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Motivation: Link prediction in social 
networks
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Motivation: Basis for recommendation
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Motivation: Personalized search
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Why graphs?

 The underlying data is naturally a graph
 Papers linked by citation
 Authors linked by co-authorship
 Bipartite graph of customers and products
 Web-graph 
 Friendship networks: who knows whom
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What are we looking for

 Rank nodes for a particular query
 Top k matches for “Random Walks” from Citeseer
 Who are the most likely co-authors of “Manuel 

Blum”.
 Top k book recommendations  for Purna from 

Amazon
 Top k websites matching “Sound of Music”
 Top k friend recommendations for Purna when she 

joins “Facebook”
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Talk Outline
 Basic definitions

 Random walks
 Stationary distributions

 Properties
 Perron frobenius theorem
 Electrical networks, hitting and commute times

 Euclidean Embedding
 Applications

 Pagerank
 Power iteration
 Convergencce

 Personalized pagerank
 Rank stability 
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Definitions 
 nxn Adjacency matrix A.

 A(i,j) = weight on edge from i to j
 If the graph is undirected A(i,j)=A(j,i), i.e. A is symmetric

 nxn Transition matrix P.
 P is row stochastic
 P(i,j) = probability of stepping on node j from node i 
             = A(i,j)/∑iA(i,j)

 nxn Laplacian Matrix L.
 L(i,j)=∑iA(i,j)-A(i,j)
 Symmetric positive semi-definite for undirected graphs
 Singular
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Definitions

Adjacency matrix A Transition matrix P
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What is a random walk
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What is a random walk
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What is a random walk
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Probability Distributions

 xt(i) = probability that the surfer is at node i at time 
t

 xt+1(i) = ∑j(Probability of being at node j)*Pr(j->i)     
=∑jxt(j)*P(j,i)

 xt+1 = xtP = xt-1*P*P= xt-2*P*P*P = …=x0 Pt

 What happens when the surfer keeps walking for a 
long time?
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Stationary Distribution

 When the surfer keeps walking for a long time

 When the distribution does not change anymore
 i.e. xT+1 = xT

 For “well-behaved” graphs this does not depend on 
the start distribution!!
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What is a stationary distribution? 
Intuitively and Mathematically
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What is a stationary distribution? 
Intuitively and Mathematically
 The stationary distribution at a node is related to the 

amount of time a random walker spends visiting that 
node.
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What is a stationary distribution? 
Intuitively and Mathematically
 The stationary distribution at a node is related to the 

amount of time a random walker spends visiting that 
node.

 Remember that we can write the probability 
distribution at a node as
 xt+1 = xtP
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What is a stationary distribution? 
Intuitively and Mathematically
 The stationary distribution at a node is related to the 

amount of time a random walker spends visiting that 
node.

 Remember that we can write the probability 
distribution at a node as
 xt+1 = xtP

 For the stationary distribution v0 we have
 v0 = v0 P



 20

What is a stationary distribution? 
Intuitively and Mathematically
 The stationary distribution at a node is related to the 

amount of time a random walker spends visiting that 
node.

 Remember that we can write the probability 
distribution at a node as
 xt+1 = xtP

 For the stationary distribution v0 we have
 v0 = v0 P

 Whoa! that’s just the left eigenvector of the 
transition matrix !
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Talk Outline
 Basic definitions

 Random walks
 Stationary distributions

 Properties
 Perron frobenius theorem
 Electrical networks, hitting and commute times

 Euclidean Embedding
 Applications

 Pagerank
 Power iteration
 Convergencce

 Personalized pagerank
 Rank stability 
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Interesting questions

 Does a stationary distribution always exist? Is it 
unique?
 Yes, if the graph is “well-behaved”.

 What is “well-behaved”?
 We shall talk about this soon.

 How fast will the random surfer approach this 
stationary distribution?
 Mixing Time!
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Well behaved graphs

 Irreducible: There is a path from every node to every 
other node.

 

Irreducible Not irreducible
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Well behaved graphs

 Aperiodic: The GCD of all cycle lengths is 1. The GCD 
is also called period.

 

AperiodicPeriodicity is 3
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Implications of the Perron Frobenius 
Theorem
 If a markov chain is irreducible and aperiodic then 

the largest eigenvalue of the transition matrix will be 
equal to 1 and all the other eigenvalues will be strictly 
less than 1.
 Let the eigenvalues of P be {σi| i=0:n-1} in non-increasing 

order of σi .
 σ0 = 1 > σ1 > σ2 >= ……>= σn
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Implications of the Perron Frobenius 
Theorem
 If a markov chain is irreducible and aperiodic then 

the largest eigenvalue of the transition matrix will be 
equal to 1 and all the other eigenvalues will be strictly 
less than 1.
 Let the eigenvalues of P be {σi| i=0:n-1} in non-increasing 

order of σi .
 σ0 = 1 > σ1 > σ2 >= ……>= σn

 These results imply that for a well behaved graph 
there exists an unique stationary distribution.

