Lecture 8: Clustering & Mixture Models

C4B Machine Learning

Hilary 2011

A. Zisserman

» K-means algorithm

« GMM and the EM algorithm

« pLSA

» clustering




K-means algorithm

K-means algorithm

Partition data into K sets
« Initialize: choose K centres (at random)
e Repeat:
1. Assign points to the nearest centre
2. New centre = mean of points assigned to it

* Until no change
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Cost function

K-means minimizes a measure of distortion for a set of vectors
{Xi},i=1,...,N
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where xf is the subset assigned to the cluster k. The objective

is to find the set of centres {c.},k = 1,...,K that minimize the
distortion:
N
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Introducing binary assignment variables r;,, the distortion can be
written as

N K ,
D= > > rigllx; —cl

i=1k=1
where if x; is assigned to cluster k then
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Minimizing the Cost function

We want to determine
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Step 1: minimize over assignments r;z

Each term in x; can be minimized independently by assigning x; to the
closest centre ¢y

Step 2: minimize over centres cy
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i.e. ¢, is the mean (centroid) of the vectors assigned to it.

Note, since both steps decrease the cost D, the algorithm will converge
— but it can converge to a local rather than global minimum.

Decrease in distortion cost with iterations
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Practicalities

 always run algorithm several times with different
initializations and keep the run with lowest cost

» choice of K

» suppose we have data for which a distance is defined,
but it is non-vectorial (so can’t be added). Which step
needs to change?

* many other clustering methods: hierarchical K-means,
K-medoids, agglomerative clustering ...




Example application 1: vector quantization
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« all vectors in a cluster are considered equivalent
 they can be represented by a single vector — the cluster centre
* applications in compression, segmentation, noise reduction

Example: image segmentation

» K-means cluster all pixels using their colour vectors (3D)
* assign pixels to their clusters

» colour pixels by their cluster assignment

Original image




Example application 2: face clustering

» Determine the principal cast of a feature film

» Approach: view this as a clustering problem on faces

Algorithm outline
1. Detect faces for every fifth frame in the movie

2. Describe the face by a vector of intensities

3. Cluster using a K-means algorithm

Example — “Ground Hog Day” 2000 frames
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Subset of detected faces in temporal order
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Gaussian Mixture Models




Hard vs soft assignments

* In K-means, there is a hard assignment of vectors to a cluster

» However, for vectors near the boundary this may be a poor
representation

* Instead, can consider a soft-assignment, where the strength of the
assignment depends on distance

(R ]

Gaussian Mixture Model (GMM)

Combine simple models p(z)a
into a complex model:

K
Px) = 3 N (xlpsgs )
k=1 v

Component

Mixing coefficient
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Cost function for fitting a GMM

For a point x;

K

p(x;) = > mN (x| pg, Tk)
k=1

The likelihood of the GMM for N points (assuming independence) is

N N K
I p(x) = [T D miN(xi|peg, Zk)
i—=1

i=1k=1
and the (negative) log-likelihood is

K

N
LO)=—>In> mN(xi|pg, k)
i=1 k=1

where 6 are the parameters we wish to estimate (i.e. p;, and £ in this
case).




To minimize L£(60), differentiate first wrt pug

dL() _ % N (i s 1)

dpy, 25 S5 TN (x|, )
N Y,

>t G — )

Rearranging Yik
N N
Z Yiklk = Z YikXi
i=1 i=1

and hence

PE = — > VikXi weighted mean

where
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and -, are the responsibilities of mixture component k for vector x;.

N, is the effective number of vectors assigned to component k.

