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1.5

Abstract: We describe in detail a novel data structure to represent the
topology of d-dimensional triangulations. In an arbitrary d-dimensional tri-
angulation, there are d! ways in which a specific facet of an simplex can be
glued to a specific facet of another simplex. Therefore, in data structures
for general d-dimensional triangulations, this information must be either
encoded using ⌈log2(d!)⌉ bits for each adjacent pair of simplices, or recom-
puted at each step by comparing the two sets of d + 1 vertices. We consider
a special class of triangulations, called the colored triangulations, in which
there is a only one way two simplices can share a specific facet. The gem
data structure, described here, makes use of this fact to greatly simplify the
repertoire of elementary topological operators. The gem data structure is
similar to previous data structures for n-dimensional maps based on barycen-
tric subdivision, but is generalized to a much wider class of triangulations.
Although colored triangulations are a proper subset of all triangulations, the
gem data structure is adequate for many applications, such as adaptive mesh
construction.
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1 Introduction

We describe a new data structure to represent the topology of simplicial meshes, or triangulations,
with any dimension d ≥ 1. Informally, a d-dimensional triangulation is a partition of some d-
dimensional set of points into cells that are topologically equivalent to d-dimensional simplices
(triangles, for d = 2, tetrahedra, for d = 3, etc).

The standard way to represent the topology of such triangulations is to represent each d-
dimensional simplex by one data record, and use pointers between records to encode the adjacency
relations between the corresponding simplices. However, in an arbitrary d-dimension triangulation,
there are (d + 1)! ways in which a specific facet of a simplex can be shared with some facet of
another simplex. Therefore, in data structures for general d-dimensional triangulations, one must
store ⌈log2((d + 1)!)⌉ additional bits for each adjacent pair, in order to encode this information.
This approach is used, for example, in Shewchuk’s Triangle code [15]. Another alternative is to
recompute this information at each step when the structure is traversed, as in Lee and Schachter’s
Delaunay triangulation algorithm [7] and in the CGAL 2D and 3D triangulation data structures [?].

We consider here a special class of d-dimensional triangulations, the (vertex -)colored triangula-
tions, where each vertex is labeled with one of d+1 distinct colors in such a way that each simplex
has exactly one vertex of each color. In such triangulations, a specific facet of one simplex can be
be shared by another simplex in only one way; so each adjacency relation can be represented by a
simple pointer, without the additional bits. The gem data structure, described here, makes use of
this fact to greatly simplify the repertoire of elementary topological operators.

The idea of representing topological spaces by edge-colored graphs that are dual to colored
simplicial maps was used by M. Pezzana in 1974 [13, 14], and developed in subsequent years by
M. Ferri, C. Gagliardi, and others [4, 5]. The name gem (acronym of Graph Encoded Map) for such
graphs was coined by S. Lins in 1982 [9]. In these works, gems were mathematical devices for theo-
retical studies of topological spaces, notably the characterization and identification of manifolds. In
particular, Lins reserved the name for colored graphs whose underlying space was a compact man-
ifold without border. Loop edges were therefore not allowed, and connectivity was often assumed
in the definition.

The gem data structure described here is similar to Brisson’s cell-tuple structure [2] and to
Lienhardt’s n-G-maps [8]. Like them, it allows manifolds with borders and non-manifold (but
triangulable) topological spaces. However, the gem data structure is interpreted in a different way
(as a triangulation, rather than a map), and is more general — meaning that the valid cell-tuple
and n-G-map structures are a proper subset of the valid gem structures.

2 Triangulations

We give an abstract definition of triangulation that generalizes most of the known triangulation
data structures. The gem data structure can represent only a subclass of these triangulations.

2.1 General triangulations

Canonical simplex Let x0, . . . xd be the unit vectors of the coordinate axes of R
d+1. The

canonical d-simplex Sd ⊂ R
d+1 is the convex hull of the points x0, . . . xd. Note that Sd, even

though it is a subset of R
d+1, is homeomorphic to the closed unit ball B

d of R
d.

The convex hull of any subset of {x0, . . . xd} with k + 1 elements is a k-dimensional face, or
k-face, of Sd. In particular, the empty set is the only (−1)-face and Sd is the only d-face. A k-face
is said to be proper if k < d. Faces with dimension 0, 1, and 2 are called vertices, edges, and walls,
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respectively. For any k in {0, .. n}, the k-skeleton of Sd is the set of all its j-faces with j ≤ k.
⋆[skeleton not used!]

A (d− 1)-face is also called a facet of Sd. We define the border of a k-face f of Sd, denoted here
by ∂ f , as the union of all the j-faces properly contained in f ; and the core of f , denoted by κ f as
the set f \ ∂ f . The core of a k-face is called an open k-face (even though it is not, in general, an
open subset of Sd in the topological sense). Note that a 0-face (vertex) has an empty border and a
core consisting of a single point, and is therefore also an open 0-face. If k > 0, on the other hand,
the border is non-empty, and the core is a proper subset of the k-face.

Simplicial morphisms A simplicial morphism is a continuous function s from some face f of
the canonical simplex Sd into some topological space, such that the restriction of s to any open
face of f is a homeomorphism. Note that the restriction of a simplicial morphism s to any closed
face of its domain f is itself a simplicial morphism.

Compatible morphisms Two simplicial morphisms r, s defined on k-faces f, g of Sd are said to
be compatible if they have disjoint ranges, or the composition rs−1 is a linear map of f to g. (Note
that the map must be one-to-one, and it must take the vertices of f to those of g. There are only
(

d+1

k+1

)

distinct linear maps with this property.)