 More details when we discuss pagerank.
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Some fun stuff about undirected 
graphs
 A connected undirected graph is irreducible

 A connected non-bipartite undirected graph has a 
stationary distribution proportional to the degree 
distribution!

 Makes sense, since larger the degree of the node 
more likely a random walk is to come back to it. 
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Talk Outline
 Basic definitions

 Random walks
 Stationary distributions

 Properties
 Perron frobenius theorem
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 Euclidean Embedding
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Proximity measures from random walks

 How long does it take to hit node b in a random walk 
starting at node a ? Hitting time.

 How long does it take to hit node b and come back to 
node a ? Commute time.

a
b
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Hitting and Commute times

 Hitting time from node i to node j 
 Expected number of hops to hit node j starting at node i.

 Is not symmetric. h(a,b) > h(a,b)

 h(i,j) = 1 + ΣkЄnbs(A) p(i,k)h(k,j)

a
b
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Hitting and Commute times

 Commute time between node i and j
 Is expected time to hit node j and come back to i

 c(i,j) = h(i,j) + h(j,i)
 Is symmetric. c(a,b) = c(b,a)

a
b
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Relationship with Electrical 
networks1,2

 Consider the graph as a n-node 
resistive network. 

 Each edge is a resistor of 1 Ohm.

 Degree of a node is number of 
   neighbors

 Sum of degrees = 2*m
 m being the number of edges

1. Random Walks and Electric Networks , Doyle and Snell, 1984

2. The Electrical Resistance Of A Graph Captures Its Commute And Cover Times, Ashok K. Chandra, Prabhakar Raghavan, 
Walter L. Ruzzo, Roman Smolensky, Prasoon Tiwari, 1989
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Relationship with Electrical networks

 Inject d(i) amp current in 
each node

 Extract 2m amp current from
    node j.

 Now what is the voltage 
   difference between i and j ?

i j
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Relationship with Electrical networks

 Whoa!! Hitting time from i to 
j is exactly the voltage drop 
when you inject respective 
degree amount of current in 
every node and take out 2*m 
from j!

i j
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Relationship with Electrical networks

 Consider neighbors of i i.e. NBS(i)

 Using Kirchhoff's law
    d(i) = ΣkЄNBS(A) Φ(i,j) - Φ(k,j)
    

 Oh wait, that’s also the definition of 
hitting time from i to j!
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Hitting times and Laplacians
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Relationship with Electrical networks

i j

16

16

   c(i,j) = h(i,j) + h(j,i) = 2m*Reff(i,j)

h(i,j) + h(j,i)

1. The Electrical Resistance Of i Graph Captures Its Commute And Cover Times, Ashok K. Chandra, Prabhakar Raghavan, 

Walter L. Ruzzo, Roman Smolensky, Prasoon Tiwari, 1989

1
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Commute times and Lapacians

C(i,j) = Φi – Φj
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Commute times and Laplacians

 Why is this interesting ?

 Because, this gives a very intuitive definition of 
embedding the points in some Euclidian space, s.t. the 
commute times is the squared Euclidian distances in 
the transformed space.1

1. The Principal Components Analysis of a Graph, and its Relationships to Spectral Clustering . M. Saerens, et al, ECML ‘04
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L+ : some other interesting 
measures of similarity1

 L+
ij = xi

Txj = inner product of the position vectors

 L+
ii = xi

Txi = square of length of position vector of i

 Cosine similarity
jjii

ij

ll

l
++

+

1. A random walks perspective on maximising satisfaction and profit. Matthew Brand, SIAM ‘05



 41

Talk Outline
 Basic definitions

 Random walks
 Stationary distributions

 Properties
 Perron frobenius theorem
 Electrical networks, hitting and commute times

 Euclidean Embedding
 Applications

 Recommender Networks
 Pagerank

 Power iteration
 Convergencce

 Personalized pagerank
 Rank stability 
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Recommender Networks1

1. A random walks perspective on maximising satisfaction and profit. Matthew Brand, SIAM ‘05
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Recommender Networks

 For a customer node i define similarity as
 H(i,j)
 C(i,j)
 Or the cosine similarity

 Now the question is how to compute these quantities 
quickly for very large graphs. 
 Fast iterative techniques (Brand 2005)
 Fast Random Walk with Restart (Tong, Faloutsos 2006)
 Finding nearest neighbors in graphs (Sarkar, Moore 2007)

++

+

jjii

ij

LL
L
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Ranking algorithms on the web

 HITS (Kleinberg, 1998) & Pagerank (Page & Brin, 
1998)

 We will focus on Pagerank for this talk.
 An webpage is important if other important pages point to it.

