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Abstract

We describe robust methods for evaluating the similarity of down-sampled DNA or

RNA sequences. We achieve robust down-sampling by encoding the nucleotide

sequence into a packed 3-channel representation and using signal filtering

techniques with Gaussian-like smoothing kernels. By using a multi-scale approach,

we achieve scalability without significant loss of signal quality along down-sampled

strings. We show that the comparison methods are robust under simple mutations

such as isolated single-nucleotide substitutions, scattered insertions or deletions of

short nucleotide sequences, reliably discriminating homologous and non-homologous

pairs of sequences. Moreover, our filtering approach ensures that all levels of the

multi-scale pyramid (except the original sequence) are practically free from aliasing

artifacts and have the same degree of smoothing.

Keywords: bio-sequence analysis; signal analysis; sequence comparison;

multi-scale

1 Introduction

We address a basic problem of bioinformatics: namely, evaluating the similarity of two

genomic sequences (RNA or DNA). The goal such comparisons is to detect apparent ho-

mologous subsequences, derived from a common ancestor sequence by multiple replication

steps, in which the sequences were modified by insertion, deletion and replacement of nu-

cleotides

Our proposed approach starts by encoding the DNA or RNA sequence as a three-channel

numeric signal, where each nucleotide is represented by a triplet of integers. We then view

each channel as a sampled signal, and use standard signal filtering techniques to remove its

high-frequency components. Each sample triplet in the filtered sequence can be visualized

as a point along a smooth curve in three-dimensional space, whose shape depends on the

local density of each nucleotide type.

The main contribution of this paper is the observation that, with proper filtering, the en-

coded sequence can be downsampled to provide a shorter representation of the original

one, without introducing aliasing artifacts. Thanks to the filtering, the downsampled se-

quence is little affected by shifts in the downsampling phase, such as would be caused by

isolated nucleotide insertions or deletions, or embedding of the same nucleotide sequence

in different contexts.

The filtering and downsampling process can be iterated to produce a multi-scale descrip-

tion of the original DNA sequence. At each step, the number of samples is halved, reduc-

ing the processing costs by half or more; and twice as many nucleotides can be inserted or

deleted at some point of the original sequence without significant change in the filtered and

downsampled one.
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At any level of this multi-scale representation, two encoded and filtered signals can be

compared by an approximate string matching algorithm based on the dynamic program-

ming paradigm [1]. The algorithm quantifies the likelihood of two given DNA strings being

homologous. The multi-scale representation allows long segments of DNA to be compared

at a small fraction of the cost of comparing the two sequences directly. The proper filtering

before each downsampling step is essential for the functining of this algorithm.

Although we consider here only the uni-directional matching of DNA sequences, the

multi-scale comparison technique could be easily applied to other kinds of biosequences;

and bi-directional matching can be handled by running the algorithm a second time, after

reversing and complementing one of the sequences.

2 Related work

Several approaches were proposed in order to speed up the pairing and matching of DNA

or RNA sequences, relying in the translation of the character string representation to alter-

native forms of representation.

Ravichandran et al. [2] proposed a query-based alignment method for biological se-

quences mapping sequences to sequences to time-domain waveforms and then process-

ing the waveforms for alignment in the time-frequency plane. This work was extended by

Machado et al. [3] applying time-frequency analysis by wavelet decomposition to human

DNA and protein sequences.

A graphical method based on dinucleotides and their positional information was pro-

posed by Bari et al. [4], presenting a graphical representation of DNA sequences based on

nucleotide ring structure. In the proposed representation, DNA sequences were converted

into 16 dinucleotides on the surface of the hexagon.

The multi-scale analysis of DNA sequences was initially proposed by Futschik et al. [5]

and Knijnenburg et al. [6], which employed a multi-scale segmentation of the sequences.

Both works converted the analysed sequences into a single-channel numerical signal z ex-

tracted from the sequence. Knijnenburg et al. [6] defined z as the physical distance from

each point of the sequence to a functional genomic element, and applied to it a multi-scale

segmentation algorithm by Vicken et al. [7]. Futschik et al. [5] instead defined z as the

G+C content, and used multi-scale statistical analysis to obtain the segmentation.

3 Tetrahedral encoding of DNA

DNA and RNA sequences are commonly represented as a sequence of letters from the

alphabet B = {A,T,C,G} denoting the four nucleotides that may appear in DNA (with U in-

stead T for RNA). Since our methods require arithmetical operations on sequence elements,

like averaging and interpolation, we map each nucleotide to a point of three-dimensional

space R3.

