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WWW
Other Applications
Web page references

I The World Wide Web (WWW) consists of pages that
reference (link to) each other

I The adjacency matrix A of a set of pages (nodes) defines the
linking structure

I Matrix element aij is 1 if node i references node j and 0
otherwise

A =


0 1 1 1
0 0 1 1
0 1 0 0
0 0 0 0
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WWW
Other Applications
Web page references

I Several other applications share same linking characteristics
with the WWW

I Article citations form a web of references

I Journal importance could and has been analysed using link
analysis

I Social networks
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WWW
Other Applications
Web page references

I What can we say about web page references?

I Interesting pages are referenced by several other pages

I Interesting pages are referenced by interesting pages

I A page, which references several interesting pages, might be
itself interesting
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Hypertext Induced Topics Search (HITS)
Eigenvectors and SVD
Iterative method

I Hypertext Induced Topics
Search (HITS) developed by
Jon Kleinberg

I HITS is applied on a subgraph
after a search is done on the
complete graph

I Uses hubs and authorities to
define a recursive relationship
between web pages

I An authority is a page that
many hubs link to

I A hub is a page that links to
many authorities
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Hypertext Induced Topics Search (HITS)
Eigenvectors and SVD
Iterative method

I The scores for authority nodes x can be determined from the
hub scores x = ATy

I And similarly the hub scores from the authority scores y = Ax
I Substituting into the equations we get

x = AT Ax

y = AATy
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Hypertext Induced Topics Search (HITS)
Eigenvectors and SVD
Iterative method

‖‖2 normalized hub and authority scores of example web graph
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Hypertext Induced Topics Search (HITS)
Eigenvectors and SVD
Iterative method

I Singular Value Decomposition (SVD)

I For a real valued m× n matrix A the SVD A = USV T

consists of U , a m× n orthogonal matrix, S, a m× n matrix
of singular values on the diagonal and V an orthogonal matrix
of size n× n

I A singular value σ is such that Av = σu and AT u = σv,
where u is called the left-singular and v the right-singular
vector

I For A = USV T , U consists of left-singular vectors, V of
right-singular vectors and S of the singular values
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Hypertext Induced Topics Search (HITS)
Eigenvectors and SVD
Iterative method

I Finding eigenvectors for AAT and AT A solves the hub and
authority score linear equations

I For the matrix A we can use singular value decomposition
(SVD) on A = USV T

I AT A = V ST UT USV T = V
(
ST S

)
V T = V Σ V T

AAT = USV T V ST UT = U
(
SST

)
UT = U Σ UT

Σ is a diagonal matrix with the eigenvalues

I The first vectors of left and right matrices U and V are the
first eigenvectors for AAT and AT A respectively, i.e. the hub
and authority scores
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Hypertext Induced Topics Search (HITS)
Eigenvectors and SVD
Iterative method

I An iterative method suggested by Kleinberg for solving the
linear equations

I We use the following two operations to update the weights
I xj =

∑
aij=1 yi

I yi =
∑

aij=1 xj

I The hub and authority scores are normalized using ‖‖2
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Hypertext Induced Topics Search (HITS)
Eigenvectors and SVD
Iterative method

Input: Adjacency matrix A of size n×m and number of iterations
Output: Authority and hub score vectors x and y respectively
x = (1, 1, . . . , 1) ∈ Rm; y = (1, 1, . . . , 1) ∈ Rn;
while Iterations still left do

for i=1,2,. . . ,m do
xj =

∑
aij=1 yi;

end
for j=1,2,. . . ,n do

yi =
∑

aij=1 xj ;

end
Normalize(x); Normalize(y);

end
Algorithm 1: Iterative algorithm for computing the authority and
hub score vectors
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PageRank
PageRank problems
PageRank natural solution
Computing the PageRank

I PageRank developed by Larry Page and Sergey Brin at
Stanford University

I Based on the idea of a ’random surfer’

I Pages as Markov Chain states

I Probability for moving from a page to another page modelled
as a state transition probability
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PageRank
PageRank problems
PageRank natural solution
Computing the PageRank

I The Markov Chain state transition probability matrix P

P =


0 1

3
1
3

1
3

0 0 1
2

1
2

0 1 0 0
0 0 0 0


I The pagerank rT = rT P
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PageRank
PageRank problems
PageRank natural solution
Computing the PageRank

I Dead-end states → matrix P not stochastic

I Transient states → Markov Chain not irreducible

I Periodic states → no stable r
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PageRank
PageRank problems
PageRank natural solution
Computing the PageRank

I v is the personalization stochastic vector

I The uniform vector v = e
|e| , where e = (1, . . . , 1), is used

often

I Adding the possibility to jump from dead-end nodes to any
node: Pstochastic = P + D, where D = dvT and di = 1, when
i is a dead-end node

I Adding the possibility to teleport to any node:
Pfinal = αPstochastic + (1−α)evT , where α is the dampening
factor

I Pfinal is irreducible and all its states are aperiodic
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PageRank
PageRank problems
PageRank natural solution
Computing the PageRank

I rT = rT Pfinal determines the unique stationary distribution r,
because the Markov Chain is irreducible and its states are
aperiodic

I Also rT = uT limk→∞ P k
final, where u is any stochastic vector
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PageRank
PageRank problems
PageRank natural solution
Computing the PageRank

I PageRank example using the dampening factor α = 0.85

I Pfinal = α (P + D) + (1− α)eeT

|e|

Pfinal =
0.0375 0.3208 0.3208 0.3208
0.0375 0.0375 0.4625 0.4625
0.0375 0.8875 0.0375 0.0375
0.25 0.25 0.25 0.25
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PageRank
PageRank problems
PageRank natural solution
Computing the PageRank

I Storage and computational complexity problems

I P is usually sparse, but Pfinal is dense

I Computing the first left eigenvector of Pfinal solves r for the
linear equation rT = rT Pfinal, but can be computationally
demanding
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PageRank
PageRank problems
PageRank natural solution
Computing the PageRank

I Using the Power Iteration method we can calculate r
performing mostly sparse calculations

rT
0 =

e
|e|

rT
i+1 = rT

i Pfinal

= rT
i

(
αPstochastic + (1− α) e

eT

|e|

)
= α

(
rT
i P + rT

i D
)

+ (1− α) rT
i

I Other methods for sparse computation of PageRank exist, e.g.
solving

(
I − α P T

)
y = v and then r = y

‖y‖1
(proof in [1])
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Summary

I HITS is applied on a subgraph after a search is done on the
complete graph

I HITS defines hubs and authorities recursively

I PageRank is used for ranking all the nodes of the complete
graph and then applying a search

I PageRank is based on the ’random surfer’ idea and the web is
seen as a Markov Chain

I Power Iteration an efficient way to calculate with sparse
matrices
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