, V4 ., v, JOf P

Remember that v, is the stationary distribution.

Xog=CoVg t CiVi+CV,+ .+ C (V.

47



Power iteration

Why should this work?

Write X, as a linear combination of the left
eigenvectors {v,, v, .., v} of P

Remember that v,is the stationary distribution.

Xog=CogVg +t CiVi+C,V,+ .+ C 1V,

c,= 1. WHY? (slide 71)

48



‘ Power iteration

Xo

49



‘ Power iteration

Oo 0,Cy 0,C;

g, ,C

n-1
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‘ Power iteration

~ ~2
X, = X, P =x,P

91



‘ Power iteration

~T
Vo Vi V2 V-1
o, o,'c, o, ¢c, o ,'c
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‘ Power iteration

~t
X, = X, P ‘00=1>012...20n

1 011- C1 0'21' CZ o.n_11- cn-1
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‘ Power iteration

X, 0,=1>0,2.20,
Vo Vi  Vy e Vo
1 o 0 0

54



Convergence Issues

Formally ||x,Pt = v,|| < |A]"
0 A is the eigenvalue with second largest magnitude

The smaller the second largest eigenvalue (in
maghitude), the faster the mixing.

For A<l there exists an unique stationary distribution,
namely the first left eigenvector of the transition
matrix.

95



‘ Pagerank and convergence

* The fransition matrix pagerank uses really is
P=(l-c)P+cU

* The second largest eigenvalue of P can be proven' to
be < (1-c)

" Nicel This means pagerank computation will converge
fast.

1. The Second Eigenvalue of the Google Matrix, Taher H. Haveliwala and Sepandar D. Kamvar, Stanford University Technical Report,
2003. o6



Pagerank

We are looking for the vector v s.t.
v=([0-¢c)VW +cr
r is a distribution over web-pages.

If r is the uniform distribution we get pagerank.

What happens if r is non-uniform?

S7



Pagerank

We are looking for the vector v s.t.
v=([0-¢c)VW +cr
r is a distribution over web-pages.

If r is the uniform distribution we get pagerank.

What happens if r is non-uniform?

Personalization

58



Personalized Pagerank!2:3

The only difference is that we use a non-uniform
teleportation distribution, i.e. at any time step
teleport to a set of webpages.

In other words we are looking for the vector v s.t.

v=1-¢c)Ww +cr

r is a non-uniform preference vector specific to an
user.

v gives "personalized views" of the web.

1. Scaling Personalized Web Search, Jeh, Widom. 2003
2. Topic-sensitive PageRank, Haveliwala, 2001 59
3. Towards scaling fully personalized pagerank, D. Fogaras and B. Racz, 2004



Personalized Pagerank

Pre-computation: r is not known from before
Computing during query time takes too long

A crucial observation' is that the personalized
pagerank vector is linear w.r.t r

H" i

= IZIIZI vir)=av(n,)+ (1 -al(r)

Hl i
HIH Ph

00r, = 00

Bl AT

Scaling Personalized Web Search, Jeh, Widom. 2003 60



Topic-sensitive pagerank (Haveliwala'01)

Divide the webpages into 16 broad categories

For each category compute the biased personalized
pagerank vector by uniformly teleporting to websites
under that category.

At query time the probability of the query being from
any of the above classes is computed, and the final
page-rank vector is computed by a linear combination
of the biased pagerank vectors computed offline.

61



Personalized Pagerank: Other
Approaches

Scaling Personalized Web Search (Jeh & Widom '03)

Towards scaling fully personalized pagerank:
algorithms, lower bounds and experiments (Fogaras et
al, 2004)

Dynamic personalized pagerank in entity-relation
graphs. (Soumen Chakrabarti, 2007)

62



Personalized Pagerank (Purna’s Take)

But, whats the guarantee that the new transition matrix will still
be irreducible?

Check out

9 The Second Eigenvalue of the Google Matrix, Taher H. Haveliwala
and Sepandar D. Kamvar, Stanford University Technical Report,
2003.