Like Anastassiou [8], we encode each DNA letter by a distinct vertex of a regular tetra-

hedron T
3 in R

3. However we position the tetrahedron so that all vertex coordinates are +1

or −1, namely

A → (+1,+1,−1)

T → (+1,−1,+1)

C → (−1,+1,+1)

G → (−1,−1,−1)

(1)
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See figure 1. A discussion of alternative encodings can be found in a earlier version of this

work [9].

We will use the words datum for each element x[ j] of such an encoded sequence (a point

of R3), and sample for each of its three coordinates. We assume that the index j runs from

0 to n− 1, where n is the number of datums in the sequence. Note that a datum sequence

can be viewed as a three separate sequences of numeric samples, that is, a three-channel

discrete signal.

4 Filtering and down-sampling

4.1 Aliasing

By down-sampling a discrete signal x we mean assembling another signal x′ by taking one

every δ samples. The integer δ is the downsampling stride. Before doing that, we must

make sure that the sequence x contains no Fourier components whose frequencies are at or

above the Nyquist limit (one cycle every δ samples). Otherwise, the down-sampling will

turn those high-frequency components of x into low-frequency components of x′, which

will be impossible to separate from the genuine low-frequency components of x′. (This

phenomenon is known as frequency aliasing in signal theory.) Worse, the down-sampled

sequence x′ will vary drastically if the sequence x gets shifted by one position.

For instance, consider the two DNA sequences

X = (A,T,A,G,T,C,G,C,C,A)

Y = (T,A,G,T,C,G,C,C,A,C)
(2)

Note that the sequence Y is basically X shifted 1 base to the left. If we down-sample both se-

quences by taking only the letters with even indices (δ= 2), we would get X ′ =(A,A,T,G,C)

and Y ′ = (T,G,C,C). Now Y ′ appears to be X ′ shifted 2 bases to the left, which would imply

a shift of 4 bases at scale 0.

If the down-sampled sequence is obtained by averaging adjacent samples, namely if

x′[i] = (x[2i] + x[2i+ 1])/2, the aliasing problem is somewhat reduced, but still present.

For example, consider the two numeric sequences

x = (0,2,2,0,0,2,2,0,0,2,2,0)

y = (2,2,0,0,2,2,0,0,2,2,0,0)
(3)

The sequences obtained by averaging pairs of consecutive samples and down-sampling

with step 2 would be x′ = (1,1,1,1,1,1) and y′ = (2,0,2,0,2,0).

4.2 Convolution filtering

In order to avoid aliasing artifacts, we apply a smoothing convolution filter to a sequence

x before down-sampling it. The filtering is defined by a kernel radius L and a table w of

kernel weights w[r] where −L ≤ r ≤+L. Namely,

x′[i] =
+L

∑
r=−L

w[r]x[δi+σ− r] (4)

where σ is a suitable downsampling offset.
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Formula 4 is to be applied for all indices j such that all indices in the right-and side are

valid. Therefore, the offset σ must satisfy L ≤ σ < L+δ, and, if x has n samples, the length

of x′ will be n′ = ⌊(n−σ−L+1)/δ⌋; unless n ≤ σ+L, in which case x′ is empty (n′ = 0)

by definition.

The kernel weights are usually positive, symmetric (w[−r] = w[r]) and decrease with

increasing |r|. Therefore, each filtered sample x′[i] is the weighted average of original sam-

ples x[ j] in a “fuzzy” window centered at sample x[δi+σ], which has the largest weight in

that average.

In particular, the first and last samples of the new sequence x′ are the local averages of

samples x[σ] and x[δ(n′−1)+σ] of the original one. In other words, the filtering, as defined

above, trims between L and L+ δ− 1 samples from each end of the sequence x, before the

downsampling proper (which reduces the length of the remaining sequence by a factor of

about 1/δ).

The radius L must be at least ⌊δ/2⌋, so that there is no gap between the windows of

successive datums x′[i] and x′[i+ 1]. Moreover, every sample x[ j] must give the same total

contribution to x′; that is,

+∞

∑
k=−∞

w[ j+ kδ] = 1/δ (5)

for any j in {0 .. δ− 1}, with the convention that w[r] is zero if |r|> L.

