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Summary. Clustering of text documents enables unsupervised categorization and
facilitates browsing and search. Any clustering method has to embed the objects
to be clustered in a suitable representational space that provides a measure of
(dis)similarity between any pair of objects. While several clustering methods and
the associated similarity measures have been proposed in the past for text clus-
tering, there is no systematic comparative study of the impact of similarity mea-
sures on the quality of document clusters, possibly because most popular cost
criteria for evaluating cluster quality do not readily translate across qualitatively
different measures. This chapter compares popular similarity measures (Euclidean,
cosine, Pearson correlation, extended Jaccard) in conjunction with several clustering
techniques (random, self-organizing feature map, hypergraph partitioning, general-
ized k-means, weighted graph partitioning), on a variety of high dimension sparse
vector data sets representing text documents as bags of words. Performance is
measured based on mutual information with a human-imposed classification. Our
key findings are that in the quasiorthogonal space of word frequencies: (i) Cosine,
correlation, and extended Jaccard similarities perform comparably; (ii) Euclidean
distances do not work well; (iii) Graph partitioning tends to be superior espe-
cially when balanced clusters are desired; (iv) Performance curves generally do
not cross.

1 Introduction

Document clusters can provide a structure for organizing large bodies of text
for efficient browsing and searching. For example, recent advances in Internet
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search engines (e.g., www.vivisimo.com, www.metacrawler.com) exploit docu-
ment cluster analysis. For this purpose, a document is commonly represented
as a vector consisting of the suitably normalized frequency counts of words
or terms. Each document typically contains only a small percentage of all the
words ever used. If we consider each document as a multidimensional vector
and then try to cluster documents based on their word contents, the problem
differs from classic clustering scenarios in several ways: Document data are
high dimensional1, characterized by a very sparse term-document matrix with
positive ordinal attribute values and a significant amount of outliers. In such
situations, one is truly faced with the “curse of dimensionality” issue [176]
since even after feature reduction, one is left with hundreds of dimensions per
document.

Since clustering basically involves grouping objects based on their inter-
relationships or similarities, one can alternatively work in similarity space
instead of the original feature space. The key insight is that if one can find a
similarity measure (derived from the object features) that is appropriate for
the problem domain, then a single number can capture the essential “close-
ness” of a given pair of objects, and any further analysis can be based only on
these numbers. Once this is done, the original high-dimensional space is not
dealt with at all; we only work in the transformed similarity space, and sub-
sequent processing is independent of the dimensionality of the data [412].
A similar approach can be found in kernel based methods, such as Sup-
port Vector Machines (SVMs), for classification problems since the kernel
function indicates a similarity measure obtained by a generalized inner prod-
uct [240,249,430]. It is interesting to note that some very early works on clus-
tering (e.g., [233]) were based on the concept of similarity, but subsequently
the focus moved toward working with distances in a suitable embedding space,
since typically, n, the number of objects considered, would be much larger than
the number of features, d, used to represent each object. With text, d is very
high; hence there is a renewal of interest in similarity-based approaches.

A typical pattern clustering activity involves the following five steps ac-
cording to [242]:

1. Suitable object representation,
2. Definition of proximity between objects,
3. Clustering,
4. Data abstraction,
5. Assessment of output

The choice of similarity or distance in step 2 can have a profound impact on
clustering quality. The significant amount of empirical studies in the 1980s
and earlier on document clustering largely selected either Euclidean distance
or cosine similarity, and emphasized various ways of representing/normalizing

1The dimension of a document in vector space representation is the size of the
vocabulary, often in the tens of thousands.
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documents before this step [377, 443]. Agglomerative clustering approaches
were dominant and compared favorably with flat partitional approaches on
small-sized or medium-sized collections [367, 443]. But lately, some new par-
titional methods have emerged (spherical k-means (KM), graph partitioning
(GP) based, etc.) that have attractive properties in terms of both quality and
scalability and can work with a wider range of similarity measures. In addi-
tion, much larger document collections are being generated.2 This warrants
an updated comparative study on text clustering, which is the motivation
behind this chapter. Some very recent, notable comparative studies on docu-
ment clustering [408, 463, 464] also consider some of these newer issues. Our
work is distinguished from these efforts mainly by its focus on the key role
of the similarity measures involved, emphasis on balancing, and the use of a
normalized mutual information based evaluation that we believe has superior
properties.

We mainly address steps 2 and 5 and also touch upon steps 3 and 4 in
the document clustering domain. We first compare similarity measures an-
alytically and illustrate their semantics geometrically (steps 2 and 4). Sec-
ond, we propose an experimental methodology to compare high-dimensional
clusterings based on mutual information and we argue why this is prefer-
able to the more commonly used purity-based or entropy-based measures
(step 5) [75,408,463]. Finally, we conduct a series of experiments to evaluate
the performance and the cluster quality of four similarity measures (Euclidean,
cosine, Pearson correlation, extended Jaccard) in combination with five algo-
rithms (random, self-organizing map (SOM), hypergraph partitioning (HGP),
generalized KM, weighted graph partitioning) (steps 2 and 3). Agglomerative
clustering algorithms have been deliberately ignored even though they have
been traditionally popular in the information retrieval community [367], but
are not suitable for very large collections due to their computational complex-
ity of at least O(n2 log n) [300]. Indeed, if a hierarchy of documents is required,
it is more practical to first partition the collection into an adequately large
number (say 100 if finally about ten groups are desired) clusters, and then
run an agglomerative algorithm on these partially summarized data.

Section 2 considers previous related work and Sect. 3 discusses various sim-
ilarity measures.

2 Background and Notation

Clustering has been widely studied in several disciplines, especially since the
early 1960s [59,224,243]. Some classic approaches include partitional methods
such as k-means, hierarchical agglomerative clustering, unsupervised Bayes,
and soft3 techniques, such as those based on fuzzy logic or statistical mechanics

2IBM Patent Server has over 20 million patents. Lexis-Nexis contains over 1 billion
documents

3In soft clustering, a record can belong to multiple clusters with different degrees of
“association” [299].
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[103]. Conceptual clustering [163], which maximizes category utility, a measure
of predictability improvement in attribute values given a clustering, is also
popular in the machine learning community. In most classical techniques, and
even in fairly recent ones proposed in the data mining community (CLARANS,
DBSCAN, BIRCH, CLIQUE, CURE, WAVECLUSTER, etc. [217, 368]) the
objects to be clustered only have numerical attributes and are represented by
low-dimensional feature vectors. The clustering algorithm is then based on
distances between the samples in the original vector space [382]. Thus these
techniques are faced with the “curse of dimensionality” and the associated
sparsity issues, when dealing with very high-dimensional data such as text.
Indeed, often, the performance of such clustering algorithms is demonstrated
only on illustrative two-dimensional examples.