 Intuitively 

 v works out to be the stationary distribution of the markov 
chain corresponding to the web.

∑
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Pagerank & Perron-frobenius
 Perron Frobenius only holds if the graph is 

irreducible and aperiodic.

 But how can we guarantee that for the web graph?
 Do it with a small restart probability c.

 At any time-step the random surfer 
 jumps (teleport) to any other node with probability c
 jumps to its direct neighbors with total probability 1-c.
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Power iteration

 Power Iteration is an algorithm for computing the 
stationary distribution.

 Start with any distribution x0

 Keep computing xt+1 = xtP

 Stop when xt+1 and xt are almost the same.
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Power iteration
 Why should this work?

 Write x0 as a linear combination of the left eigenvectors 
{v0, v1, … , vn-1} of P

 Remember that v0 is the stationary distribution.

 x0 = c0v0 + c1v1 + c2v2 + … + cn-1vn-1
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Power iteration
 Why should this work?

 Write x0 as a linear combination of the left 
eigenvectors {v0, v1, … , vn-1} of P

 Remember that v0 is the stationary distribution.

 x0 = c0v0 + c1v1 + c2v2 + … + cn-1vn-1

                c0 = 1 .  WHY? (slide 71)
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Power iteration

v0     v1     v2   ……. vn-1   

   1      c1           c2                cn-1

0x
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Power iteration

v0     v1     v2   ……. vn-1   
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Power iteration
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Power iteration

v0     v1     v2   ……. vn-1   
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Power iteration

v0     v1     v2   ……. vn-1   
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Power iteration

v0     v1     v2   ……. vn-1   

          1    0         0              0

σ0 = 1 > σ1 ≥…≥ σn∞x
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Convergence Issues

 Formally ||x0Pt – v0|| ≤ |λ|t

 λ is the eigenvalue with second largest magnitude

 The smaller the second largest eigenvalue (in 
magnitude), the faster the mixing.

 For λ<1 there exists an unique stationary distribution, 
namely the first left eigenvector of the transition 
matrix.
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Pagerank and convergence
 The transition matrix pagerank uses really is

 The second largest eigenvalue of       can be proven1 to 
be ≤ (1-c)

  

 Nice! This means pagerank computation will converge 
fast.

1. The Second Eigenvalue of the Google Matrix, Taher H. Haveliwala and Sepandar D. Kamvar, Stanford University Technical Report, 
2003.

~
P

UP)1(P
~

cc +−=
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Pagerank

 We are looking for the vector v s.t.

 r is a distribution over web-pages.

 If r is the uniform distribution we get pagerank.

 What happens if r is non-uniform? 

 

crc +−= vP)1(v
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Pagerank

 We are looking for the vector v s.t.

 r is a distribution over web-pages.

 If r is the uniform distribution we get pagerank.

 What happens if r is non-uniform? 

 

crc +−= vP)1(v

Personalization
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Personalized Pagerank1,2,3

 The only difference is that we use a non-uniform 
teleportation distribution, i.e. at any time step 
teleport to a set of webpages.

   
 In other words we are looking for the vector v s.t.

 r is a non-uniform preference vector specific to an 
user.

 v gives “personalized views” of the web.

rvP)1(v cc +−=

1. Scaling Personalized Web Search, Jeh, Widom. 2003

2. Topic-sensitive PageRank, Haveliwala, 2001
3. Towards scaling fully personalized pagerank, D. Fogaras and B. Racz, 2004 
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Personalized Pagerank
 Pre-computation: r is not known from before
 Computing during query time takes too long 
 A crucial observation1 is that the personalized 

pagerank vector is linear w.r.t r

Scaling Personalized Web Search, Jeh, Widom. 2003
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Topic-sensitive pagerank (Haveliwala’01)

 Divide the webpages into 16 broad categories

 For each category compute the biased personalized 
pagerank vector by uniformly teleporting to websites 
under that category.

