Lecture 8: Clustering & Mixture Models

C4B Machine Learning

Hilary 2011

A. Zisserman

- K-means algorithm
- GMM and the EM algorithm
- pLSA

clustering

K-means algorithm

K-means algorithm

Partition data into K sets

- Initialize: choose K centres (at random)
- Repeat:
 - 1. Assign points to the nearest centre
 - 2. New centre = mean of points assigned to it
- Until no change

Example

Cost function

K-means minimizes a measure of distortion for a set of vectors $\{\mathbf{x}_i\}, i=1,\dots,N$

$$\mathbf{D} = \sum_{i=1}^{N} \|\mathbf{x}_i^k - \mathbf{c}_k\|^2$$

where \mathbf{x}_i^k is the subset assigned to the cluster k. The objective is to find the set of centres $\{\mathbf{c}_k\}, k=1,\ldots,K$ that minimize the distortion:

$$\min_{\mathbf{c}_k} \sum_{i=1}^N \|\mathbf{x}_i^k - \mathbf{c}_k\|^2$$

Introducing binary assignment variables r_{ik} , the distortion can be written as

$$D = \sum_{i=1}^{N} \sum_{k=1}^{K} r_{ik} ||\mathbf{x}_i - \mathbf{c}_k||^2$$

where if \mathbf{x}_i is assigned to cluster k then

$$r_{ij} = \begin{cases} 1 & j = k \\ 0 & j \neq k \end{cases}$$

Minimizing the Cost function

We want to determine

$$\min_{\mathbf{c}_k, r_{ik}} D = \sum_{i=1}^{N} \sum_{k=1}^{K} r_{ik} \|\mathbf{x}_i - \mathbf{c}_k\|^2$$

Step 1: minimize over assignments r_{ik}

Each term in \mathbf{x}_i can be minimized independently by assigning \mathbf{x}_i to the closest centre \mathbf{c}_k

Step 2: minimize over centres c_k

$$\frac{d}{d\mathbf{c}_k} \sum_{i=1}^{N} \sum_{k=1}^{K} r_{ik} \|\mathbf{x}_i - \mathbf{c}_k\|^2 = 2 \sum_{i=1}^{N} r_{ik} (\mathbf{x}_i - \mathbf{c}_k) = \mathbf{0}$$

Hence

$$\mathbf{c}_k = \frac{\sum_{i=1}^{N} r_{ik} \mathbf{x}_i}{\sum_{i=1}^{N} r_{ik}}$$

i.e. \mathbf{c}_k is the mean (centroid) of the vectors assigned to it.

Note, since both steps decrease the cost D, the algorithm will converge – but it can converge to a local rather than global minimum.

Decrease in distortion cost with iterations

Sensitive to initialization

Sensitive to initialization

Practicalities

- always run algorithm several times with different initializations and keep the run with lowest cost
- choice of K
- suppose we have data for which a distance is defined, but it is non-vectorial (so can't be added). Which step needs to change?
- many other clustering methods: hierarchical K-means, K-medoids, agglomerative clustering ...

Example application 1: vector quantization

- all vectors in a cluster are considered equivalent
- they can be represented by a single vector the cluster centre
- applications in compression, segmentation, noise reduction

Example: image segmentation

- K-means cluster all pixels using their colour vectors (3D)
- assign pixels to their clusters
- colour pixels by their cluster assignment

Example application 2: face clustering

- Determine the principal cast of a feature film
- Approach: view this as a clustering problem on faces

Algorithm outline

- 1. Detect faces for every fifth frame in the movie
- 2. Describe the face by a vector of intensities
- 3. Cluster using a K-means algorithm

Example – "Ground Hog Day" 2000 frames

Subset of detected faces in temporal order

Clusters for K = 4

Gaussian Mixture Models

Hard vs soft assignments

- In K-means, there is a hard assignment of vectors to a cluster
- However, for vectors near the boundary this may be a poor representation
- Instead, can consider a soft-assignment, where the strength of the assignment depends on distance

Gaussian Mixture Model (GMM)

Combine simple models into a complex model:

$$p(\mathbf{x}) = \sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{x}|oldsymbol{\mu}_k, oldsymbol{\Sigma}_k)$$
 Component Mixing coefficient

$$\forall k: \pi_k \geqslant 0$$
 $\sum_{k=1}^K \pi_k = 1$

Cost function for fitting a GMM

For a point \mathbf{x}_i

$$p(\mathbf{x}_i) = \sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{x}_i | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

The likelihood of the GMM for N points (assuming independence) is

$$\prod_{i=1}^{N} p(\mathbf{x}_i) = \prod_{i=1}^{N} \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_i | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

and the (negative) log-likelihood is

$$\mathcal{L}(\theta) = -\sum_{i=1}^{N} \ln \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_i | \boldsymbol{\mu}_k, \Sigma_k)$$

where θ are the parameters we wish to estimate (i.e. μ_k and Σ_k in this case).