Clustering algorithms may take an alternative view based on a notion of
similarity or dissimilarity. Similarity is often derived from the inner product
between vector representations, a popular way to quantify document simi-
larity. In [136], the authors present a spherical KM algorithm for document
clustering using this similarity measure. Graph-based clustering approaches,
which attempt to avoid the “curse of dimensionality” by transforming the
problem formulation into a similarity space, include [75, 411, 461]. Finally,
when only pairwise similarities are available, techniques such as Multi-
Dimensional Scaling (MDS) [422] have been used to embed such points into
a low-dimensional space such that the stress (relative difference between em-
bedded point distances and actual distances) is minimized. Clustering can
then be done in the embedding space. However, in document clustering this
is not commonly used since for acceptable stress levels the dimensionality of
the embedding space is too high.

Note that similarity-based methods take a discriminative approach to clus-
tering. An alternative would be to take a generative viewpoint, starting from
an underlying probabilistic model of the data and then finding suitable para-
meters typically through a maximum likelihood procedure. Cluster locations
and properties are then derived as a by-product of this procedure. A detailed
discussion of the pros and cons of discriminative approaches as compared to
generative ones is given in [187]. Often discriminative approaches give better
results, but any approach that required all-pairs similarity calculation is in-
herently at least O(N2) in both computational and storage requirements. In
contrast, model-based generative approaches can be linear in N . A detailed
empirical comparison of different model-based approaches to document clus-
tering is available in [464] and hence we do not revisit these models in this
chapter. Clustering has also been studied for the purpose of browsing. A two-
dimensional SOM [284] has been applied to produce a map of, e.g., Usenet
postings in WEBSOM [285]. The emphasis in WEBSOM is not to maximize
cluster quality but to produce a human interpretable two-dimensional spatial
map of known categories (e.g., newsgroups). In the Scatter/Gather approach
[120] document clustering is used for improved interactive browsing of large
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query results. The focus on this work is mostly on speed/scalability and not
necessary maximum cluster quality. In [451], the effectiveness of clustering for
organizing web documents was studied.

There is also substantial work on categorizing documents. Here, since at
least some of the documents have labels, a variety of supervised or semi-
supervised techniques can be used [342, 350]. A technique using the support
vector machine is discussed in [249]. There are several comparative studies on
document classification [447,448].

Dimensionality reduction for text classification/clustering has been studied
as well. Often, the data are projected onto a small number of dimensions cor-
responding to principal components or a scalable approximation thereof (e.g.,
Fastmap [156]). In latent semantic indexing (LSI) [124] the term-document
matrix is modeled by a rank-K approximation using the top K singular values.
While LSI was originally used for improved query processing in information
retrieval, the base idea can be employed for clustering as well.

In bag-of-words approaches the term-frequency matrix contains occurrence
counts of terms in documents. Often, the matrix is preprocessed in order to en-
hance discrimination between documents. There are many schemes for select-
ing term, and global, normalization components. One popular preprocessing
is normalized term frequency, inverse document frequency (TF-IDF), which
also comes in several variants [40,377]. However, this chapter does not discuss
the properties of feature extraction, see, e.g., [312, 459] instead. In [447, 448]
classification performance of several other preprocessing schemes is compared.

Following Occam’s Razor, we do not use any weighting but use the raw
frequency matrix of selected words for our comparison. Hence, appropriate
normalization has to be encoded by the similarity measure.

Let n be the number of objects (documents, samples) in the data and d
the number of features (words, terms) for each object xj with j ∈ {1, . . . , n}.
Let k be the desired number of clusters. The input data can be represented
by a d×n data matrix X with the jth column vector representing the sample
xj . xT

j denotes the transpose of xj . Hard clustering assigns a label λj to
each d-dimensional sample xj , such that similar samples tend to get the same
label. In general the labels are treated as nominals with no inherent order,
though in some cases, such as one-dimensional SOM or GP approaches based
on swapping of vertices with neighboring partitions the labeling contains extra
ordering information. Let C� denote the set of all objects in the �th cluster
(� ∈ {1, . . . , k}), with xj ∈ C� ⇔ λj = � and n� = |C�|. The number of distinct
labels is k, the desired number of clusters. We treat the labels as nominals with
no order, though in some cases, such as the SOM or graph partitioning, the
labeling may contain extra ordering information. Batch clustering proceeds
from a set of raw object descriptions X via the vector space description X to
the cluster labels λ (X → X → λ). Section 3 briefly describes the compared
similarity measures.
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3 Similarity Measures

In this section, we introduce several similarity measures, illustrate some of
their properties, and show why we are interested in some but not others. In
Sect. 4, the algorithms using these similarity measures are discussed.

3.1 Conversion from a Distance Metric

The Minkowski distances Lp(xa,xb) =
(∑d

i=1 |xi,a − xi,b|p
)1/p

are commonly
used when objects are represented in a vector space. For p = 2 we obtain the
Euclidean distance. There are several possibilities for converting such a dis-
tance metric (in [0, inf)) into a similarity measure (in [0, 1]; usually similarity
of 1 corresponds to a distance of 0) by a monotonic decreasing function. For
Euclidean space, a good choice is: similarity = exp(−(distance)2), as it relates
the squared error loss function to the negative log-likelihood for a Gaussian
model for each cluster. In this chapter, we use the Euclidean [0, 1]-normalized
similarity expressed by

s(E)(xa,xb) = e−‖xa−xb‖2
2 (1)

rather than alternatives such as s(xa,xb) = 1/(1 + ‖xa − xb‖2).