 At query time the probability of the query being from 
any of the above classes is computed, and the final 
page-rank vector is computed by a linear combination 
of the biased pagerank vectors computed offline.
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Personalized Pagerank: Other 
Approaches
 Scaling Personalized Web Search (Jeh & Widom ’03)

 Towards scaling fully personalized pagerank: 
algorithms, lower bounds and experiments (Fogaras et 
al, 2004)

 Dynamic personalized pagerank in entity-relation 
graphs. (Soumen Chakrabarti, 2007)
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Personalized Pagerank (Purna’s Take)
 But, whats the guarantee that the new transition matrix will still 

be irreducible?

 Check out 
 The Second Eigenvalue of the Google Matrix, Taher H. Haveliwala 

and Sepandar D. Kamvar, Stanford University Technical Report, 
2003.

 Deeper Inside PageRank, Amy N. Langville. and Carl D. Meyer. 
Internet Mathematics, 2004.

 As long as you are adding any rank one (where the matrix is a 
repetition of one distinct row) matrix of form (1Tr) to your 
transition matrix as shown before, 
 λ ≤ 1-c
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Rank stability
 How does the ranking change when the link structure 

changes?

 The web-graph is changing continuously.

 How does that affect page-rank?
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Rank stability1 (On the Machine Learning papers 
from the CORA2 database)

1. Link analysis, eigenvectors, and stability, Andrew Y. Ng, Alice X. Zheng and Michael Jordan, IJCAI-01

2. Automating the contruction of Internet portals with machine learning, A. Mc Callum, K. Nigam, J. Rennie, K. Seymore, In 
Information Retrieval Journel, 2000

Rank on 5 perturbed 
datasets by deleting 
30% of the papers

Rank on the 
entire database.
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Rank stability

 Ng et al 2001:
 
 Theorem: if v is the left eigenvector of     .  Let the 

pages i1, i2,…, ik be changed in any way, and let v’ be the 
new pagerank. Then 

 So if c is not too close to 0, the system would be rank 
stable and also converge fast!
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Thanks! 

Please send email to Purna at 
psarkar@cs.cmu.edu with questions, 

suggestions, corrections 

mailto:psarkar@cs.cmu.edu
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 Check out Gary’s Fall 2007 class on “Spectral Graph Theory, 

Scientific Computing, and Biomedical Applications”
 http://www.cs.cmu.edu/afs/cs/user/glmiller/public/Scientific-Computing/F-07/index.html

 Fan Chung Graham’s course on
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Convergence Issues1

 Lets look at the vectors x for t=1,2,…

 Write x0 as a linear combination of the eigenvectors of 
P

 x0 = c0v0 + c1v1 + c2v2 + … + cn-1vn-1 

                c0 = 1 .  WHY?

Remember that 1is the right eigenvector of P with 
eigenvalue 1, since P is stochastic. i.e. P*1T = 1T. Hence 
vi1T = 0 if i≠0.

1 = x*1T = c0v0*1T = c0 . Since v0 and x0 are both 
distributions

1. We are assuming that P is diagonalizable. The non-diagonalizable case is trickier, you can take 
a look at Fan Chung Graham’s class notes (the link is in the acknowledgements section).


	Random Walks on Graphs: An Overview
	Motivation: Link prediction in social networks
	Motivation: Basis for recommendation
	Motivation: Personalized search
	Why graphs?
	What are we looking for
	Talk Outline
	Definitions 
	Definitions
	What is a random walk
	Slide 11
	Slide 12
	Slide 13
	Probability Distributions
	Stationary Distribution
	What is a stationary distribution?  Intuitively and Mathematically
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Interesting questions
	Well behaved graphs
	Slide 24
	Implications of the Perron Frobenius Theorem
	Slide 26
	Some fun stuff about undirected graphs
	Slide 28
	Proximity measures from random walks
	Hitting and Commute times
	Slide 31
	Relationship with Electrical networks1,2
	Relationship with Electrical networks
	Slide 34
	Slide 35
	Hitting times and Laplacians
	Slide 37
	Commute times and Lapacians
	Commute times and Laplacians
	L+ : some other interesting measures of similarity1
	Slide 41
	Recommender Networks1
	Recommender Networks
	Ranking algorithms on the web
	Pagerank & Perron-frobenius
	Power iteration
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Convergence Issues
	Pagerank and convergence
	Pagerank
	Slide 58
	Personalized Pagerank1,2,3
	Personalized Pagerank
	Topic-sensitive pagerank (Haveliwala’01) 
	Personalized Pagerank: Other Approaches
	Personalized Pagerank (Purna’s Take)
	Slide 64
	Rank stability
	Rank stability1 (On the Machine Learning papers from the CORA2 database)
	Slide 67
	Conclusion
	Slide 69
	Acknowledgements
	Convergence Issues1