4.3 Multi-scale analysis of signals

In multi-scale signal analysis, a given discrete numerical sequence x is transformed into

a hierarchy or pyramid of discrete signals x(0), .. x(h); where x(0) is the original signal x,

and each subsequent signal x(k) with k ≥ 1 is a down-sampled and filtered version of the

previous one x(k−1). In principle one can use different parameters L(k),δ(k),σ(k), and a

different table of kernel weights w(k) for eack level. The lengths of these sequences will

be n(k), where n(0) = n is the length of x, and n(k) = ⌊(n(k−1)−σ(k)− L(k)+ 1)/δ(k)⌋ for

k ≥ 1

Each level x(k) of the pyramid can also be seen as the result of filtering and downsam-

pling the original sequence x = x(0) with the cumulative parameters δ∗(k),σ∗(k),L∗(k) and a

cumulative kernel weight table w∗(k). For the first level we have δ∗(1) = δ(1), σ∗(1) = σ(1),

L∗(1) = L(1), and w∗(1) = w(1). For k ≥ 2, the cumulative parameters are defined recursively

as

δ∗(k) = δ(k)δ∗(k−1)

σ∗(k) = σ(k)δ∗(k−1)+σ∗(k−1)

L∗(k) = L(k)δ∗(k−1)+L∗(k−1)

(6)

The cumulative weights w∗(k) are similarly defined as the convolution of w∗(k−1) with

w(k), after the latter has been “stretched” by inserting δ∗(k−1)− 1 zeros between succesive

weights.

4.4 Multi-scale analysis of DNA sequences

With the encoding described in section 3, multi-scale analysis can be applied to DNA se-

quences as well. Specifically, each original DNA sequence X is transformed by the en-

coding into a datum sequence x = x(0) with the same length, and from these we derive
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x(1), .. x(h), by filtering each channel as a numeric discrete signal, and downsampling the

datum sequence. See figure 5. We found it convenient to use δ(1) = 1 and σ(1) = L(1), so

that level z(1) is merely a smoothed and truncated version of x(0), without downsampling;

and δ(k) = 2 for all k ≥ 2.

The kernel weights that we use are w(k)[r] =W (k)[r]/D(k), where W (k), D(k), and the radii

L(k)are given in table 1. The power spectra of these kernels are shown in figure 3.

We deine the degree of smoothing U (k) of each level k by the recurrence U (0) = 0 and

U (k) =(U (k−1)+V (k))/(δ(k))2 for all k ≥ 1; where V (k) is the variance of the filtering kernel

w(k), interpreted as a probability distribution on the indices {−L(k) ..+L(k)}. See figure 4.

The quantity U (k) is an estimate of the variance of the impulse response function of the

linear process that transforms the unfiltered sequence x(0) into x(k). This process is not

shift-invariant, but, with the filtering kernels of table 1, the response for each input sample

is very close to a Gaussian hump with variance U (k) and a fractional mean. In particular,

the definition U (0) = 0 is consistent with the fact that the original unfiltered sequence x(0) is

not smooth at all. With our choices of kernels and steps, this recurrence gives U (k) = 2.00

for all k ≥ 1. We take this to mean that all scales are smoothed to the same degree, and

equally safe from aliasing artefacts.

4.5 Visualizing DNA sequences as space curves

Each level x(k) of the multi-scale hierarchy of a DNA sequence is a sequence of n(k) points

in three-dimensional space. These points can be interpolated with a cubic spline for any real

argument t in the range [0 ⊢⊣n(k)− 1], to yield a smooth curve x(k)(t) in three-dimensional

space.

Each level x(k) of the multi-scale hierarchy of a DNA sequence is a sequence of points

x(k)[0], .. x(k)[n− 1] in three-dimensional space. These points can be interpolated with a

cubic spline for any real argument t in the range [0 ⊢⊣n−1], to yield a smooth curve x(k)(t)

in three-dimensional space. This curve can be plotted with arbitrary 3D rendering methods

or viewed with interactive 3D visualization tools. See figure 2.

For k = 0, the curve intersects itself at a tetrahedron vertex at every integer t, and there-

fore is quite uninformative; but for k ≥ 1 self-intersections are rare, and the general shape

of the curve conveys useful information, as we shall see. At successive stages, the curve

becomes necessarily simpler, losing the smaller details (and being trimmed at each end)

while retaining the larger ones. See figure 6. These curves can be effective tools for visual

comparison of sequences with up to a couple hundred datums [9].

5 Comparison of filtered DNA sequences

We now proceed to describe the comparison of DNA sequences that have been encoded,

filtered, and down-sampled as described in the precious sections.

5.1 Evolution model

labels.evomodel

Recall that the goal of biosequence comparison is to detect homologous subsequences,

that are derived from the same ancestral sequence. Specifically, we assume that the two se-

quences X and Y to be compared were independently created from some ancestral sequence

Z by multiple biological replications, and suffered several evolutionary events during this

process; where each event may be
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• a point mutation that replaces a single nucleotide by a different one;

• a short deletion that deleted a few consecutive nucleotides; or

• a short insertion that inserts a few nucleotides between two consecutive ones.