Topological simplex More generally, a (topological) d-simplex s is a simplicial morphism with
domain Sd, such that the restrictions of s to any two open faces of s either are compatible or have
disjoint ranges.

The restriction of s to a k-face of Sd will be called, by extension, a k-face of s. In the same way
we extend the concepts of vertex, edge, facet, border, core, and open face to topological simplices.

We will denote the topological space that is the range of a homeomorphism s by 〈s〉. Note that,
according to the definitions above, a topological simplex always has 2d+1 distinct faces, even if two
or more faces have the same range.

⋆ [Verificar e consertar a definição!]

Triangulation A d-dimensional triangulation (or d-triangulation) is a set T of d-dimensional
topological simplices such that, for any two simplices a, b ∈ T , and any open proper faces f of
a and g of b, the subspaces 〈κ a〉 and 〈κ b〉 are disjoint, and the subspaces 〈f〉 and 〈g〉 are either
disjoint or identical. See figure 1.

Figure 1: Examples of 2- and 3-dimensional triangulations.
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By extension, any k-face (resp. open k-face) of a d-simplex a ∈ T is called a k-face (resp. open
k-face) of T . We will denote by T̂ the set of all faces of T , of any dimension. We will also define
the space of T as 〈T 〉 = ∪s∈T 〈s〉; which is always a compact Hausdorff topological space.

2.2 Colored triangulations

⋆ [Agora todo simplexo é colorido! Basta dizer que as cores têm que casar. Ou seja o mapa rs−1,
onde for definido, deve ser a identidade.]

Colored simplex We define a color set as any finite subset of N. If C is a color set, a C-colored
simplex (or C-simplex ) is a topological simplex with dimension d = |C| − 1, whose vertices are
labeled with pairwise distinct elements of C (the colors of those vertices).

Note that, for any C-colored simplex s, and any D ⊆ C, there is a unique (|D| − 1)-face of s
whose vertices are colored with the colors in D. We call it the D-face of s. In particular, the C-face
of S is S itself, and the ∅-face of S is the empty set.

Colored triangulation If C is a color set, we define a C-colored triangulation (or C-triangulation)
as a (|C| − 1)-triangulation whose vertices are labeled with colors of C, in such a way that the re-
striction of the labeling to each simplex of T makes it into a C-simplex. See figure 2.
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Figure 2: Examples of 2- and 3-dimensional colored triangulations.

3 Gems

Let C be a color set. A C-gem is a pair (V, φ) where V is a finite set of gem nodes and φ is a
function that to each i ∈ C associates an involution of V (a permutation of V which is its own
inverse), denoted by φi. If |C| = d + 1, we also call this object a d-gem.

We note that this definition is formally similar to Lienhardt’s definition of n-G-maps [8], except
that we only retain the first of his two axioms (φi is an involution for all i). As it turns out,
Lienhardt’s second axiom (φiφj is an involution, whenever j − i ≥ 2) is required only to allow
interpretation of the data structure as the barycentric subdivision of a cell complex.

3.1 Gems as colored graphs

We can interpret a C-gem (V, φ) as a non-directed graph with C-colored edges, where V is the set of
graph nodes and there is a i-colored edge between the nodes v and w ∈ V if and only if φi(v) = w.
In particular, if φi(v) = v, there is a i-colored loop edge on vertex v. For example, figure 3 shows
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a {0, 1, 2}-gem with node set {A,B, . . . ,K,L} and the involutions listed in the table (a), and the
corresponding edge-colored graph 3(b).

Node φ0 φ1 φ2

a c b d
b d a b
c a d c
d b c a

(a)

2
1
0

d

a b

c

(b)

Figure 3: A gem specified as a set of involutions (a) and as a graph (b).

The graph interpretation of gems provides implicitly the concepts of walk, path, connectedness, etc.
In particular, we say that two distinct gem nodes v and w are i-adjacent iff φi(v) = w.

3.2 Gems as colored triangulations

⋆ [Consertar!]
Every d-gem can be interpreted as a d-dimensional colored triangulation, and completely deter-

mines its topology. Informally, the triangulation is the dual of the gem: for each gem node there is
a simplex in the triangulation, and two nodes are i-adjacent iff the corresponding simplices share
the facet opposite to vertex i, with matched vertex colors. For example, the gem of figure 3 can be
interpreted as the colored triangulation shows in figure 2.

Missing figure gem-triang.eps

Figure 4: The colored 2-triangulation represented by the gem of figure 3.

Figure 5 shows a three-dimensional example with free border.
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Figure 5: A 3-gem (a) and the corresponding triangulation (b).

⋆[Mais exemplos!!] To formalize this interpretation, we need the following definitions:

Canonical triangulation of a gem If G = (V, φ) is a C-gem, with |C| = d + 1, its canonical
triangulation TG is obtained as follows. Let X be the topological space V × Sd, where Sd is the
canonical d-simplex and V is taken with the discrete topology. Note that X consists of |V | connected
components, each isomorphic to Sd. Let the vertices of Sd be colored with the set C, in such a way
that vertex xi of Sd gets the ith smallest color. Let ≃ be a relation in X such that, for p1 and
p2 ∈ X, p1 ≃ p2 iff p1 = (v1, q) and p2 = (v2, q), where v1 and v2 are i-adjacent nodes of V and q is
a point of the (C \ i)-face of Sd, for some i ∈ C. The transitive and reflexive closure ≅ of ≃ is an
equivalence relation. Let Y be the quotient space X/ ≅, and let [p]≅ ∈ Y be the equivalence class
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of point p ∈ X. For each v ∈ V , let τ(v) be the topological simplex such that τ(v)(q) = [(v, q)]≅
for all p ∈ Sd. The canonical triangulation TG is, by definition, the set of topological simplices
{τ(v) : v ∈ V }.