To minimize $\mathcal{L}(\theta)$, differentiate first wrt μ_k

$$\frac{d\mathcal{L}(\theta)}{d\boldsymbol{\mu}_k} = \sum_{i=1}^{N} \frac{\pi_k \mathcal{N}(\mathbf{x}_i | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=1}^{K} \pi_j \mathcal{N}(\mathbf{x}_i | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)} \boldsymbol{\Sigma}_k^{-1}(\mathbf{x}_i - \boldsymbol{\mu}_k)$$

Rearranging

$$\sum_{i=1}^{N} \gamma_{ik} \boldsymbol{\mu}_k = \sum_{i=1}^{N} \gamma_{ik} \mathbf{x}_i$$

and hence

$$oldsymbol{\mu}_k = rac{1}{N_k} \sum_{i=1}^N \gamma_{ik} \mathbf{x}_i$$
 weighted mean

where

$$\gamma_{ik} = \frac{\pi_k \mathcal{N}(\mathbf{x}_i | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{i=1}^K \pi_i \mathcal{N}(\mathbf{x}_i | \boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)} \qquad N_k = \sum_{i=1}^N \gamma_{ik}$$

and γ_{ik} are the responsibilities of mixture component k for vector \mathbf{x}_i . N_k is the effective number of vectors assigned to component k.

 γ_{ik} play a similar role to the assignment variables r_{ik} in K-means, but γ_{ik} is not binary, 0 $\leq\gamma_{ik}\leq1$

Differentiating wrt Σ_k gives

weighted covariance

$$\Sigma_k = \frac{1}{N_k} \sum_{i=1}^N \gamma_{ik} (\mathbf{x}_i - \mu_k) (\mathbf{x}_i - \mu_k)^{\top}$$

and wrt π_k (enforcing the constraint that $\sum_k \pi_k = 1$ with a Lagrange multiplier) gives

$$\pi_k = \frac{N_k}{N}$$

which is the average responsibility for the component

Now, ... an algorithm for minimizing the cost function

Expectation Maximization (EM) Algorithm

Step 1 Expectation: Compute responsibilities using current parameters μ_k, Σ_k (assignment)

$$\gamma_{ik} = \frac{\pi_k \mathcal{N}(\mathbf{x}_i | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=1}^K \pi_j \mathcal{N}(\mathbf{x}_i | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}$$

Step 2 Maximization: Re-estimate parameters using computed responsibilities

$$\begin{split} \boldsymbol{\mu}_k &= \frac{1}{N_k} \sum_{i=1}^N \gamma_{ik} \mathbf{x}_i \\ \boldsymbol{\Sigma}_k &= \frac{1}{N_k} \sum_{i=1}^N \gamma_{ik} (\mathbf{x}_i - \boldsymbol{\mu}_k) (\mathbf{x}_i - \boldsymbol{\mu}_k)^\top \\ \boldsymbol{\pi}_k &= \frac{N_k}{N} \quad \text{where } N_k = \sum_{i=1}^N \gamma_{ik} \end{split}$$

Repeat until convergence

Example in 1D

Data: $x = (x_1, x_2, \dots, x_N)$ -4 -3 -2 -1 0 1 2 3 4 5

OBJECTIVE: Fit mixture of Gaussian model with K=2 components

Model:

$$p(x_i|\theta) = \sum_k \pi_k \, N(x_i|\mu_k,\sigma_k)$$
 where $\sum_{k=1}^K \pi_k = 1$

Parameters: $\theta = \{\pi, \mu, \sigma\}$ keep π, σ fixed i.e. only estimate μ

Intuition of EM

E-step: Compute soft assignment of the points, using current parameters

M-step: Update parameters using current responsibilities

Likelihood function

Likelihood is a function of parameters, θ Probability is a function of r.v. x

E-step: What do we actually compute?

2D example: fitting means and covariances

Practicalities

- Usually initialize EM algorithm using K-means
- Choice of K
- Can converge to a local rather than global minimum

Probabilistic Latent Semantic Analysis (pLSA)

non-examinable

Unsupervised learning of topics

- Given a large collections of text documents (e.g. a website, or news archive)
- Discover the principal semantic topics in the collection
- Hence can retrieve/organize documents according to topic
- Method involves fitting a mixture model to a representation of the collection

Document-Term Matrix - bag of words model

Probabilistic Latent Semantic Analysis (pLSA)

Model fitting: find topic vectors P(w|z) common to all documents, and mixture coefficients P(z|d) specific to each document.