3.2 Cosine Measure

A popular measure of similarity for text clustering is the cosine of the angle
between two vectors. The cosine measure is given by

s(C)(xa,xb) =
xT

a xb

‖xa‖2 · ‖xb‖2
(2)

and captures a scale invariant understanding of similarity. The cosine simi-
larity does not depend on the length of the vectors, only their direction. This
allows documents with the same relative distribution of terms to be treated
identically. Being insensitive to the size of the documents makes this a very
popular measure for text documents. Also, due to this property, document vec-
tors can be normalized to the unit sphere for more efficient processing [136].

3.3 Pearson Correlation

In collaborative filtering, correlation is often used to predict a feature from a
highly similar mentor group of objects whose features are known. The [0, 1]
normalized Pearson correlation is defined as

s(P)(xa,xb) =
1
2

(
(xa − x̄a)T(xb − x̄b)

‖xa − x̄a‖2 · ‖xb − x̄b‖2
+ 1

)
, (3)
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where x̄ denotes the average feature values of x. Note that this definition of
Pearson correlation tends to give a full matrix. Other important correlations
have been proposed, such as Spearman correlation [406], which works well on
rank orders.

3.4 Extended Jaccard Similarity

The binary Jaccard coefficient4 measures the degree of overlap between two
sets and is computed as the ratio of the number of shared attributes (words) of
xa and xb to the number possessed by xa or xb. For example, given two sets’
binary indicator vectors xa = (0, 1, 1, 0)T and xb = (1, 1, 0, 0)T, the cardinality
of their intersect is 1 and the cardinality of their union is 3, rendering their
Jaccard coefficient 1/3. The binary Jaccard coefficient is often used in retail
market-basket applications. The binary definition of Jaccard coefficient can
be extended to continuous or discrete non-negative features as:

s(J)(xa,xb) =
xT

a xb

‖xa‖2
2 + ‖xb‖2

2 − xT
a xb

, (4)

which is equivalent to the binary version when the feature vector entries are
binary. Extended Jaccard similarity retains the sparsity property of the co-
sine while allowing discrimination of collinear vectors as we show in Sect. 3.6.
Another similarity measure highly related to the extended Jaccard is the Dice
coefficient

s(D)(xa,xb) =
2xT

a xb

‖xa‖2
2 + ‖xb‖2

2

.

The Dice coefficient can be obtained from the extended Jaccard coefficient by
adding xT

a xb to both the numerator and the denominator. It is omitted here
since it behaves very similar to the extended Jaccard coefficient.

3.5 Other (Dis-)Similarity Measures

Many other (dis-)similarity measures, such as shared nearest neighbor [247]
or the edit distance, are possible [243]. In fact, the ugly duckling theorem
states [442] the somewhat “unintuitive” fact that there is no way to distinguish
between two different classes of objects, when they are compared over all
possible features. As a consequence, any two arbitrary objects are equally
similar unless we use domain knowledge. The similarity measures discussed in
Sects. 3.1–3.4 are some of the popular ones that have been previously applied
to text documents [170,377].

4Also called the Tanimoto coefficient in the vision community.
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3.6 Discussion

Clearly, if clusters are to be meaningful, the similarity measure should be
invariant to transformations natural to the problem domain. Also, normal-
ization may strongly affect clustering in a positive or a negative way. The
features have to be chosen carefully to be on comparable scales and similarity
has to reflect the underlying semantics for the given task.

Euclidean similarity is translation invariant but scale sensitive while cosine
is translation sensitive but scale invariant. The extended Jaccard has aspects
of both properties as illustrated in Fig. 1. Iso-similarity lines at s = 0.25, 0.5,
and 0.75 for points x1 = (3, 1)T and x2 = (1, 2)T are shown for Euclidean,
cosine, and the extended Jaccard. For cosine similarity only the 4 (out of 12)
lines that are in the positive quadrant are plotted: The two lines in the lower
right part are one of two lines from x1 at 0.5 and 0.75. The two lines in the
upper left are for x2 at s = 0.5 and 0.75. The dashed line marks the locus
of equal similarity to x1 and x2, which always passes through the origin for
cosine and the extended Jaccard similarity.

Using Euclidean similarity s(E), isosimilarities are concentric hyperspheres
around the considered point. Due to the finite range of similarity, the radius
decreases hyperbolically as s(E) increases linearly. The radius does not depend
on the center point. The only location with similarity of 1 is the considered
point itself and all finite locations have a similarity greater than 0. This last
property tends to generate nonsparse similarity matrices. Using the cosine
measure s(C) renders the isosimilarities to be hypercones all having their apex
at the origin and the axis aligned with the considered point. Locations with
similarity 1 are on the one-dimensional subspace defined by this axis. The
locus of points with similarity 0 is the hyperplane through the origin and per-
pendicular to this axis. For the extended Jaccard similarity s(J), the isosim-
ilarities are nonconcentric hyperspheres. The only location with similarity 1
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Fig. 1. Properties of (a) Euclidean-based, (b) cosine, and (c) extended Jaccard
similarity measures illustrated in two dimensions. Two points (1, 2)T and (3, 1)T are
marked with ×. For each point isosimilarity surfaces for s = 0.25, 0.5, and 0.75 are
shown with solid lines. The surface that is equisimilar to the two points is marked
with a dashed line
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is the point itself. The hypersphere radius increases with the distance of the
considered point from the origin so that longer vectors turn out to be more
tolerant in terms of similarity than smaller vectors. Sphere radius also in-
creases with similarity, and as s(J) approaches 0 the radius becomes infinite,
rendering the sphere to the same hyperplane as obtained for cosine similarity.
Thus, for s(J) → 0, the extended Jaccard behaves like the cosine measure, and
for s(J) → 1, it behaves like the Euclidean distance.

In traditional Euclidean k-means clustering, the optimal cluster represen-
tative c� minimizes the sum of squared error criterion, i.e.,

c� = arg min
z∈F

∑
xj∈C�

‖xj − z‖2
2. (5)

In the following, we show how this convex distance-based objective can be
translated and extended to similarity space. Consider the generalized objective
function f(C�, z) given a cluster C� and a representative z:

f(C�, z) =
∑

xj∈C�

d(xj , z)2 =
∑

xj∈C�

‖xj − z‖2
2. (6)

We use the transformation from (1) to express the objective in terms of sim-
ilarity rather than distance:

f(C�, z) =
∑

xj∈C�

− log(s(xj , z)). (7)

Finally, we simplify and transform the objective using a strictly monotonic
decreasing function: Instead of minimizing f(C�, z), we maximize f ′(C�, z) =
e−f(C�,z). Thus, in similarity space, the least squared error representative c� ∈
F for a cluster C� satisfies

c� = arg max
z∈F

∏
xj∈C�

s(xj , z). (8)

Using the concave evaluation function f ′, we can obtain optimal representa-
tives for non-Euclidean similarity spaces.