Theorem 1 If G = (V, φ) is a C-gem, TG is a C-triangulation.

Proof : We must prove that (1) the simplices of TG have pairwise disjoint cores, and (2) any two
open faces of T are either disjoint or identical.

Let v′, v′′ be two distinct nodes of V , and s′ = τ(v′), s′′ = τ(v′′) be the corresponding simplices
in TG. For the first part, suppose 〈κ r〉 ∩ 〈κ s〉 6= {}. Then there are points q′, q′′ in κSd such that
(v′, q′) ≃ (v′′, q′′). However, by construction, these two pairs are related by ≃ only if v′ = v′′, or if
q′ == q′′ and both belong to a facet of Sd — a contradiction.

For the second part, suppose 〈f ′〉 ∩ 〈f ′′〉 6= {}, where f ′, f ′′ are open k-faces of s′ and s′′,
respectively, for some k < d. TG contains a point p shared by a distinct simplex τ(v′), and b is
the smallest face of τ(v) containing p, then τ(v′) contains the whole of b. Indeed, the point p is an
equivalence class of ≅ containing the points (v, q) and (v′, q) of X, where q is a point belonging to
a facet of Sd. Since (v, q) ≅ (v′, q), there is a sequence (w1, . . . , wn) of nodes of V such that w1 = v,
wn = v′ and, for 1 ≤ i ≤ n−1, (wi, q) ≃ (wi+1, q). By the construction of ≃, if c is the smallest face
of Sd containing q, then for every point q′ of c and every i ∈ {1, . . . , n− 1}, (wi, q

′) ≃ (wi+1, q
′).

Thus, for every q′ ∈ c, (w1, q
′) ≅ (wn, q′). It follows that τ(v) and τ(v′) share the set of equivalence

classes containing the points {v, v′} × c of X, which is the face b.

Finally, note that the quotient from space X to Y respects the vertex colors, so we can say that
the triangulation TG is colored with C. �

3.3 Residues of a gem

Besides encoding the adjacency of simplices through facets in the canonical triangulations, the gems
also contain information about the lower dimensional simplices and their incidence relations. In
order to describe how to obtain this information, we must define the concept of residue of a gem.

Residue Let G = (V, φ) be a C-gem, and let D ⊆ C. A D-residue of G is a D-gem that is a
connected component of (V, φ|D), where φ|D is the restriction of φ to the color set D. We denote
by Ĝ the set of all residues of G. We say that two nodes of a C-gem are d-connected, for some
D ⊆ C, if they belong to the same D-residue; or, in other words, if they are connected by a path
in the gem which uses only D-colored edges.

We extend the bijection τ : V → TG to a bijection from Ĝ to T̂G as follows: for any D-residue
R = (V ′, φ′) of G, τ(R) is the (C \D)-face of the C-face τ(v), for any v ∈ V ′. See figure 6.
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Figure 6: (a) The {0, 1}-residues of the gem given in figure 2(d). (b) The {2, 3}-colored
edges of the triangulation that correspond to these residues.

To show that this definition is consistent, we must show that, for any pair of nodes v and w of a
D-residue, τ(v) and τ(w) share the same (C \ D)-face, as stated in the following theorem. The
proof of this theorem is given in the appendix.

Theorem 2 If G = (V, φ) is a C-gem then for any v and w ∈ V and any D ⊆ C, the simplices
τ(v) and τ(w) of TG share their (C \D)-face iff v and w are D-connected in G.

Notice that the extended bijection τ is consistent with the previous definition of this function,
that is, every ∅-residue of G is a single node, which is mapped to the same C-face of TG by both
definitions.

Theorem 3 If G = (V, φ) is a C-gem, the function τ : Ĝ→ T̂G is a bijection.

Proof : First we show that for any D-face a ∈ T̂G, with D ⊆ C, there is a residue R of G such that
τ(R) = a. Let b be a C-face of T̂G incident on a and let v ∈ V such that τ(v) = b. Then, if R is
the (C \D)-residue of G containing v, τ(R) = a.

Now we prove that, for distinct R and S ∈ Ĝ, τ(R) 6= τ(S). Let R be a D-residue and S a
E-residue of G, with D and E ⊆ C and R 6= S. If D 6= E, τ(R) and τ(S) are clearly different, so
let D = E. If v and w are nodes of R and S respectively, they are not D-connected, and thus τ(v)
and τ(w) do not share their (C \D)-face. So τ(R) 6= τ(S). �

Theorem 4 If R and S are residues of a C-gem G, then τ(R) is a face of τ(S) iff S is a residue
of R.

Proof : Let R be a D-residue of G and S be a E-residue of G, with D,E ⊆ C.
First, suppose that S is a residue of R, which implies E ⊆ D. If v is a node of S, then it is also

a node of R. So τ(S) is the (C \E)-face of τ(v) and R is the (C \D)-face of the same C-face τ(v).
Since (C \ E) ⊇ (C \D), it is easy to see that τ(R) is a face of τ(S).