In real genomes one may also have rearrangement events, in which the DNA chain is bro-

ken into several relatively large pieces that are reattached in a different order, possibly with

some pieces being lost, duplicated, or imported from some “foreign” DNA. Our algorithm

does not try to model, identify, or account for such rearrangements. If X and Y contain

some ancestral substring Z that was modified by such events, our algorithm will hopefully

report it as several homologous pairs of sub-strings (X ′
1,Y

′
1), (X

′
2,Y

′
2), . . ., where each pair

(X ′
j,Y

′
j) is derived from a maximal segment of Z that was not split by any of the rearrange-

ment events.

Any string can be turned into any other string by a series of single-letter insertions and

deletions; but the inclusion of the three classes of events above can be justified by biology

and statistics. Namely, we assume that

• the number of evolutionary events that occurred since the common ancestor is small

compared to the length of the two strings;

• events occur independently and at random places in the string, with uniform proba-

bility;

• the probability of a point mutation is substantially greater than that of a deletion and

insertion in the same spot; and

• the probability of a short insertion or deletion decays exponentially with the number

of nucleotides added or lost.

These assumptions imply that the letters of two homologous strings X ,Y can be paired,

preserving their order, so that paired letters are equal; except for a relatively few places

where the paiting is disturbed by short insertions, and short deletions. In contrast, non-

homologous strings are as dissimilar as any two random sub-strings of a genome can be.

Like most homology detection methods, our algorithm is based on this hypothesis: that two

maximal sub-strings that are sufficiently similar, in this sense, are likely to be homologous.

Our comparison criterion is meant to operate on versions x,y of the original strings that

have been numerically encoded, filtered, and down-sampled, as described in section 4.4.

Even so, the two sequences can be compared by a variant of the well-known dynamic

programming algorithm that finds the longest common subsequnce of two strings. The

running time of that algorithm is proportional to the product of the lengths of the two

strings. Therefore, if x and y contain only one sample for every K letters of X and Y ,

the comparison will require about 1/K2 as much memory and 1/K2 or 1/K3 as much

computing time, relative to the cost of comparing X and Y directly.

6 Pairings

Formally, we define a pairing between two arbitrary sequences x and y as a sequence of

pairs (r0,s0), .. (rp,sp), where each ri is an index into x, and each si is an index into y.

If x and y are raw nucleotide sequences X and Y , each pair (ri,si) can be interpreted

as a hypothesis that the nucleotides X [ri] and Y [si] are homologous, that is, are replicas

of the same nucleotide of the hypothetical common ancestral sequence. If x and y are nu-

merically encoded, filtered, and down-sampled versions of X and Y , then each pair (ri,si)

can be interpreted as saying that the part of X summarized by datum x[ri] and the part of

Y summarized by datum y[si] probably contain a significant number of homologous letter

pairs.
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Each pair (ri,si) is called a rung of the pairing. The sum ri+si is the position of the rung,

and the difference si − ri is its offset.

Each pair of successive rungs (ri,si) and (ri+1,si+1) is said to be a step of the pairing.

Since we are not considering segment rearrangements, we require the pairing to be strictly

monotonic, meaning that it must satisfy ri < ri+1 and si < si+1 in every step. Note that the

pairing has p steps and p+ 1 rungs.

The pairing is said to span the substrings of x and y that starts with elements x[r0] and

y[s0] and end with elements x[rp] and y[sp], respectively.

6.1 Perfect and connected pairings

A perfect pairing is one where every step is normal, that is, ri+1 = ri +1 and si+1 = si +1.

A step that is not normal is a skipping step, that leaves a break (one or more unpaired

elements) in one or both of the two sequences, before the next matched pair of elements.

Such steps are meant to model evolutionary events where a small stretch of DNA was

inserted into one sequence or deleted from the other. (We do not attempt to distinguish

between these two possibilities.)

In this work we consider only pairings that are connected, namely where every step

(ri,si) → (ri+1,si+1) satisfies ri+1 = ri + 1 or si+1 = si + 1. In other words, at each step

the pairing may have a break on either sequence, but not on both at the same time. A step

that skips bases on both sequences would represent either a multi-base substitution (dele-

tion of a string of bases and insertion of an unrelated string) in one of the sequences, or

insertion of two unrelated strings on both sequences at about the same spot. Both events

are assumed to be too rare to consider in the initial search for homologous sub-strings.

The problem we are solving can be now restated as follows: given two biosequences

X and Y , respectively with m and n letters, find a connected strictly monotonic pairing

r,s between them, consisting mostly of normal steps, such that the corresponding sub-

sequences X ′,Y ′ (defined by X ′[i] = X [ri] and Y ′[i] = Y [si]) are sufficiently similar. In the

process of solving this problem for the original biosequences X and Y , we solve the same

problem at each scale k, for the filtered and downsampled sequences x(k) and y(k).