N
Vik Ne = > vk
i=1

v;. Play a similar role to the assignment variables r;. in K-means, but
ik 1S not binary, 0 < v,z <1

Differentiating wrt L, gives : :
d k9 weighted covariance

1 N
Ly = A ST yin(xi — pa) (ki — pg) T
ki=1

and wrt m;, (enforcing the constraint that >, 7, = 1 with a Lagrange
multiplier) gives
Ny,

T — ——

N
which is the average responsibility for the component

Now, ... an algorithm for minimizing the cost function




Expectation Maximization (EM) Algorithm

Step 1 Expectation: Compute responsibilities using current parameters
pr, L (assignment)

TN (X5 g, )
I N (x4l e, 25)

Yik =

Step 2 Maximization: Re-estimate parameters using computed respon-
sibilities

YikXi

Yire(Xi — ) (X5 — Nk)—r

V?
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N, 2

N,
L Wk where N = Z Yik

Repeat until convergence

Example in 1D
Data: T = (:1?1, Ly sZI?N)
| | 00 OO0 | |
4 -3 2 -1 0 1 2 3 4 5

OBJECTIVE: Fit mixture of Gaussian model with K=2 components

Model:

p(x]0) = g 7 N (| pg, o) where Sy mp =1
A

Parameters: § — {71-, L, 0‘} P(x|0)

keep 7, 0 fixed

i.e. only estimate [t

v
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Intuition of EM

E-step: Compute soft assignment of the points, using current parameters

M-step: Update parameters using current responsibilities

N

M A

e ———0— 00—
| Dzﬁ\\

e —— o

Likelihood function

Likelihood is a function of parameters, 6
Probability is a function of r.v. x

[(p1, polw) R
RS




E-step: What do we actually compute?

Point 1
Point 2

Point 6

nComponents x nPoints Component 1
matrix (columns sum to 1):

Component 2

i=1, Q=-3.279564




i=2, Q=-2.788156

i=3, @=-1.501116




i=4, Q=-0.317491

i=5, Q=-0.762661




2D example: fitting means and covariances
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Practicalities

» Usually initialize EM algorithm using K-means
» Choice of K

» Can converge to a local rather than global minimum




Probabilistic Latent Semantic
Analysis (pLSA)

non-examinable

Unsupervised learning of topics

» Given a large collections of text documents (e.g. a website,
or news archive)

 Discover the principal semantic topics in the collection
» Hence can retrieve/organize documents according to topic

* Method involves fitting a mixture model to a representation
of the collection




Document-Term Matrix - bag of words model

D = Document collection W = Lexicon/Vocabulary

intelligence Wj

Texas Instruments said it has developed || Document-Term Matrix
the first 32-bit computer chip designed
specifically for artificial intelligence W
applications [...]
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Probabilistic Latent Semantic Analysis (pLSA)

[HOfmann ’99] d ... documents
w ... words
Z ... topics
K
P(w;|dy) = P(zg|d;) P(w;| 1)
k=1
L z, d,
W l Wl Zl
= »
> .
P(zId)
P(wld) P(wlz)

Model fitting: find topic vectors P(w|z) common to all documents, and

mixture coefficients P(z|d) specific to each document.




Probabilistic Latent Semantic Analysis (pLSA)
[Hofmann ’99] d ... documents

w ... words

.. topics

Zk)

P(w;|d;) ZP

W l — W l z l —

= »

P(zld)
P(wld) P(wlz)

» P(w|z) are the latent aspects
» Non-negative matrix factorization
» each document histogram explained as a sum over topics

Fitting pLSA parameters

Observed counts of
word i in document |

e P A )H(it‘; i)
1]

Maximize likelihood of data using EM

M ... number of words

N ... number of documents




Expectation Maximization Algorithm for pLSA

E step: posterior probability of latent variables (“topics”)

q P(z|d; m) P(w|z; 8) Probability that the occurence
sP(Zld, ‘HJ) — Ezr P(z’|d; W)P(w|z"; 9) of term w in document d can be

“explained* by topic z

M step: parameter estimation based on “completed” statistics

“P(w|2;0) < Y n(d,w)P(z|d,w), P(eldim) < Y n(d, w)P(z|d, w)
\d ’ i

N , L _
\V 4 " e
how often is term w how often is document d
associated with topic z ? associated with topic z ?