9 Deeper Inside PageRank, Amy N. Langville. and Carl D. Meyer.
Internet Mathematics, 2004.

As long as you are adding any rank one (where the matrix is a
repetition of one distinct row) matrix of form (1'r) to your

transition matrix as shown before,
0 A< 1-c

63



Talk Outline

Basic definitions
2 Random walks
0 Stationary distributions

Properties
a2 Perron frobenius theorem

9 Electrical networks, hitting and commute times
Euclidean Embedding

Applications
2 Recommender Networks

9 Pagerank
Power iteration
Convergence

3 Personalized pagerank
9 Rank stability
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Rank stability

How does the ranking change when the link structure
changes?

The web-graph is changing continuously.

How does that affect page-rank?

65



Rank STC(bi“Tyl (On the Machine Learning papers
from the CORA? database)

Rank on 5 perturbed

Rank on the
entire database.

datasets by deleting
30% of the papers

1  “Genetic Algorithms in Search, Optimization and.. . Goldberg 1 1 1 1 1
2 “Learning internal representations by error...”. Rumelhart+al 2 2 2 2 2
3 “Adaptation in Natural and Artificial Svstems™, Holland 302 6 4 3
4 “Classification and FEegression Trees . Breiman+al 4 3 5 5 4
3  “Probabilistic Eeasoning in Intelligent Systems™, Pearl 36 3 6 3
6 “Genetic Programming: On the Programming of .., Koza 6 4 4 3 6
7 “Learming to Predict by the Methods of Temporal ... Sutton Y Y Y B
& “Pattern classification and scene analvsis ., Duda+Hart & &8 B & 9
9 "Maximum likelihood from incomplete data via..”, Dempster+al 10 9 9 11 &
10 “UCT repository of machine learning databases” Murphv+Aha 9 11 109 1
11 “Parallel Distributed Processing . Rumelhart+McClelland - - - 10 -
12 “Introduction to the Theory of Neural Computation™, Hertz+al - 10 - - -

1. Link analysis, eigenvectors, and stability, Andrew Y. Ng, Alice X. Zheng and Michael Jordan, IJCAI-01

2.  Automating the contruction of Internet portals with machine learning, A. Mc Callum, K. Nigam,@.@ennie, K. Seymore, In
Information Retrieval Journel, 2000



Rank stability

Ng et al 2001: IS =(1-¢c)P+cVU

Theorem: if v is the left eigenvector of P Let the
pages i, i,,..., i, be changed in any way, and let v' be the

new pagerank. Then
k :
ZFI V(i)
C

So if cis not too close to O, the system would be rank
stable and also converge fast!

[lv=v]]<

67



Conclusion

Basic definitions
2 Random walks
3 Stationary distributions

Properties
O Perron frobenius theorem

9 Electrical networks, hitting and commute times
Euclidean Embedding

Applications

9 Pagerank
Power iteration
Convergencce

3 Personalized pagerank

9 Rank stability
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Thanksl|

Please send email to Purna at
psarkar@cs.cmu.edu with questions,

suggestions, corrections ©
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‘ Acknowledgements
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Gary Miller

O Check out Gary's Fall 2007 class on " Spectral Graph Theory,
Scientific Computing, and Biomedical Applications”

QO  http.//www.cs.cmu.edu/afs/cs/user/glmiller/public/Scientific-Computing/F

Fan Chung Graham's course on
QO Random Walks on Directed and Undirected Graphs
Q  http://www.math.ucsd.edu/~phorn/math261/

Random Walks on Graphs: A Survey, Laszlo Lov'asz

Reversible Markov Chains and Random Walks on Graphs, D
Aldous, J Fill

Random Walks and Electric Networks, Doyle & Snell
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Convergence Issues!

Lets look at the vectors x for t=1,2,...

Write X, as a linear combination of the eigenvectors of
P

Xy = CV, +t CVi+t CV,+ ... +C VvV,

o= 1. WHY?

Remember that 1is the right eigenvector of P with
eigenvalue 1, since P is stochastic. i.e. P*17 = 17, Hence
v.1T = O if iz0.

1=x*17=¢ov,*17=¢,. Since v, and x,are both
distributions

1. We are assuming that P is diagonalizable. The non-diagonalizable case is trickigr, you can take
a look at Fan Chung Graham'’s class notes (the link is in the acknowledgements section).
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