6.2 Likelihood of a DNA sequence pairing

Our algorithm implicitly requires the assignment of numerical quality scores to a given

candidate pairing r,s between two filtered and downsampled sequences x,y. In this evalu-

ation, we must consider the similarity of the paired datums x[ri] and y[si], and the number

of imperfections (skipping steps and unpaired bases) in the pairing itself. In this and the

following functions, we derive our scoring function based on the log likelihood criterion

which underlies the scoring functions for DNA alignment often used in computational bi-

ology.

Let’s consider first the evaluation of a pairing r,s, with p steps, between two unfiltered

DNA sequences X ,Y . Let PrH((X ,r)↔ (Y,s)) denote the likelihood that the substrings of X

and Y spanned by the pairing are homologous—that is, descend from a common ancestral

DNA sequence Z. We use the simplistic formula

PrH((X ,r)↔ (Y,s)) =

(

p

∏
i=0

PrP(X [ri]↔ Y [si])

)(

p

∏
i=1

PrI(ri − ri−1,si − si−1)

)

(7)
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Here, the nucleotide pairing factor PrP(X [ri] ↔ Y [si]), associated to each rung (ri,si) of

the pairing, can be interpreted as the probability that the same ancestral nucleotide Z[k]

yielded X [ri] in one sequence and Y [si] in the other, accounting for possible point mutations.

We assume that this factor depends only on the two nucleotides (and therefore could be

provided by a table with 4×4 entries). In particular, if we assume that any nucleotide may

mutate into any other with the same probability µ, then

PrP(X [ri],Y [si]) =

{

(1− µ)2 + 1
3
µ2 if X [ri] = Y [si], and

2µ(1−mu)+ 2
3
µ2 if X [ri] 6= Y [si].

(8)

For example, if µ= 0.1, then PrP(X [ri]↔Y [si]) is ≈ 0.8133 if the nucleotides are the same,

and ≈ 0.1867 if they are different.

The insertion/deletion factor PrI(ri−ri−1,si−si−1) in formula (7), associated with a step

(ri−1,si−1) → (ri,si), can be interpreted as the probability of the step advancing ri − ri−1

nucleotide positions in sequence X and si − si−1 nucleotides in sequence Y . Recall that we

are considering only connected pairings, so at least one of these differences is 1; so can

write the step-associated factor as PrI(λi) where λi = max{ri−ri−1 −1,si−si−1 −1} is the

length of the presumed insertion or deletion, i. e. the number of nucleotides that are skipped

and left unpaired in that step. We assume that PrI(λi) decreases exponentially when λi ≥ 1.

Namely,

PrI(λi) =

{

1−η if λi = 0 (the step is normal), and

ητλi−1 1−τ
1−τλmax

if 1 ≤ λi ≤ λmax.
(9)

where η if the probability of an insertion or deletion occurring at all after any nucleotide,

λmax is the maximum number of nucleotide insertions or deletions considered at one spot,

and τ is the probability factor for each additional unpaired nucleotide. For example, if η =

0.05, τ = 0.90, and λmax = 20, then PrI(1) = 0.95, PrI(2) ≈ 0.00578m PrI(3) ≈ 0.00520,

PrI(4)≈ 0.00468, . . . , PrI(20)≈ 0.00087.

6.3 Similarity score for paired DNA sequences

We now define the similarity of two unfiltered nucleotide sequences X and Y under the

pairing r,s as the negative of the logarithm of formula (7), namely

SH(X ,r,Y,s) =
p

∑
i=0

SP(X [ri],Y [si])+
p

∑
i=1

SI(λi) (10)

where

SP(X [ri],Y [si]) =

{

wE if X [ri] = Y [si], and

wD if X [ri] 6= Y [si]
(11)

with wE =− log((1− µ)2+ 1
3
µ2), wD =− log(µ(1−mu)+ 2

3
µ2); and

SI(λi) =

{

wN if λi = 0, and

wB+(λi− 1)wS if 1 ≤ λi ≤ λmax

(12)
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with wN =− log(1−η), wB =−log(η(1− τ)/(1− τλmax)), and wS =−log(τ).