Now suppose that τ(R) is a face of τ(S), which implies (C \ E) ⊇ (C \D), i.e. E ⊆ D. Since
every C-face incident on τ(S) is also incident on τ(R), every node of S is also a node of R. So, S
is an E-residue of R. �

3.4 Gem representing a triangulation

A gem encodes the topology not only of its canonical triangulation, but also of any triangulation
that is topologically equivalent to the canonical. To formalize this, we need the following definition.
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Isomorphism of triangulations Two C-triangulations T and T ′ are isomorphic, or topologically
equivalent, iff there is a bijection f : T̂ → T̂ ′ mapping D-faces of T into D-faces of T ′, for D ⊆ C,
such that, for any a and b ∈ T̂ , a is a face of b iff f(a) is a face of f(b).

We say that a C-gem G represents a C-triangulation T if T is isomorphic to TG. It follows
that every gem represents some triangulation (in particular its canonical triangulation), and all the
triangulations represented by some gem are isomorphic.

As a consequence of theorems 2, 3 and 4 it is possible to characterize the topology of trian-
gulations represented by a gem using the incidence relations between simplices, as stated in the
following corollary.

Corollary 5 Let G = (V, φ) be a C-gem and T be a C-triangulation. The three statements below
are equivalent.

(i) The gem G represents T .

(ii) There is a bijection δ from V to T such that, for any pair v and w ∈ V , the simplices δ(v)
and δ(w) share their (C \D)-face, for D ⊆ C, iff v and w are D-connected.

(iii) There is a bijection δ from Ĝ to T̂ such that, for any pair R and S ∈ Ĝ, δ(R) is a face of
δ(S) iff S is a residue of R.

Theorem 6 Two gems are isomorphic if and only if their canonical triangulations are isomorphic.

Proof :

Let G = (V, φ) and G′ = (V ′, φ′) be C-gems. If TG and T ′
G are isomorphic, we can say that G′

represents TG. In this case, there is a bijection δ from V ′ to TG such that, for any pair v and w ∈ V ′,
the simplices δ(v) and δ(w) share their (C \D)-face, for D ⊆ C, iff v and w are D-connected. So,
the composition δ−1τ is an isomorphism from V to V ′.

On the other hand, if G and G′ are isomorphic, there is a bijection β from V to V ′ such that
the nodes v and w from V are D-connected, for D ⊆ C, iff β(v) and β(w) are D-connected. So,
the composition τβ is a bijection from V ′ to TG such that for any v and w ∈ V ′ and any D ⊆ C,
the simplices τβ(v) and τβ(w) of TG share their (C \D)-face iff v and w are D-connected in G′.
By corollary 5, G′ represents TG, and, consequently, TG and T ′

G are isomorphic.

�

3.5 Colored triangulations as gems

As we saw, every gem represents some colored triangulation, that is unique up to isomorphism.
Conversely, every triangulation that satisfies a natural “niceness” condition can be completely
represented by a gem. Informally, the condition says that the triangulation must be the result of
identifying pairs of facets of isolated simplices, so that (1) each facet is identified at most once, and
(2) proper faces which are not facets are identified only as a consequence of facet identification. To
formalize this statement, we need the following definitions.

Star of a face Let a be a k-face of a d-triangulation T . The star of a, denoted St(a), is the
union of the cores of all faces of T̂ containing a.
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Nice triangulation We say that a colored d-triangulation T is nice iff every (d− 1)-face is face
of at most two d-faces, and for every k-face a, with 0 ≤ k ≤ d− 2, the star St(a) \ a is connected.

It is easy to see that every colored triangulation over a manifold, with or without border, is
a nice triangulation. However, for d ≥ 3, there are nice d-triangulations whose spaces are not
manifolds [10].

Theorem 7 Every nice triangulation is represented by a gem.

Theorem 8 Every gem represents a nice triangulation.

These theorems are proved in the appendix.

4 The gem data structure

In a colored triangulation, the constraints on vertex colors mean that two simplices can share a
specific facet in only one way. The gem data structure makes use of this constraint to greatly
simplify the repertoire of elementary topological operators.

The gem data structure represents a C-gem where C ⊆ {0, 1, . . . , d}, for a given constant
d. Its records correspond to the gem nodes. Each node s of the gem (or each d-simplex of the
triangulation) is represented by record ŝ containing d + 1 pointers to other records, representing
the functions φ0, . . . , φd. That is, pointer i of record ŝ points to record r̂, and vice versa, iff the
simplices s and r share the facet opposite to vertex i. It follows that if pointer i of record ŝ points
to record r̂, then pointer i of r̂ points back to ŝ. See figure 7.

2
1
0

d

a b

c

(a)

data data

datadata

a b

c d

(b)

Figure 7: (a) A 2-gem given by a colored graph (b) the registers of the gem data
structure.

We will write φi(r) to mean the record referenced by pointer i of record r. In specific applica-
tions, each record r may have additional fields, containing geometric or other data [?].

The gem data structure. A colored triangulation can be represented by a simple data struc-
ture.Since there is only one way two simplices can share a specific facet, the data structure does
not require additional bits for the adjacency relations between simplices. For the same reason,
the repertoire of topological operators of the gem structure is much simpler that that of arbitrary
triangulation structures. Only three operators are sufficient: MakeNode() creates a new unattached
node, Swap(a,b,i) exchanges the i-pointers of nodes a, b, and Step(a,i) follows the i-pointer of
node a [11].
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4.1 Restrictions

The fact that gems can represent only colored triangulations is a major limitation of this data
structure. Take for instance a 1-triangulation consisting of a cycle of lines alternating with vertices.
This triangulation is colorable if and only if the number of vertices is even. In the case of 2-
triangulations, if the link of any vertex is an odd cycle, it cannot be colored. See figure 8.