Example (1)

Topics 3 of 100) extracted from Associated Press news

Topic 1 Topic 2 Topic 3
securities  94.96324 109.41212 india 91.74842
firm 88.74591 coast 93.70902 singh 50.34063
drexel 78.33697 guard 82.11109 militants 49.21986
investment =~ 75.51504 sea 77.45868 gandhi 48.86809
bonds 64.23486 boat 75.97172 sikh 47.12099
sec 61.89292 fishing 65.41328 indian 44.29306
bond 61.39895 vessel 64.25243 peru 43.00298
junk 61.14784 62.55056 hindu 42.79652
milken 58.72266 spill 60.21822 lima 41.87559
firms 51.26381 exxon 58.35260 kashmir 40.01138
investors  48.80564 54.92072 tamilnadu  39.54702
lynch 44.91865 waters 53.55938 killed 39.47202
insider 4488536 51.53405 india's 39.25983
shearson 43.82692 alaska 48.63269 punjab 39.22486
boesky 43.74837 ships 46.95736 delhi 38.70990
lambert 40.77679 port 46.56804 temple 38.38197
merrill 40.14225 hazelwood 44.81608 shining 37.62768
brokerage 39.66526 vessels 43.80310 menem 35.42235
corporate | 37.94985 42.79100 hindus 34.88001

burnham 36.86570 fishermen 41.65175 violence 33.87917




Example (2)

Topics (10 of 128) extracted from Science Magazine articles
(12K)

CrSe nod43g | | drue 0.0672 cells 0.0675 sequence 00818 years 0.156
zalazies 0.0375| | patients 0.0493 | | stem 0.0478 | | sequences 00493 million 0.0536
chusters 00275 | | drogs 0.0444 human 0.0421 genome 0033 ago 0.045
~N matter 00233 |clidcal 0.034& cell 00209 dna 00257 titne 003217
E galasy 003z | |treatment 0.028 gene 0.025 secuencing 00172 age 0.0243
a’ cluster 0.0214 | |trals 0.0277 | | tissue 0.0185 map 0.0123 year 0.024
cosmic 0.0137| |therapy 0.0213 | | cloning 00169 | | genes 0.0122 || record 0.0238
dark no131 | |tral 0.0164 transfer 0.0155 chromosome 00119 early 0.0233
light 00109 | dsease 0.0157 blood 0.0113 regions no11e billion 0.0177
density 0ol medical 0.009%7| | embryos 0.0111 hurnat 00111 history 0.0148
bacteria 0.0983 male 0.0558 theory 00211 intrune 0.0909 | | stars 0.0524
bacterial 0.0561 females 0.0541 physics 0078z || response 0.0375] | star 0.0458
— resistance 0.0431 female 0.0529 physicists 00146 system 0.0358 | | astrophys 0.0237
- coli 0.0381 males 0.0477 einstein 0.0142 || respenses  0.0322 | | mass 0.021
E strains 0.025 SEX 00338 university 0013 antigen 00263 | disk 0.0173
o tnicrekiel 0.0214 reproductive 0.0172 gravity 0013 antigens 001284 | | black 0.0161
microbial 0.01%6 offspring 00168 black 00127 ity 0.0176| | gas 0.0148%
strain 0.0165 sexmal D.0166 CeTies 001 immmnelogy  0.0145 | | stellar 0.0127
salmonslla  0.0163 || reproductien 0.0143 aps 0.00027| | antbody 0.014 astron 0.0125
resistant 0.0145 BgpEs 00128 matter 000954| | avtormmune  0.0128 | | hole 0.00824

Background reading

* Bishop, chapter 9.1 — 9.3.2

 Other topics you should know about:
» random forest classifiers and regressors
* semi-supervised learning
 collaborative filtering

* More on web page:
http://www.robots.ox.ac.uk/~az/lectures/ml