Formula (10) can be written also as

SH(X ,r,Y,s) =wEnE(X ,r,Y,s)+wDnD(X ,r,Y,s)+wNnN(r,s)+wBnB(r,s)+wSnS(r,s) (13)

where wE, wD, wN, wB, and wS are the real coefficients defined above, and

• nE(X ,r,Y,s) is the number of equal nucleotides paired by r,s, that is, ∑
p
i=0(X [ri] =

Y [si]);

• nD(X ,r,Y,s) is the number of unequal paired nucleotides, that is, that is, ∑
p
i=0(X [ri] 6=

Y [si]);

• nN(r,s) is the number of normal steps of the pairing, namely ∑
p
i=1((ri − ri−1 = 1)∧

(si − si−1 = 1));

• nB(r,s) is the number of breaks (skipping steps), namely ∑
p
i=1((ri − ri−1 > 1)∨ (si −

si−1 > 1));

• nS(r,s) is the total number of nucleotides that were left unpaired in both sequences,

namely ∑
p
i=1((ri − ri−1 − 1)+ (si− si−1 − 1));

Note that nD(X ,r,Y,s) = p− nE(X ,r,Y,s), and nN(r,s) = p− 1− nB(r,s).

Since the logarithm is a monotone function, the similarity SH(X ,r,Y,s) defined by for-

mula (13) is minimum when the likelihood of the pairing defined by formula (7) is maxi-

mum.

6.4 Optimum pairings for DNA sequences

It is well-known that the optimum (maximum-score) pairing between two DNA sequnces

X ,Y , with any additive local scoring criterion, can be found with the dynamic programming

algorithm [1].

However, if the coefficients of the scoring formulas (11)– (6.5) and (13) (wE, wD, wB, wS,

and wN) are defined as in section 6.2, they will be all positive. Then the maximum-score

pairing between two sequences x,y, respectively with m and n datums, will then always

have maximal length: that is, r0 = 0 or s0 = 0, and rp = m − 1 or sp = n− 1. That is

because the score increases even when one extends the pairing with a rung between two

dissimilar elements, or a skipping step.

We avoid this inconvenient behavior by the standard trick of subtracting from the score

a bias term proportional to the total number λ = (rp − r0 + 1)+ (sp − s0 + 1) of datums

spanned by the pairing on both sequences. We also subtract a constant bias wC, to ensure

that a pairing will not have a positive score unless it has a certain minimum span λ.

Since nE+nD is the number of rungs p, it can be seen that λ= 2(nE+nD)+nS. Therefore,

the effect we seek can be implemented by formulas (11)– (6.5) and (13), after subtracting

suitable bias from the coefficients wE, wD, and wS, and subtracting the constant bias term

wC.

The coefficient wD and wS must be negative, but wE positive; so that the total score de-

creases when the pairing is extended with a discrepant rung or a skipping step, but increases

when it is extended with a normal step and a rung between equal nucleotides.

The coefficient wB should be negative too in order to penalize breaks in the sequences.

The coefficient wB should be larger than wD in absolute value, reflecting the assumption

that insertions and deletions are less common than single-nucleotide replacements. On the

other hand, wS should be much smaller than wD in absolute value, reflecting the assumption

that the probability of insertions/deletions varies little with their length.
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With the proper coefficient values, the score for the optimum pairing between homolo-

gous sequences should be positive and should increase as their total length increases; while

even the best pairing between unrelated sequences should be negative. Good values for the

weights can be determined iteratively by computing the optimum pairing for homologous

and non-homologous sequences, and adjusting the weights to as to get the best separation

between the two classes.

6.5 Similarity score for paired datum sequences

let x and y be filtered sequences of numeric datums. A pairing r,s between them represents

an approximate coarse-scale pairing between the underlying DNA strings X and Y . Namely,

suppose that successive datums in x (or y) correspond to places in X (or in Y ) that are δ

nucleotides apart. A rung (ri,si) of the pairing can be interpreted as the tentative hypothesis

that the segment of X summarized by datum x[ri] and the segment of Y summarized by y[si]

homologous, apart from a relative displacement of about ±δ/2.

The likelihood of that hypothesis can be roughly estimated from the datums x[ri] and

y[si], because they describe the local density of each nucleotide, at certain places in each

sequence. Although similar nucleotide densities do not imply homology, dissimilar densi-

ties make homology less likely.

Specifically, suppose that the datum d is an element x[i] of a sequence x that was obtained

by encoding, filtering, and downsampling a DNA sequence X . Let X [k] be an element in

string X at the center of the window that is summarized by datum x[i]. Let U be any of the

four nucleotides A,T,C,G, and let u = (u0,u1,u2) be its numeric code per table (1). We can

estimate the probability that X [k] is U by the formula

Pr(X [k] =U |d) =
1+ d0u0 + d1u1 + d2u2

4
(14)

In particular, if d is one of the corners of the tetrahedron, formula (14) is categorical

on the corresponding nucleotide. E. g., if d = (+1,+1,−1), then Pr(X [k] = A|d) = 1 and

Pr(X [k] = T|d) = Pr(X [k] = C|d) = Pr(X [k] = G|d) = 0. Moreover, if d is (+1,0,0), at the

midpoint of the edge between the A and T corners, then Pr(X [k] = A|d) = Pr(X [k] = T|d) =

1/2 and Pr(X [k] = C|d) = Pr(X [k] = G|d) = 0. If d is at the center of a face, e. g. d =

(+1/3,+1/3,+1/3), the the three corner nucleotides get probability 1/3, and the fourth

one gets probability zero. Finally, if d is the center (0,0,0) of the tetrahedron, formula (14)

assigns the same probability 1/4 to each nucleotide.