P(wld)

P(z|d)

Probabilistic Latent Semantic Analysis (pLSA)

[Hofmann '99]

d ... documents

w ... words

z ... topics

$$P(w_i|d_j) = \sum_{k=1}^{K} P(z_k|d_j) P(w_i|z_k)$$

- P(w|z) are the latent aspects
- Non-negative matrix factorization
- each document histogram explained as a sum over topics

Fitting pLSA parameters

Maximize likelihood of data using EM

M ... number of words

N ... number of documents

Expectation Maximization Algorithm for pLSA

E step: posterior probability of latent variables ("topics")

$$P(z|d,w) = \frac{P(z|d;\pi)P(w|z;\theta)}{\sum_{z'}P(z'|d;\pi)P(w|z';\theta)}$$

Probability that the occurence of term w in document d can be "explained" by topic z

M step: parameter estimation based on "completed" statistics

how often is term w associated with topic z?

how often is document d associated with topic z?

Example (1)

Topics (3 of 100) extracted from Associated Press news

Topic 1							
securities	94.96324						
firm	88.74591						
drexel	78.33697						
investment	75.51504						
bonds	64.23486						
sec	61.89292						
bond	61.39895						
junk	61.14784						
milken	58.72266						
firms	51.26381						
investors	48.80564						
lynch	44.91865						
insider	44.88536						
shearson	43.82692						
boesky	43.74837						
lambert	40.77679						
merrill	40.14225						
brokerage	39.66526						
corporate	37.94985						
burnham	36.86570						

Topic 2						
ship	109.41212					
coast	93.70902					
guard	82.11109					
sea	77.45868					
boat	75.97172					
fishing	65.41328					
vessel	64.25243					
tanker	62.55056					
spill	60.21822					
exxon	58.35260					
boats	54.92072					
waters	53.55938					
valdez	51.53405					
alaska	48.63269					
ships	46.95736					
port	46.56804					
hazelwood	44.81608					
vessels	43.80310					
ferry	42.79100					
fishermen	41.65175					

Topic 3							
india	91.74842						
singh	50.34063						
militants	49.21986						
gandhi	48.86809						
sikh	47.12099						
indian	44.29306						
peru	43.00298						
hindu	42.79652						
lima	41.87559						
kashmir	40.01138						
tamilnadu	39.54702						
killed	39.47202						
india's	39.25983						
punjab	39.22486						
delhi	38.70990						
temple	38.38197						
shining	37.62768						
menem	35.42235						
hindus	34.88001						
violence	33.87917						

Example (2)

Topics (10 of 128) extracted from Science Magazine articles (12K)

P(w z)	universe	0.0439	drug	0.0672	ce ll s	0.0675	sequence	0.0818	years	0.156
	galaxies	0.0375	patients	0.0493	stem	0.0478	sequences	0.0493	million	0.0556
	clusters	0.0279	drugs	0.0444	human	0.0421	genome	0.033	ago	0.045
	matter	0.0233	clinical	0.0346	cell	0.0309	dna	0.0257	time	0.0317
	galaxy	0.0232	treatment	0.028	gene	0.025	sequencing	0.0172	age	0.0243
	cluster	0.0214	trials	0.0277	tissue	0.0185	map	0.0123	year	0.024
	cosmic	0.0137	therapy	0.0213	cloning	0.0169	genes	0.0122	record	0.0238
	dark	0.0131	trial	0.0164	transfer	0.0155	chromosome	0.0119	early	0.0233
	light	0.0109	disease	0.0157	blood	0.0113	regions	0.0119	billion	0.0177
	density	0.01	medical	0.00997	embryos	0.0111	human	0.0111	history	0.0148
•	bacteria	0.0983	male	0.0558	theory	0.0811	immune	0.0909	stars	0.0524
	bacterial	0.0561	females	0.0541	physics	0.0782	response	0.0375	star	0.0458
	resistance	0.0431	female	0.0529	physicists	0.0146	system	0.0358	astrophys	0.0237
7	coli	0.0381	males	0.0477	einstein	0.0142	responses	0.0322	mass	0.021
P(w z)	strains	0.025	sex	0.0339	university	0.013	antigen	0.0263	disk	0.0173
Д	microbiol	0.0214	reproductive	0.0172	gravity	0.013	antigens	0.0184	black	0.0161
	microbial	0.0196	offspring	0.0168	black	0.0127	immunity	0.0176	gas	0.0149
	strain	0.0165	sexual	0.0166	theories	0.01	immunology	0.0145	stellar	0.0127
	salmonella	0.0163	reproduction	0.0143	aps	0.00987	antibody	0.014	astron	0.0125
	resistant	0.0145	eggs	0.0138	matter	0.00954	autoimmune	0.0128	hole	0.00824

Background reading

- Bishop, chapter 9.1 9.3.2
- Other topics you should know about:
 - random forest classifiers and regressors
 - semi-supervised learning
 - collaborative filtering
- More on web page:

http://www.robots.ox.ac.uk/~az/lectures/ml