1

2 2

0

1

?

Figure 8: A 2-triangulation that is not colorable.

For this reason, gems cannot be used in problems that require specific triangulations, e.g. finding
the Delaunay triangulation of a set of points. Still, colored triangulations are suited for many
applications. Some of them will be discussed in section 5.

4.2 Traversing a gem structure

Let T be a C-triangulation represented by a gem G. In computer programs, any C-face of T is
represented by a pointer to the corresponding gem node. More generally, a D-face a of T̂ , for any
D ⊆ C, is referred by a pair p = (v,D), where v is any node of the (C \D)-residue corresponding
to a.

Given this representation, we describe two operations to traverse the gem. The operation
GetFace(p,E), given a D-face a of T referred by p = (v,D), and a set E ⊆ D, returns the E-face
of a — that is simply the pair (v,E).

The operation Enum(p,D), given an E-face b of T referred by p = (w,E), and a set D ⊇ E,
enumerates the D-faces of T that have b as a face. This is the same as enumerating the (C \D)-
residues contained in the (C \ E)-residue corresponding to b. This enumeration can be performed
by a straightforward depth first or breadth first search — assuming that there is some way to mark
the nodes that have been visited.

4.3 Creating and modifying the gem structure

We introduce three basic operations to build and modify gem data structures.

MakeNode(): creates a new record v and makes φi(v) = v for 0 ≤ i ≤ d.

DeleteNode(v): is the inverse operation of MakeNode. It takes a record v, such that φi(v) = v
for all i ∈ {0, . . . , d}, and returns it to the storage pool.

Swap(v,w,i): where v and w are records and i ∈ {0, . . . , d}. This operation consists simply in
exchanging the values of pointers φi(v) and φi(w).

Note that Swap(v,w,i) is its own inverse, and it is a no-op if v = w.

Theorem 9 If {φi(v)}∪{φi(w)} = {v}∪{w}, the operation Swap(v,w,i) preserves the consistency
of the gem.
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Proof : We need to show that, upon the application of Swap, for every node x and every color i of
he gem, φi(φi(x)) = x.

Note that the only modification performed by this Swap occurs on the i-colored pointers of v
and w. If {φi(v)} ∪ {φi(w)} = {v} ∪ {w}, thus either φi(v) = v and φi(w) = w, or φi(v) = w and
φi(w) = v. In the first case, Swap performs φi(v) ← w and φi(w) ← v; in the second case, Swap
performs φi(v)← v and φi(w)← w.

In either case, we have φi(phii(v)) = v and φi(phii(w)) = w after Swap, so the consistency of
the gem is preserved. �

We say that a Swap call is valid if it satisfies the precondition stated in the theorem above. In
practice, this operation is used to bind or separate a pair of gem nodes — that is, to glue or unglue
two simplices of the triangulation.

Theorem 10 Any gem data structure can be built by a sequence of MakeNodes and valid Swaps.

Proof : Let G be any gem. If we perform Swap(v,w,i) for every pair of distinct nodes v and w
of G that are i-adjacent, we get a collection of isolated nodes. Then if we perform DeleteNode(v)
for every node v, we get an empty gem data structure.

The sequence of operations needed to construct the gem G is exactly the inverse of the sequence
used to destroy it, which is a sequence of MakeNodes followed by a sequence of valid Swaps. �

For an example of use of these operations, see our convex hull algorithm [?].

5 Applications

An obvious application of the gem data structure is the representation of barycentric subdivision
of general maps, as studied by Brisson [2] and Lienhardt [8]. The gem representation was employed
in our exact convex hull algorithm [?] to represent the barycentric subdivision of the convex hull
of a set of points in R

d, thus allowing the representation of hulls with non-simplicial faces.

Gems can also be used as adaptive triangulations, for example, to approximate surfaces by
simplicial meshes with prescribed accuracy. Note that it doesn’t matter if such a mesh is a colored
triangulation, as long as it is a good approximation to the surface. Even though colored triangu-
lations are not as easily subdivided as general ones, they do admit local k-face refinement schemes
for any k ∈ {1, . . . , d}.

When making a local refinement on a colored triangulation one must guarantee that the newly
created vertices can be colored. In general, a local refinement on a colored triangulation requires
more simplices than would be necessary on a general triangulation. More precisely, a local piecewise-
linear refinement of a d-face that preserves its border requires subdivision into 2d+1 − 1 simplices.
In contrast, the same operation can be performed on an unrestricted triangulation using d + 1
simplices. See figure 9.
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Figure 9: (a) The minimal piecewise-linear local refinement of a triangle on a general
triangulation. (b) The minimal piecewise-linear local refinement of a triangle on a
colored triangulation.

We can also adapt more sophisticated triangulation refinement algorithms for colored triangulations.
In Bank et al.’s regular refinement algorithm for 2D triangulations [1], there are two ways a triangle
t can be subdivided: if t is marked for subdivision or is adjacent to at least 2 triangles that are
marked, it is regularly subdivided by connecting the midpoints of its edges, which produces four
similar triangles; if t is not marked for subdivision but has one edge split by a regular subdivision
on an adjacent triangle, t is bisected by connecting the midpoint of the subdivided edge to the
opposite vertex.

It turns out that Bank’s regular subdivision of a triangle is feasible in colored triangulations as
well. Triangle bisection, though, must be replaced by subdivision into six triangles. See figures 10
and 11.
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Figure 10: A colored triangle refined by (a) a regular subdivision and by (b) a single
edge bisection.

������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������

0

1

2

1

0

2

0

2

1

0 1

0

1

1

0

2

(a)

0

1

2

1

0

2

0

2

1

0 1

0

1

1

0

2

(b)

Figure 11: (a) A colored triangulation with some triangles marked for subdivision
(hatched). (b) The refined triangulation, using the schemes of figure 10(a) on each
marked triangle, and of figure 10(b) on adjacent triangles.
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6 Conclusions

The gem data structure is a very simple and general way to represent the topology triangulations.
This simplicity yields concise topological operators and elegant algorithms.

In spite of its restriction to colored triangulations, it is suitable for a range of applications, as
the representation of barycentric subdivisions and the approximation of surfaces by affine triangu-
lations.
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7 Appendix

Proof of theorem 2 If G = (V, φ) is a C-gem then for any v and w ∈ V and any D ⊆ C, the
simplices τ(v) and τ(w) of TG share their (C \D)-face iff v and w are D-connected in G.

Proof : In order to prove this statement, we must analyze the relation ≅ on space X = V ×Sd

used in the construction of the canonical triangulation TG. If p = (v, q) and p′ = (v′, q′) are points
of X, p ≅ p′ iff there is a sequence (w1, . . . , wn) of nodes of V such that v = w1, v′ = wn and, for
1 ≤ i ≤ n− 1, (wi, qi) ≃ (wi+1, qi+1). By construction, (w′, q′) ≃ (w′′, q′′) iff there is a j in C such
that w′ and w′′ are j-adjacent and q′ and q′′ are the same point belonging to the (C \ {j})-face of
Sd. So we can say that p ≅ p′ iff there is D ⊆ C such that v and v′ are D-connected and q and q′

are the same point belonging to the (C \D)-face of Sd.
Now we show that if τ(v) and τ(w) are simplices of TG sharing a (C \D)-face for some D ⊆ C,

then the nodes v and w are D-connected. Let p be a point in the core of this common face; it is
an equivalence class containing the points (v, q) and (w, q) of X, where q is a point belonging to
the core of the (C \ D)-face of Sd. This implies that there is a D′ ⊆ C such that v and w are
D′-connected and q belongs to the (C \D′)-face of Sd. Since q belongs to the core of the (C \D)-face
of Sd, C \D′ ⊇ C \D (or equivalently D ⊇ D′), and we can say that v and w are D-connected.

Finally, if v and w are D-connected nodes of V , then, for every point q′ in the (C \D)-face of
Sd, (v, q′) ≅ (w, q′), and consequently τ(v) and τ(w) share their (C \D)-face. �

Now we prove that the colored triangulations representable by gems are precisely the nice ones
(theorems 7 and 8). We need some additional definitions:

The k-star of a face Let T be a d-triangulation and let a be a j-face of T̂ . The k-star of a,
for j ≤ k ≤ d, is the union of the cores of all faces of T̂ with dimension at least k and containing
a. The k-star of a is denoted Stk(a). Note that Stk(a) is the union of the stars of all the k-faces
incident on a, and that, for j < d, Stj+1(a) = St(a) \ a.

k-star-sequence Let T be a d-triangulation and let a be a j-face of T̂ . A k-star-sequence of a,
for j ≤ k ≤ d, is a finite sequence of k-faces incident on a wherein the stars of consecutive k-faces
have nonempty intersection.

Lemma 1 Let T be a d-triangulation and a be a j-face of T̂ . If, for j ≤ k ≤ d, a has a k-star-
sequence connecting every pair of k-faces incident on a, then a has a k-star-sequence containing all
the k-faces incident on a.

Proof : If l = (b1, . . . , bn) is a k-star-sequence of a and c is a k-face incident on a and not
contained in l, then we only have to obtain a k-star-sequence from bn to c and concatenate it to l.
By an induction on the number of k-faces incident on a, we obtain the k-star-sequence containing
all the k-faces incident on a. �

Lemma 2 Let T be a d-triangulation and a be a j-face of T̂ . The k-star of a, for j ≤ k ≤ d, is
connected iff, for any pair of k-faces b and c incident on a, there is k-star-sequence of a from b to
c.

Proof : Let a be a j-face and let b and c be a pair of k-faces with no k-star-sequence connecting
them, for 0 ≤ j ≤ k ≤ d. Let R be a binary relation on the set of k-faces incident on a such that
bRc iff St(b) ∩ St(c) 6= ∅. The closure of R, denoted R⋆, is an equivalence relation. Since there
is no k-star-sequence connecting b and c, then R defines more than one equivalence class. Hence,

14



H =
⋃

bRe St(e) and Stk(a) \H are two disjoint nonempty open sets partitioning Stk(a), and thus
Stk(a) is disconnected.

Now, let a be a j-face such that for any pair of k-faces b and c incident on a, for k ≥ j, there is
a k-star-sequence of a from b to c. Let then l be the k-star-sequence of a given by lemma 1. Since
the star of any k-face in l is connected, the union of all these stars, which is Stk(a), is connected.
�

Corollary 11 Let T be a d-triangulation and a be a face of T̂ . The (d− 1)-star of a is connected
iff, for any pair of d-faces b and c containing a, there is a sequence of d-faces from b to c wherein
every pair of consecutive d-faces share a (d− 1)-face incident on a.