To illustrate the values of the evaluation function f ′({x1,x2}, z) are used
to shade the background in Fig. 2. The maximum likelihood representative of
x1 and x2 is marked with an ∗ in Fig. 2. For cosine similarity all points on
the equi-similarity are optimal representatives. In a maximum likelihood in-
terpretation, we constructed the distance similarity transformation such that
p(z|c�) ∼ s(z, c�). Consequently, we can use the dual interpretations of prob-
abilities in similarity space and errors in distance space.

4 Algorithms

In this section, we briefly summarize the algorithms used in our comparison.
A random algorithm is used as a baseline to compare the result quality of
KM, GP, HGP, and SOM.
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Fig. 2. More similarity properties shown on the two-dimensional example of Fig. 1.
The goodness of a location as the common representative of the two points is indi-
cated with brightness. The best representative is marked with an ∗. (c) The extended
Jaccard adopts the middle ground between (a) Euclidean and (b) cosine-based sim-
ilarity

4.1 Random Baseline

As a baseline for comparing algorithms, we use clustering labels drawn from
a uniform random distribution over the integers from 1 to k. The complexity
of this algorithm is O(n).

4.2 Weighted Graph Partitioning

Clustering can be posed as a GP problem. The objects are viewed as the set
of vertices V. Two documents xa and xb (or vertices va and vb) are connected
with an undirected edge of positive weight s(xa,xb), or (a, b, s(xa,xb)) ∈ E .
The cardinality of the set of edges |E| equals the number of nonzero similar-
ities between all pairs of samples. A set of edges whose removal partitions a
graph G = (V, E) into k pairwise disjoint subgraphs G� = (V�, E�) is called
an edge separator. The objective in GP is to find such a separator with a
minimum sum of edge weights. While striving for the minimum cut objective,
the number of objects in each cluster has to be kept approximately equal.
We produce balanced (equal sized) clusters from the similarity matrix using
the multilevel graph partitioner Metis [262]. The most expensive step in this
O(n2 · d) technique is the computation of the n× n similarity matrix. In doc-
ument clustering, sparsity can be induced by looking only at the v strongest
edges or at the subgraph induced by pruning all edges except the v near-
est neighbors for each vertex. Sparsity makes this approach feasible for large
data sets. Sparsity is induced by particular similarities definitions based, for
example, on the cosine of document vectors.

4.3 Hypergraph Partitioning

A hypergraph is a graph whose edges can connect more than two vertices
(hyperedges). The clustering problem is then formulated as a finding the
minimum cut of a hypergraph. A minimum cut is the removal of the set of



Similarity-Based Text Clustering: A Comparative Study 83

hyperedges (with minimum edge weight) that separates the hypergraph into k
unconnected components. Again, an object xj maps to a vertex vj . Each word
(feature) maps to a hyperedge connecting all vertices with nonzero frequency
count of this word. The weight of this hyperedge is chosen to be the total
number of occurrences in the data set. Hence, the importance of a hyperedge
during partitioning is proportional to the occurrence of the corresponding
word. The minimum cut of this hypergraph into k unconnected components
gives the desired clustering. We employ the hMetis package [263] for parti-
tioning. An advantage of this approach is that the clustering problem can be
mapped to a graph problem without the explicit computation of similarity,
which makes this approach computationally efficient with O(n ·d ·k) assuming
a (close to) linear performing hypergraph partitioner. Note that samplewise
frequency information gets lost in this formulation since there is only a single
weight associated with a hyperedge.

4.4 Self-organizing Map

The SOM [70,284] is a popular topology preserving clustering algorithm with
nice visualization properties. For simplicity, we only use a one-dimensional line
topology. Also, two-dimensional or higher dimensional topologies can be used.
To generate k clusters we use k cells in a line topology and train the network
for m = 5, 000 epochs or 10 min (whichever comes first). All experiments are
run on a dual processor 450 MHz Pentium using the SOM implementation
in the Matlab neural network toolbox. The resulting network is subsequently
used to generate the label vector λ from the index of the most activated neuron
for each sample. The complexity of this incremental algorithm is O(n ·d ·k ·m)
and mostly determined by the number of epochs m and samples n.

4.5 Generalized k-means

The KM algorithm using the squared Euclidean or Mahalonobis distances as
a measure of divergence, is perhaps the most popular partitional approach to
clustering. This is really a generative approach, being a limiting case of soft
clustering achieved by fitting a mixture of Gaussians to the data via the EM
algorithm [266]. It has been recently shown that the scope of this framework is
very broad, the essential properties of KM carry over to all regular Bregman
divergences (and only to this class of divergence measures), and a similar
generalization is also possible for the soft version [46]. The complexity of this
set of algorithms is O(n ·d ·k ·m), where m is the number of iterations needed
for convergence.

Given the popularity of KM, we decided to convert cosine, Jaccard, and
Pearson similarity measures into the corresponding divergences using (1), in
addition to retaining the squared Euclidean distance to obtain four versions
of KM. However we have not considered the use of KL-divergence, which has
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a natural correspondence with multinomial mixture modeling, as extensive
work using this information theoretic measure is already available [463].

4.6 Other Clustering Methods

Several other clustering methods have also been considered but have not
been used in our experimental comparison. Agglomerative models (single link,
average link, complete link) [143] are computationally expensive (at least
O(n2 log n)) and often result in highly skewed trees, indicating domination
by one very large cluster. A detailed comparative study of generative, mix-
ture model-based approaches to text, is available from [464]. Certain cluster-
ing algorithms from the data mining community (e.g., CLARANS, DBSCAN,
BIRCH, CLIQUE, CURE, WAVECLUSTER [217, 368]) have been omitted
since they are mostly scalable versions designed for low-dimensional data. Par-
titioning approaches based on principal directions have not been shown here
since they perform comparably to hierachical agglomerative clustering [75].
Other GP approaches such as spectral bisectioning [227] are not included
since they are already represented by the multilevel partitioner Metis.