From that, we can estimate the probability that the two original nucleotides are the same,

that is

Pr(X [k] = Y [l]|d,e) = ∑
U∈B

Pr(X [k] =U |d)Pr(Y [l] =U |e) (15)

Using formula (14), formula (15) evaluates to

Pr(X [k] = Y [l]|d,e) =
1+ d0e0 + d1e1 + d2e2

4
=

1+ d · e

4
(16)

Note that the maximum value of d ·e is +3, which occurs (only) when d and e are the same

corner; in that case (only), formula (16) gives Pr(X [k] =Y [l]|d,e) = 1. The minimum value
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of the dot product d ·e for d,e in the tetrahedron T
3 is −1, which occurs when d is a corner

and e is anywhere on the opposite face, or when d lies on some edge and e lies anywhere

on the opposite edge. In that case (only), formula (16) gives Pr(X [k] = Y [l]|d,e) = 0.

For any other combination of d and e, formula (16) gives a probability Pr(X [k] =

Y [l]|d,e) strictly between 0 and 1. In particular, if both samples are at the center of T 3

— that is, d = e = (0,0,0) — then Pr(X [k] = Y [l]|d,e) = 1/4; as one woudl expect if the

nucleotides X [k] and Y [l] were randomly and independently drawn with equal probabilities.

We now can generalize the scoring function SH of formula (10) to pairings between

datum sequences instead of DNA sequences. For that purpose, we use the same scoring

formulas (10) and (13), namely

SH(x,r,y,s) =
p

∑
i=0

SP(x[ri],y[si])+
p

∑
i=1

SI(λi) (17)

The insertion/deletion term SI, that depends only on the pairing, is the same as before, given

by formula . The pairing score term SP, on the other hand, must be generalized for datum

triplets with fractional samples, rather than nucleotides. We define SP(d,e) as the expected

value of SP(X [k],Y [l]) as defined by formula (11), namely

SP(d,e) = wE Pr(X [k] =Y [l]|d,e)+wD (1−Pr(X [k] = Y [l]|d,e)) = wE

1+ d · e

4
+wD

3− d · e

4
(18)

Then formula (13) also holds, except that nE and nD must be replaced by

nE(X ,r,Y,s) =
p

∑
i=0

Pr(X [k] = Y [l]|x[ri],y[si]) (19)

nD(X ,r,Y,s) =
p

∑
i=0

(1−Pr(X [k] 6= Y [l]|x[ri],y[si])) (20)

with Pr(X [k] = Y [l]|x[ri],y[si]) given by formula (16).

With proper coefficients, the score SH(x,r,y,s) easily differentiates correct pairings of

homologous sequences from pairings between non-homologous sequences, provided the

pairing is long enough. See figure 7.

The values of the coefficients (wE,wD,wN,wB,wS,wC) must be different for each scale.

Note that as the filtering level increases the sample values are averages taken over increas-

ingly wider intervals. Moreover, at scale k any break that skips less than 2k samples on each

sequence will disappear.

7 Multi-scale matching of DNA sequences

We now describe briefly the use of multi-scale analyisis to efficiently identify homologous

sub-sequences in to DNA or RNA sequences X and Y . The method is similar to the multi-

scale algorithm that we developed some time ago to efficiently find matching segments on

the outlines of pottery fragments [10, 11]. For lack of space, the details will have to be

described in a separate paper.

The dynamic programming (DP) agorithm [1] can be used to find the optimum pairing

(r,s) of two filtered and downsampled datum sequences x and y derived from X and Y . That
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pairing can be mapped into a pairing (r′,s′) between the original strings, which can be used

as a rough guess for computing the optimum pairing between them, with substantial savings

of processing time.

Specifically, recall that the original DP algorithm builds a matrix M with one element

M[i, j] for each index i of X and each index j of Y . Its cost is proportional to nmλmax,

where n and m are the lengths of the two original strings, with m ≤ n, and λmax is the

maximum length of an insertion to be considered. We instead use a modification of the

DP algorithm that computes only a relatively small subset of the elements of the matrix

M. These elements comprise a narrow strip that surrounds the elements M[r′k,s
′
k] that are

specified by the rungs of the pairing (r′,s′). The cost of this pairing refinement algorithm

is only nλ2
max, or λmax/m times the cost of the full DP algorithm.