Proof : It follows from the fact that every such sequence of d-faces can be obtained from a
(d− 1)-star-sequence of a, and vice-versa. �

Lemma 3 If T is a d-triangulation where every k-face with 0 ≤ k < d− 1 has a connected (k +1)-
star, then such simplices also have a connected (d− 1)-star.

Proof : Let a be a k-face of T with 0 ≤ k < d − 1. We prove by an induction that a has a
connected j-star for every j from k+1 to d−1. The base case is that a has a connected (k+1)-star.
Then, we suppose that, for some j between k + 1 and d− 2 (limits included), Stj(a) is connected.
Now we must prove that Stj+1(a) is connected.

Let (b1, . . . , bn) be a j-star-sequence containing all the j-faces incident on a. Since, for any
1 ≤ i ≤ n, Stj+1(bi) is connected, the set

⋃

1≤i≤n bi, which is Stj+1(a), is connected. �

D-walk A D-walk of a C-gem, for D ⊆ C, is a walk on the gem whose edge colors belong to D.
Note that there is a D-walk between two nodes iff they are D-connected.

Proof of theorem 7 Let T be a nice C-triangulation. We will construct a C-gem G = (V, φ)
that represents T . Let V be the set of C-faces T , and, for all i ∈ C, let φi be an involution of V
such that φi(a) = b for a and b ∈ V iff (i) a and b are distinct C-faces sharing their (C \{i})-face or
(ii) a and b are the same C-face whose (C \{i})-face is contained in only one C-face. This definition
is consistent, since every (d− 1)-face of T is a face of one or two d-faces.

Now let the bijection δ between V and T be the identity. We must show that for distinct v and
w ∈ V , δ(v) and δ(w) share their D-face, for any D ⊂ C, iff v and w are (C \D)-connected in G.

Let c be a D-face of δ(v) and δ(w). If |D| = d − 1, Std−1(c) is St(c), which is connected; if
|D| < d−1, lemma 3 states that Std−1(c) is connected. So, by corollary ??, there is a sequence of C-
faces containing c, from δ(v) to δ(w), wherein every pair of consecutive C-faces share a (d− 1)-face
containing c. This sequence provides a (C \D)-walk between v and w in G.

If there is a (C \D)-walk between v and w in G, for every pair x and y of consecutive nodes in
this walk, δ(x) and δ(y) share their D-face, so δ(v) and δ(w) also share their D-face. �

Proof of theorem 8 Let G be a C-gem and let T be a triangulation represented by G.

First we show that the (d − 1)-star of any k-face a of T , for 0 ≤ k ≤ d− 2, is connected, and
consequently, St(a) \ a is also connected. Let a be a D-face of T with D ⊂ C and |D| ≤ |C| − 2,
and let R be the (C \D)-residue of G corresponding to a. The residue R is connected, so there is a
(C \D)-walk between any pair of nodes in R. This walks provide the sequences of d-faces required
by corollary 11 to guarantee that Std−1(a) is connected.
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Now we prove that every (d − 1)-face is face of at most two d-faces. Every (C \ {i})-face c of
T , for any i ∈ C, is face of a C-face δ(v), for some node v of G. If φi(v) = v then c is face of only
one C-face, else c is face of two C-faces. �

8 @@@ FROM KYOTOCGGTT2007 ABSTRACT @@@

Relationship to other data structures. The gem data structure is the common denominator
of several other structures for representing general maps (cellular complexes) on manifolds. The
connection is established by the barycentric subdivision of the map (see figure) which is always a
colored triangulation. The n-G-maps of Lienhardt [8] and the cell-tuple structure of Brisson [2]
are equivalent to the subset of gem structures representing barycentric subdivisions. The quad-
edge structure of Guibas and Stolfi [6] and the facet-edge structure of Dobkin and Laszlo [3] are
more specific versions of the structure, optimized for dimensions 2 and 3. Both structures exploit
a peculiarity of the barycentric subdivision, namely that the edges with colors i and j, when
|i− j| ≥ 2, are arranged into cycles of length 4 (this is one of n-G-maps’ axioms [8]). Therefore,
one can merge the four records of each cycle into a single record, and replace the i and j pointers
by two additional bits in each remaining pointer, indicating one of the four parts of the pointed
record.

It is important to notice that gems are significantly more general than all those structures. In
particular, any gem that violates the 4-cycle property is not the barycentric subdivision of any map.
Moreover, in a barycentric subdivision, the free border (if any) is constrained to faces of a specific
color, whereas in arbitrary colored triangulations there is no such requirement. For these reasons,
algorithms have significantly more freedom to manipulate the gem structure than n-G-maps.

Applications. The gem data structure can
be used to represent barycentric subdivi-
sions, as the n-G-maps, in all the appli-
cations of the later, such as n-dimensional
convex hulls [12]. However, colored trian-
gulations that are not barycentric subdivi-
sions have several applications of their own.
One example is the approximation of func-
tions and surfaces by adaptive meshes (see
figure). We describe here some original al-
gorithms for adaptive subdivision of colored
triangulations that exploits this freedom.

9 @@@ FROM KYOTOCGGT TALK SLIDES @@@

Triangulations: A d-dimensional triangulation is a map whose cells are d-dimensional simplices
(triangles, for d = 2, tetrahedra, for d = 3, etc). The standard way to represent d-dimensional
triangulations is to represent each d-dimensional simplex by one data record, and use pointers
between records to encode the adjacency relations between these simplices.