5 Evaluation Methodology

We conducted experiments with all five algorithms, using four variants (involv-
ing different similarity measures) each for KM and GP, yielding 11 techniques
in total. This section gives an overview of ways to evaluate clustering results.
A good recent survey on clustering evaluation can be found in [463], where
the emphasis is on determining the impact of a variety of cost functions, built
using distance or cosine similarity measures, on the quality of two generic
clustering approaches.

There are two fundamentally different ways of evaluating the quality of
results delivered by a clustering algorithm. Internal criteria formulate quality
as a function of the given data and/or similarities. For example, the mean
squared error criterion is a popular evaluation criterion. Hence, the clusterer
can evaluate its own performance and tune its results accordingly. When us-
ing internal criteria, clustering becomes an optimization problem. External
criteria impose quality by additional, external information not given to the
clusterer, such as class labels. While this makes the problem ill-defined, it is
sometimes more appropriate since groupings are ultimately evaluated exter-
nally by humans.

5.1 Internal (Model-Based, Unsupervised) Quality

Internal quality measures, such as the sum of squared errors, have traditionally
been used extensively. Given an internal quality measure, clustering can be
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posed as an optimization problem that is typically solved via greedy search.
For example, KM has been shown to greedily optimize the sum of squared
errors.

• Error (mean/sum-of-squared error, scatter matrices)
The most popular cost function is the scatter of the points in each cluster.
Cost is measured as the mean square error of data points compared to
their respective cluster centroid. The well-known KM algorithm has been
shown to heuristically minimize the squared error objective. Let n� be the
number of objects in cluster C� according to λ. Then, the cluster centroids
are

c� =
1
n�

∑
λj=�

xj . (9)

The sum of squared errors (SSE) is

SSE(X, λ) ==
k∑

�=1

∑
x∈C�

‖x − c�‖2
2. (10)

Note that the SSE formulation can be extended to other similarities by
using SSE(X, λ) =

∑k
�=1

∑
x∈C�

− log s(x, c�). Since we are interested in a
quality measure ranging from 0 to 1, where 1 indicates a perfect clustering,
we define quality as

φ(S)(X, λ) = e−SSE(X,λ). (11)

This objective can also be viewed from a probability density estimation
perspective using EM [126]. Assuming the data are generated by a mixture
of multivariate Gaussians with identical, diagonal covariance matrices, the
SSE objective is equivalent to maximizing the likelihood of observing the
data by adjusting the centers and minimizing weights of the Gaussian
mixture.

• Edge cut
When clustering is posed as a GP problem, the objective is to minimize
edge cut. Formulated as a [0, 1]-quality maximization problem, the objec-
tive is the ratio of remaining edge weights to total precut edge weights:

φ(C)(X, λ) =

∑k
�=1

∑
a∈C�

∑
b∈C�,b>a s(xa,xb)∑n

a=1

∑n
b=a+1 s(xa,xb)

(12)

Note that this quality measure can be trivially maximized when there are
no restrictions on the sizes of clusters. In other words, edge cut quality
evaluation is only fair when the compared clusterings are well balanced.
Let us define the balance of a clustering λ as

φ(BAL)(λ) =
n/k

max�∈{1,...,k} n�
. (13)
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A balance of 1 indicates that all clusters have the same size. In certain
applications, balanced clusters are desirable because each cluster repre-
sents an equally important share of the data. Balancing has application-
driven advantages, e.g., for distribution, navigation, summarization of the
clustered objects. In [409] retail customer clusters are balanced, so they
represent an equal share of revenue. Balanced clustering for browsing text
documents has also been proposed [44]. However, some natural classes may
not be of equal size, so relaxed balancing may become necessary. A mid-
dle ground between no constraints on balancing (e.g., k-means) and tight
balancing (e.g., GP) can be achieved by overclustering using a balanced
algorithm and then merging clusters subsequently [461]

• Category Utility [162,193]
The category utility function measures quality as the increase in pre-
dictability of attributes given a clustering. Category utility is defined as
the increase in the expected number of attribute values that can be cor-
rectly guessed given a partitioning, over the expected number of correct
guesses with no such knowledge. A weighted average over categories allows
comparison of different sized partitions. Recently, it has been shown that
category utility is related to squared error criterion for a particular stan-
dard encoding [338], whose formulation is used here. For binary features
(i.e., attributes) the probability of the ith attribute being 1 is the mean of
the ith row of the data matrix X:

x̄i =
1
n

n∑
j=1

xi,j . (14)

The conditional probability of the ith attribute to be 1 given that the data
point is in cluster � is

x̄i,� =
1
n�

∑
λj=�

xi,j . (15)

Hence, category utility can be written as

φ(CU)(X, λ) =
4
d

k∑
�=1

n�

n

[(
d∑

i=1

(
x̄2

i,� − x̄i,�

))−
(

d∑
i=1

(
x̄2

i − x̄i

))]
. (16)

Note that this definition divides the standard category by d so that φ(CU)

never exceeds 1. Category utility is defined to maximize predictability of
attributes for a clustering. This limits the scope of this quality measure
to low-dimensional clustering problems (preferably with each dimension
being a categorical variable with small cardinality). In high-dimensional
problems, such as text clustering, the objective is not to be able to predict
the appearance of any possible word in a document from a particular clus-
ter. In fact, there might be more unique words/terms/phrases than docu-
ments in a small data set. In preliminary experiments, category utility did
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not succeed in differentiating among the compared approaches (including
random partitioning).

Using internal quality measures, fair comparisons can only be made amongst
clusterings with the same choices of vector representation and similarity/
distance measure. For example, using edge cut in cosine-based similarity would
not be meaningful for an evaluation of Euclidean KM. So, in many applications
a consensus on the internal quality measure for clustering is not found. How-
ever, in situations where the pages are categorized (labeled) by an external
source, there is a plausible way out!