This technique can be applied at each level of a multi-scale hierarchy of filtered and

down-sampled signals, from coarsest to finest. That is, we run the full DP algorithm at

some sufficiently coarse scale k, where the original sequences have been downsampled

with step δ∗(k), and the maximum insertion length has been divided by that factor too. The

DP processing cost will then be reduced by a factor 1/(δ∗(k))3, relative to what it would

cost if applied to the original sequences. Then we map the optimum pairing found to the

next finer scale k−1, and we refine it, as described above, to obtain an optimum pairing at

that scale. This process is then repeated to scales k−2, k−3, . . . , until we get a pairing for

the level 0 (original) sequences.

As the sequences get filtered and downsampled at increasing scales, the mutations and in-

sertions get averaged with the adjacent samples. Therefore, the similarity score for filtered

versions x(k) and y(k) of two homologous DNA sequences may be relatively low, even un-

der the optimum pairing; possibly lower than the score for two totally unrelated sequences.

Therefore, it is usually necessary to keep multiple candidate pairings at each level, rather

than just the onle with maximum score. When going from level k to level k − 1, the al-

gorithm maps and refines each candidate, then discards the half of the set with the lowest

scores. As discussed in the pottery fragments paper [10], even with multiple candidates the

processing time is still much less than that of the original DP algorithm applied at scale 0

directly.

8 Conclusions

We described formulas for comparing nucleotide sequences that have been numerically en-

coded, filtered, and sub-sampled. Tests indicate that the formulas can discriminate between

homologous and non-homologous (random) pairs of sequences, and that the discrimination

increases with the length of the sequences. These formulas can be used with the standard

dynamic programming algorithm to find approximate optimal pairings between two pre-

sumed homologous sequences, at a fraction of the cost of running the algorithm on the

original sequences.
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Figure 1: The tetrahedron T
3 whose corners encode the letters of the DNA alphabet B .
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Figure 2: Three-dimensional plot of a DNA segment from a Drosophila sp. genome, orig-

inally with 250 nucleotides, filtered by the w(1) filter of table 1, with no down-sampling,

and then with the w(2) filter, down-sampled with step δ(2) = 2. The beads along the curve

are the actual datums; the connecting lines were reconstructed by cubic interpolation. The

entire curve was magnified by the scale factor s = 1.440 relative to the origin (the center of

the tetrahedron) for clarity.
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Figure 3: Power spectra of the filtering kernels w(k) of table 1, for the initial step k = 1 (top)

and subsequent steps k ≥ 2 (bottom).
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Figure 4: Idealized power spectrum of an unfiltered periodic random binary signal with a

256-sample period (top) and its spectra after 1, 2, and 3 filtering steps. The vertical line

shows the maximum frequency that is preserved without aliasing by the combined down-

samplings from level 0 to the indicated level.
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Figure 5: Multi-scale versions of a DNA sequence with 250 nucleotides, encoded as corners

of T3, filtered and down-sampled as described in section 4.2 and 4.4. The three channels

are plotted in red, green, and blue, respectively
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Figure 6: Three-dimensional plots of a DNA segment from a Drosophila sp. genome, origi-

nally with 500 nucleotides, filtered and down-sampled at various scales by the filter kernels

of table 1. Each curve was magnified by the indicated scale factor s, for clarity.
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Figure 7: Similarity scores of increasingly longer segments of pairings between 15 pairs of

homologous DNA sequences (blue) and 15 pairs of non-homologous sequences (red), as a

function of length, at six scales of filtering (0–5). Each line corresponds to one pairing in

the input data. Each point along the line corresponds to a centered segment of that pairing,

with specified span shown on the horizontal axis. The original homologous sequences are

fragments of the DNA of two Drosophila species, with at least 2048 bases and 85% or

more equal nucleotides under the optimum pairing, identified and paired with the LastZ

tool [12]. The non-homologous pairs are obtained by pairing those same DNA sequences

at random.
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Tables

Table 1: Elements of the filtering kernels used in the example. The last line V (k) is the

variance of the kernel w(k), viewed as a probability distribution on the indices with mean 0.

k = 1 k ≥ 2

L(k) 6 10

D(k) 35440 61364

W (k)[0] 9992 9992

W (k)[±1] 7786 9193

W (k)[±2] 3680 7161

W (k)[±3] 1055 4722

W (k)[±4] 183 2636

W (k)[±5] 19 1245

W (k)[±6] 1 498

W (k)[±7] 169

W (k)[±8] 48

W (k)[±9] 12

W (k)[±10] 2

V (k) 2.00 6.00


