Ensemble Classifiers

IDEA:
- do not learn a single classifier but learn a set of classifiers
- combine the predictions of multiple classifiers

MOTIVATION:
- reduce variance: results are less dependent on peculiarities of a single training set
- reduce bias: a combination of multiple classifiers may learn a more expressive concept class than a single classifier

KEY STEP:
- formation of an ensemble of diverse classifiers from a single training set
Forming an Ensemble

- Modifying the data
 - Subsampling
 - bagging
 - boosting
 - randomly sampled feature subsets

- Modifying the learning task
 - pairwise classification / round robin learning
 - error-correcting output codes

- Exploiting the algorithm characteristics
 - algorithms with random components
 - neural networks
 - randomizing algorithms
 - randomized decision trees
 - use multiple algorithms with different characteristics

- Exploiting problem characteristics
 - e.g., hyperlink ensembles
Bagging

1. for $m = 1$ to M // M ... number of iterations
 a) draw (with replacement) a bootstrap sample S_m of the data
 b) learn a classifier C_m from S_m

2. for each test example
 a) try all classifiers C_m
 b) predict the class that receives the highest number of votes

- variations are possible
 - e.g., size of subset, sampling w/o replacement, etc.
- many related variants
 - sampling of features, not instances
 - learn a set of classifiers with different algorithms
Bagged Decision Trees

Original Tree

Bootstrapped Tree 1

Bootstrapped Tree 2

Bootstrapped Tree 3

from Hastie, Tibshirani, Friedman: The Elements of Statistical Learning, Springer Verlag 2001
Bagged Trees

from Hastie, Tibshirani, Friedman: The Elements of Statistical Learning, Springer Verlag 2001
Boosting

• Basic Idea:
 ▪ later classifiers focus on examples that were misclassified by earlier classifiers
 ▪ weight the predictions of the classifiers with their error

• Realization
 ▪ perform multiple iterations
 • each time using different example weights
 ▪ weight update between iterations
 • increase the weight of incorrectly classified examples
 • this ensures that they will become more important in the next iterations
 (misclassification errors for these examples count more heavily)
 ▪ combine results of all iterations
 • weighted by their respective error measures
Dealing with Weighted Examples

- Directly
 - Example e_i has weight w_i
 - Number of examples $n \Rightarrow$ Total example weight $\sum_{i=1}^{n} w_i$

- Via sampling
 - Interpret the weights as probabilities
 - Examples with larger weights are more likely to be sampled
 - Assumptions
 - Sampling with replacement
 - Weights are well distributed in $[0,1]$
 - Learning algorithm sensible to varying numbers of identical examples in training data
Boosting – Algorithm AdaBoost

1. initialize example weights $w_i = 1/N \ (i = 1..N)$

2. for $m = 1$ to M // M ... number of iterations
 a) learn a classifier C_m using the current example weights
 b) compute a weighted error estimate

 $$
 err_m = \frac{\sum w_i \text{ of all incorrectly classified } e_i}{\sum_{i=1}^{N} w_i}
 $$

 c) compute a classifier weight
 $$
 \alpha_m = \frac{1}{2} \log\left(\frac{(1 - err_m)}{err_m}\right)
 $$

 d) for all correctly classified examples e_i:
 $$
 w_i \leftarrow w_i e^{-\alpha_m}
 $$

 e) for all incorrectly classified examples e_i:
 $$
 w_i \leftarrow w_i e^{\alpha_m}
 $$

 f) normalize the weights w_i so that they sum to 1

3. for each test example
 a) try all classifiers C_m
 b) predict the class that receives the highest sum of weights α_m
Illustration of the Weights

- **Classifier Weights** α_m
 - differences near 0 or 1 are emphasized

- **Example Weights**
 - multiplier for correct and incorrect examples, depending on error
Boosting – Error rate example

- boosting of decision stumps on simulated data
Toy Example

- An Applet demonstrating AdaBoost:

(taken from Verma & Thrun, Slides to CALD Course CMU 15-781, Machine Learning, Fall 2000)
Round 1

$\varepsilon_1 = 0.30$
$\alpha_1 = 0.42$

h_1

D_2
Round 2

\[\varepsilon_2 = 0.21 \]
\[\alpha_2 = 0.65 \]
Round 3

\[h_3 \]

\[\epsilon_3 = 0.14 \]
\[\alpha_3 = 0.92 \]
Final Hypothesis

\[H_{\text{final}} = \text{sign} \left(0.42 + 0.65 + 0.92 \right) \]

=

=
FIGURE 8.11. Data with two features and two classes, separated by a linear boundary. Left panel: decision boundary estimated from bagging the decision rule from a single split, axis-oriented classifier. Right panel: decision boundary from boosting the decision rule of the same classifier. The test error rates are 0.166, and 0.065 respectively. Boosting is described in Chapter 10.
Comparison Bagging/Boosting

- **Bagging**
 - noise-tolerant
 - produces better class probability estimates
 - not so accurate
 - statistical basis
 - related to random sampling

- **Boosting**
 - very susceptible to noise in the data
 - produces rather bad class probability estimates
 - if it works, it works really well
 - based on learning theory (statistical interpretations are possible)
 - related to windowing
Combining Predictions

- **voting**
 - each ensemble member votes for one of the classes
 - predict the class with the highest number of vote (e.g., bagging)

- **weighted voting**
 - make a *weighted* sum of the votes of the ensemble members
 - weights typically depend
 - on the classifiers confidence in its prediction (e.g., the estimated probability of the predicted class)
 - on error estimates of the classifier (e.g., boosting)

- **stacking**
 - Why not use a classifier for making the final decision?
 - training material are the class labels of the training data and the (cross-validated) predictions of the ensemble members
Stacking

- **Basic Idea:**
 - learn a function that combines the predictions of the individual classifiers

- **Algorithm:**
 - train \(n \) different classifiers \(C_1 \ldots C_n \) (the *base classifiers*)
 - obtain predictions of the classifiers for the training examples
 - better do this with a cross-validation!
 - form a new data set (the *meta data*)
 - **classes**
 - the same as the original dataset
 - **attributes**
 - one attribute for each base classifier
 - value is the prediction of this classifier on the example
 - train a separate classifier \(M \) (the *meta classifier*)
Stacking (2)

- **Example:**

<table>
<thead>
<tr>
<th>Attributes</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_{11}</td>
<td>t</td>
</tr>
<tr>
<td>x_{21}</td>
<td>f</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>x_{n_a}</td>
<td>t</td>
</tr>
</tbody>
</table>

(a) training set

<table>
<thead>
<tr>
<th>C_1</th>
<th>C_2</th>
<th>C_3</th>
<th>C_{n_e}</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>t</td>
<td>f</td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>t</td>
<td>t</td>
<td></td>
</tr>
<tr>
<td>t</td>
<td>f</td>
<td>t</td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>f</td>
<td>t</td>
<td></td>
</tr>
</tbody>
</table>

(b) predictions of the classifiers

<table>
<thead>
<tr>
<th>C_1</th>
<th>C_2</th>
<th>C_3</th>
<th>C_{n_e}</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>t</td>
<td>f</td>
<td></td>
<td>t</td>
</tr>
<tr>
<td>f</td>
<td>t</td>
<td>t</td>
<td></td>
<td>f</td>
</tr>
<tr>
<td>t</td>
<td>f</td>
<td>t</td>
<td></td>
<td>t</td>
</tr>
<tr>
<td>f</td>
<td>f</td>
<td>t</td>
<td></td>
<td>t</td>
</tr>
</tbody>
</table>

(d) training set for stacking

- **Using a stacked classifier:**
 - try each of the classifiers $C_1...C_n$
 - form a feature vector consisting of their predictions
 - submit this feature vectors to the meta classifier M