5.2 External (Model-Free, Semisupervised) Quality

External quality measures require an external grouping, for example as indi-
cated by category labels, that is assumed to be “correct.” However, unlike in
classification such ground truth is not available to the clustering algorithm.
This class of evaluation measures can be used to compare start-to-end per-
formance of any kind of clustering regardless of the models or the similarities
used. However, since clustering is an unsupervised problem, the performance
cannot be judged with the same certitude as for a classification problem. The
external categorization might not be optimal at all. For example, the way Web
pages are organized in the Yahoo! taxonomy is certainly not the best struc-
ture possible. However, achieving a grouping similar to the Yahoo! taxonomy
is certainly indicative of successful clustering.

Given g categories (or classes) Kh (h ∈ {1, . . . , g}), we denote the catego-
rization label vector κ, where xa ∈ Kh ⇔ κa = h. Let n(h) be the number of
objects in category Kh according to κ, and n� the number of objects in cluster
C� according to λ. Let n

(h)
� denote the number of objects that are in cluster �

according to λ as well as in category h given by κ. There are several ways of
comparing the class labels with cluster labels.

• Purity
Purity can be interpreted as classification accuracy under the assumption
that all objects of a cluster are classified to be members of the dominant
class for that cluster. For a single cluster, C�, purity is defined as the ratio
of the number of objects in the dominant category to the total number of
objects:

φ(A)(C�, κ) =
1
n�

max
h

(n(h)
� ). (17)

To evaluate an entire clustering, one computes the average of the cluster-
wise purities weighted by cluster size:

φ(A)(λ, κ) =
1
n

k∑
�=1

max
h

(n(h)
� ). (18)
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• Entropy [115]
Entropy is a more comprehensive measure than purity since rather than
just considering the number of objects “in” and “not in” the dominant
class, it takes the entire distribution into account. Since a cluster with all
objects from the same category has an entropy of 0, we define entropy-
based quality as 1 minus the [0,1]-normalized entropy. We define entropy-
based quality for each cluster as:

φ(E)(C�, κ) = 1 −
g∑

h=1

−n
(h)
�

n�
logg

(
n

(h)
�

n�

)
. (19)

And through weighted averaging, the total entropy quality measure falls
out to be:

φ(E)(λ, κ) = 1 +
1
n

k∑
�=1

g∑
h=1

n
(h)
� logg

(
n

(h)
�

n�

)
. (20)

Both purity and entropy are biased to favor a large number of clusters. In
fact, for both these criteria, the globally optimal value is trivially reached
when each cluster is a single object!

• Precision, recall, and F -measure [429]
Precision and recall are standard measures in the information retrieval
community. If a cluster is viewed as the results of a query for a particular
category, then precision is the fraction of correctly retrieved objects:

φ(P)(C�,Kh) = n
(h)
� /n�. (21)

Recall is the fraction of correctly retrieved objects out of all matching
objects in the database:

φ(R)(C�,Kh) = n
(h)
� /n(h). (22)

The F-measure combines precision and recall into a single number given a
weighting factor. The F1-measure combines precision and recall with equal
weights. The following equation gives the F1-measure when querying for a
particular category Kh

φ(F1)(Kh) = max
�

2 φ(P)(C�,Kh) φ(R)(C�,Kh)
φ(P)(C�,Kh) + φ(R)(C�,Kh)

= max
�

2n
(h)
�

n� + n(h)
. (23)

Hence, for the entire clustering the total F1-measure is:

φ(F1)(λ, κ) =
1
n

g∑
h=1

n(h)φ(F)(Kh) =
1
n

g∑
h=1

n(h) max
�

2n
(h)
�

n� + n(h)
. (24)

Unlike purity and entropy, the F1-measure is not biased toward a larger
number of clusters. In fact, it favors coarser clusterings. Another issue is
that random clustering tends not to be evaluated at 0.
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• Mutual information [115]
Mutual information is the most theoretically well founded among the con-
sidered external quality measures [140]. It is symmetric in terms of κ and
λ. Let X and Y be the random variables described by the cluster labeling
λ and category labeling κ, respectively. Let H(X) denote the entropy of a
random variable X. Mutual information between two random variables is
defined as

I(X,Y ) = H(X) + H(Y ) − H(X,Y ). (25)

Also,
I(X,Y ) ≤ min(H(X),H(Y )). (26)

Since min(H(X),H(Y )) ≤ (H(X) + H(Y ))/2, a tight upper bound on
I(X,Y ) is given by (H(X) + H(Y ))/2. Thus, a worst-case upper bound
for all possible labelings and categorizations is given by

I(X,Y ) ≤ max
X,Y

(
H(X) + H(Y )

2

)
. (27)

Hence, we define [0,1]-normalized mutual information-based quality as

NI(X,Y ) =
2 · I(X,Y )

maxX(H(X)) + maxY (H(Y ))
. (28)

Using

I(X,Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x) · p(y)
. (29)

Note that normalizing by the geometric mean of H(X) and H(Y ) instead
of the arithmetic mean will also work [410].
Now, approximating probabilities with frequency counts yields our quality
measure φ(NMI):

φ(NMI)(λ, κ) =
2 ·∑k

�=1

∑g
h=1

n
(h)
l

n log n
(h)
l

/n

n(h)/nnl/n

log(k) + log(g)
(30)

Basic simplifications yield:

φ(NMI)(λ, κ) =
2
n

k∑
�=1

g∑
h=1

n
(h)
� logk·g

(
n

(h)
� n

n(h)n�

)
(31)

Mutual information is less prone to biases than purity, entropy, and the F1-
measure. Singletons are not evaluated as perfect. Random clustering has
mutual information of 0 in the limit. However, the best possible labeling
evaluates to less than 1, unless classes are balanced, i.e., of equal size.
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Note that our normalization penalizes over-refinements unlike the standard
mutual information.5

External criteria enable us to compare different clustering methods fairly pro-
vided the external ground truth is of good quality. One could argue against
external criteria that clustering does not have to perform as well as classifica-
tion. However, in many cases clustering is an interim step to better understand
and characterize a complex data set before further analysis and modeling.

Normalized mutual information is our preferred choice of evaluation in
Sect. 6, because it is a relatively unbiased measure for the usefulness of the
knowledge captured in the clustering in predicting category labels. Another
promising evaluation method based on PAC-MDL bounds is given in [45].