Colored triangulations: We consider here d-dimensional triangulations which are “colored”, in
the sense that the vertices are labeld with the integers {0, 1, . . . , d}, in such a way that each simplex
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has one vertex of each color. See below (a) a colored 2-triangulation on the Klein bottle; and (b)
a colored 3-triangulation with free border.

Gems: The dual of a colored d-dimensional triangulation T is a d-dimensional gem (acronym
of Graph Encoded Map), as defined by M. Ferri [4] and S. Lins [9]: a graph G whose edges are
labeled with the integers {0, 1, . . . , d} so that each node has exactly one incident edge of each color.
Namely, there is an i-labeled edge between nodes u and v of G iff the cells of T corresponding to u
and v share the face opposite to the i-labeled vertex. As a special case, if a facet of a simplex s is
part of the triangulation’s free border, the corresponding edge of the gem is a loop. See below the
gems of the triangulations on figures (a) and (b).

It can be shown that every gem can be interpreted as a colored triangulation that is unique
up to homeomorphism. Conversely, every colored triangulation that satisfies a natural “niceness”
condition is completely described by its gem. (Informally, the niceness condition says that the
d-triangulation must be the result of gluing isolated d-simplices by their (d− 1)-faces.)

The gem data structure.: A colored triangulation can be represented by a simple data struc-
ture. Each d-simplex s is represented by a record ŝ with d + 1 pointers; pointer i of record ŝ points
to record r̂ and vice versa iff the simplices s and r share the face opposite to vertex i. Since there is
only one way two simplices can share a specific facet, the data structure does not require additional
bits for the adjacency relations between simplices.

Basic topological operators: The repertoire of topological operators of the gem structure is
much simpler that that of arbitrary triangulation structures. Only three operators are sufficient:
MakeNode() creates a new unattached node, Swap(a,b,i) exchanges the i-pointers of nodes a, b,
and Step(a,i) follows the i-pointer of node a [11].

Relationship to other data structures (1): The gem data structure is the common denom-
inator of several other structures for representing general maps (cellular complexes) on manifolds.
The connection is established by the barycentric subdivision of the map (see figure) which is always
a colored triangulation.

The n-G-maps of P. Lienhardt [8] and the cell-tuple structure of E. Brisson [2] are equivalent
to the subset of gem structures representing barycentric subdivisions.

Relationship to quad-edge data structure: The quad-edge structure of L. J. Guibas and
J. Stolfi [6] can be seen as a specific version of the gem (or n-G map, or cell-tuple) structure,
optimized for dimensions 2. It exploits a peculiarity of the barycentric subdivision of 2D maps,
namely that the edges with colors 0 and 2 are arranged into cycles of length 4. Therefore, one can
merge the four records of each cycle into a single record, and replace the 0 and 2 pointers by two
additional bits in each remaining pointer, indicating one of the four parts of the pointed record.

Relationship to facet-edge data structure: The facet-edge structure of D. P. Dobkin and
M. J. Laszlo [3] can also be seen as a specific version of the gem (or n-G-map, or cell-tuple)
structure, optimized for dimension 3. The edges colored 0 and 3 are a set of disjoint 4-cycles, so
each cycle is represented as a single record. (One could also use the color pair (0, 2), or (1, 3); but
(0, 3) allows a dual view of the structure.)
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Generalized quad-edge/facet-edge: The quad-edge and facet-edge structures can be gener-
alized to higher dimensions. For an d-dimensional barycentric gem the edges with colors i and j,
when |i− j| ≥ 2, are arranged into cycles of length 4 (this is one of n-G-maps’ axioms [8]). So,
if K is any set of k colors which differ by at least 2, then the edges with those colors comprise a
set of disjoint subgraphs, each isomorphic to a colored k = ⌈d/2⌉-dimensional hypercube. We can
represent each subgraph by a single record with 2k sub-record, each with d − k = ⌊d/2⌋ pointers;
using k bits to select the right sub-record. If K is invariant under d-complement, the structure
still allows duality. This trick saves about half of the pointers of the gem structure, and still allows
duality. The same trick could be used with the odd colors, but the savings would be

Applications (1): Convex hulls: The gem data structure can be used to represent barycentric
subdivisions, as the n-G-maps, in all the applications of the later, such as d-dimensional convex
hulls [12].

Non-barycentric gems: The gem data structure is significantly more general than all those map
data structures. In particular, any gem that violates the 4-cycle property is not the barycentric
subdivision of any map.

Arbitrary free border: Moreover, in a barycentric subdivision, the free border (if any) of the
map is constrained to faces of a specific color; whereas in arbitrary colored triangulations there is
no such requirement. For these reasons, algorithms have significantly more freedom to manipulate
the gem structure than n-G-maps.

Applications: Adaptive subdivision (1): Colored triangulations that are not barycentric
subdivisions have several applications of their own. One example is the approximation of functions
and surfaces by adaptive meshes (see figure). We describe here some original algorithms for adaptive
subdivision of colored triangulations that exploits this freedom.

Applications: Adaptive subdivision (3): Subdivision schemes must produce colored trian-
gulations. Some popular schemes do not work, e.g. bisecting an edge, or splitting a triangle into
three triangles.

Applications: Adaptive subdivision (3): If one must split a single element ant its star, with
piecewise-linear simplices, then one must split an edge into three parts, or a triangle into seven
parts, in general an d-dimensional simplex into 2d+1 − 1 parts. However, more economical schemes
exist for splitting several adjacent elements together.

Applications: Adaptive subdivision (4): One can do adaptive local subdivision of 2D colored
triangulations. One can even do that while avoiding thin triangles.
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