6 Experiments

6.1 Data Sets and Preprocessing

We chose four text data sets for comparison. Here we briefly describe them:

• YAH. These data were parsed from Yahoo! news web pages [75]. The
20 original categories for the pages are Business, Entertainment (no
sub-category, art, cable, culture, film, industry, media, multimedia,
music, online, people, review, stage, television, variety), Health,
Politics, Sports, Technology. The data can be downloaded from
ftp://ftp.cs.umn.edu/ dept/users/boley/ (K1 series).

• N20. The data contain roughly 1,000 postings each from the following 20
newsgroup topics [302]6:
1. alt.atheism,
2. comp.graphics,
3. comp.os.ms-windows.misc,
4. comp.sys.ibm.pc.hardware,
5. comp.sys.mac.hardware,
6. comp.windows.x,
7. misc.forsale,
8. rec.autos,
9. rec.motorcycles,

10. rec.sport.baseball,
11. rec.sport.hockey,

5Let κ = (1, 1, 2, 2)T, λ(1) = (1, 1, 2, 2)T, and λ(2) = (1, 2, 3, 4)T. λ(2) is an over-
refinement of correct clustering λ(1). The mutual information between κ and
λ(1) is 2 and the mutual information between κ and λ(2) is also 2. Our [0,1]-
normalized mutual information measure φ(NMI) penalizes the useless refinement:
φ(NMI)(λ(2), κ) = 2/3 which is less than φ(NMI)(λ(1), κ) = 1.

6The data can be found at http://www.at.mit.edu/∼jrennie/20Newsgroups/.
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12. sci.crypt,
13. sci.med,
14. sci.electronics,
15. sci.space,
16. soc.religion.christian,
17. talk.politics.guns,
18. talk.politics.mideast,
19. talk.politics.misc,
20. talk.religion.misc.

• WKB. From the CMU Web KB Project [116], web pages from the following
10 industry sectors according to Yahoo! were selected: airline, computer
hardware, electronic instruments and controls, forestry and wood
products, gold and silver, mobile homes and rvs, oil well services
and equipment, railroad, software and programming, trucking. Each
industry contributes about 10% of the pages.

• REU. The Reuters-21578, Distribution 1.0.7 We use the primary topic key-
word as the category. There are 82 unique primary topics in the data. The
categories are highly imbalanced.

The data sets encompass several text styles. For example, WKB documents vary
significantly in length: some are in the wrong category, some are dead links or
have little content (e.g., are mostly images). Also, the hub pages that Yahoo!
refers to are usually top-level branch pages. These tend to have more similar
bag-of-words content across different classes (e.g., contact information, search
windows, welcome messages) than news content-oriented pages. In contrast,
the content of REU is well-written news agency messages. However, they often
belong to more than one category.

Words were stemmed using Porter’s suffix stripping algorithm [170] in YAH
and REU. For all data sets, words occurring on average between 0.01 and 0.1
times per document were counted to yield the term-document matrix. This
excludes stop words such as a, and very generic words such as new, as well as
too rare words such as haruspex.

6.2 Summary of Results

In this section, we present and compare the results of the 11 approaches on the
four document data sets. Clustering quality is understood in terms of mutual
information and balance. For each data set we set the number of clusters k
to be twice the number of categories g, except for the REU data set where we
used k = 40 since there are many small categories. Using a greater number
of clusters than classes allows multimodal distributions for each class. For
example, in an Xor like problem, there are two classes, but four clusters.

7Available from Lewis at www.research.att.com/∼lewis.
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Let us first look at a representative result to illustrate the behavior of some
algorithms and our evaluation methodology. In Fig. 3, confusion matrices il-
lustrating quality differences of RND, KM E, KM C, and GP C approaches
on a sample of 800 documents from N20 are shown. The horizontal and the
vertical axes correspond to the categories and the clusters, respectively. Clus-
ters are sorted in increasing order of dominant category. Entries indicate the
number n

(h)
� of documents in cluster � and category h by darkness. Expect-

edly, random partitioning RND results in indiscriminating clusters with a
mutual information score φ(NMI) = 0.16. The purity score φ(P) = 0.16 indi-
cates that on average the dominant category contributes 16% of the objects
in a cluster. However, since labels are drawn from a uniform distribution,
cluster sizes are somewhat balanced with φ(BAL) = 0.63. KM E delivers one
large cluster (cluster 15) and many small clusters with φ(BAL) = 0.03. This
strongly imbalanced clustering is characteristic of KM E on high-dimensional
sparse data and is problematic because it usually defeats certain applica-
tion specific purposes such as browsing. It also results in subrandom quality
φ(NMI) = 0.11 (φ(P) = 0.17). KM C results are good. A “diagonal” can be
clearly seen in the confusion matrix. This indicates that the clusters align
with the ground truth categorization, which is reflected by an overall mu-
tual information φ(NMI) = 0.35 (φ(P) = 0.38). Balancing is good as well with
φ(BAL) = 0.45. GP C exceeds KM C in both aspects with φ(NMI) = 0.47
(φ(P) = 0.48) as well as balance φ(BAL) = 0.95. The “diagonal” is stronger
and clusters are very balanced.

The rest of the results are given in a summarized form instead of the more
detailed treatment in the example mentioned earlier, since the comparative
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Fig. 3. Confusion matrices illustrating quality differences of RND, KM E, KM
C, and GP C approaches on a sample of 800 documents from N20. Matrix entries
indicate the number n

(h)
� of documents in cluster 	 (row) and category h (column)

by darkness. Clusters are sorted in ascending order of their dominant category. KM
E delivers one large cluster and shows subrandom quality φ(NMI). KM C results are
good, but are exceeded by GP C in terms of mutual information φ(NMI) as well as
balance φ(BAL)
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trends are very clear even at this macrolevel. Some examples of detailed con-
fusion matrices and pairwise t-tests can be found in our earlier work [413].

For a systematic comparison, ten experiments were performed for each
of the random samples of sizes 50, 100, 200, 400, and 800. Figure 4 shows
performance curves in terms of (relative) mutual information comparing ten
algorithms on four data sets. Each curve shows the difference ∆φ(NMI) in
mutual information-based quality φ(NMI) compared to random partitioning
for five sample sizes (at 50, 100, 200, 400, and 800). Error bars indicate ±1
standard deviations over ten experiments. Figure 5 shows quality in terms of
balance for four data sets in combination with ten algorithms. Each curve
shows the cluster balance φ(BAL) for five sample sizes (again at 50, 100, 200,
400, and 800). Error bars indicate ±1 standard deviations over ten experi-
ments. Figure 6 summarizes the results on all four data sets at the highest
sample size level (n = 800). We also conducted pairwise t-tests at n = 800
to ensure differences in average performance are significant. For illustration
and brevity, we chose to show mean performance with standard variation bars
rather than the t-test results (see our previous work [413]).

First, we look at quality in terms of mutual information (Figs. 4 and 6a).
With increasing sample size n, the quality of clusterings tends to improve.
Nonmetric (cosine, correlation, Jaccard) GP approaches work best on text
data followed by nonmetric KM approaches. Clearly, a nonmetric, e.g., dot-
product based similarity measure is necessary for good quality. Due to the
conservative normalization, depending on the given data set the maximum
obtainable mutual information (for a perfect classifier!) tends to be around
0.8–0.9. A mutual information-based quality around 0.4 and 0.5 (which is ap-
proximately 0.3–0.4 better than random at n = 800) is an excellent result.8

HP constitutes the third tier. Euclidean techniques including SOM perform
rather poorly. Surprisingly, the SOM still delivers significantly better than
random results despite the limited expressiveness of the implicitly used Euclid-
ean distances. The success of SOM is explained by the fact that the Euclidean
distance becomes locally meaningful once the cell centroids are locked onto a
good cluster.

All approaches behaved consistently over the four data sets with only
slightly different scale caused by the different data sets’ complexities. The
performance was best on YAH and WKB followed by N20 and REU. Interestingly,
the gap between GP and KM techniques is wider on YAH than on WKB. The
low performance on REU is probably due to the high number of classes (82)
and their widely varying sizes.

In order to assess those approaches that are more suitable for a particular
amount of objects n, we also looked for intersects in the performance curves

8For verification purposes we also computed entropy values for our experiments and
compared with, e.g., [463] to ensure validity.
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Fig. 4. Mutual information performance curves comparing ten algorithms on four
data sets. Each curve shows the difference in mutual information-based quality
φ(NMI) compared to random for five sample sizes (at 50, 100, 200, 400, and 800).
Error bars indicate ±1 standard deviations over ten experiments

of the top algorithms (nonmetric GP and KM, HGP).9 In our experiments,
the curves do not intersect indicating that ranking of the top performers does
not change in the range of dataset sizes considered.

In terms of balance (Figs. 5 and 6b) the advantages of GP are clear. GP ex-
plicitly tries to achieve balanced clusters (n = 800 : φ(BAL) ≈ 0.9). The second
tier is HGP, which is also a balanced technique (n = 800 : φ(BAL) ≈ 0.7) fol-
lowed by nonmetric KM approaches (n = 800 : φ(BAL) ≈ 0.5). Poor balancing

9Intersections of performance curves in classification (learning curves) have been
studied recently, e.g., in [359].
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Fig. 5. Amount of balancing achieved for four data sets in combination with ten
algorithms. Each curve shows the cluster balance φ(BAL) for five sample sizes (at
50, 100, 200, 400, and 800). Error bars indicate ±1 standard deviations over ten
experiments.

is shown by SOM and Euclidean KM (n = 800 : φ(BAL) ≈ 0.1). Interestingly,
balancedness does not change significantly for the KM-based approaches as
the number of samples n increases. GP-based approaches quickly approach
perfect balancing as would be expected since they are explicitly designed to
do so.

Nonmetric GP is significantly better in terms of mutual information as
well as balance. There is no significant difference in performance amongst the
nonmetric similarity measures using cosine, correlation, and extended Jac-
card. Euclidean distance-based approaches do not perform better than random
clustering.



96 J. Ghosh and A. Strehl

GP C GP P GP J KM J KM C KM P HGP SOM GP E KM E
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
D 

f(
N

M
I)

GP E GP J GP C GP P HGP KM P KM C KM J SOM KM E
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f(
B

A
L)

(a) (b)

Fig. 6. Comparison of cluster quality in terms of (a) mutual information and (b)
balance on average over four data sets with ten trials each at 800 samples. Error bars
indicate ±1 standard deviation. Graph partitioning is significantly better in terms
of mutual information as well as in balance. Euclidean distance-based approaches
do not perform better than random clustering

7 Conclusions

This work provides a mutual information-based comparison of several
similarity-based clustering approaches to clustering of unannotated text across
several similarity measures. It also provides a conceptual assessment of a
variety of similarity measures and evaluation criteria.

The comparative results indicate that for the similarity measures consid-
ered, graph partitioning is better suited for word frequency-based clustering of
web documents than generalized KM, HGP, and SOM. The search procedure
implicit in GP is far less local than the hill-climbing approach of KM. More-
over, it also provides a way to obtain clusters of comparable sizes and exhibit
a lower variance in results. Note that while this extra constraint is helpful
for datasets that are reasonably balanced, it can degrade results when the
classes are highly skewed. With regard to the appropriateness of various dis-
tance/similarity measures, it was very clear that metric distances such as the
L2 norm (Euclidean distance) are not appropriate for the high-dimensional,
sparse domains that characterize text documents. Cosine, correlation, and ex-
tended Jaccard measures are much more successful and perform comparably
in capturing the similarities implicitly indicated by manual categorizations
of document collections. Note that all three measures tune to different de-
grees to the directional properties of the data, which is the likely reason for
their effectiveness. This intuition is supported by the recent development of
a generative model using mixture of von Mises–Fisher distributions from di-
rectional statistics and tailored for high-dimensional data, which has been
applied to text clustering with clearly superior results [43]. Such generative
models are also attractive since their computational complexity can be linear
in the number of objects, as compared a mimimum of quadratic complexity
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for any similarity-based method that involves a comparison between each pair
of objects.

Since document clustering is currently a popular topic, a comparative
study such as that undertaken in this chapter is by nature an unfinished
one as new techniques and aspects emerge regularly. For example, a recent
paper introduces a similarity measure based on the number of neighbors two
points share, and shows promising results on earth sciences data and word
clustering [149]. It will be interesting to see how suitable this measure is for
clustering a variety of text collections.
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