
INSTITUTE OF COMPUTING - UNICAMP
Graduate Program

MO417A Design and Analysis of Algorithms

2015 - Semester 1 - Jorge Stolfi

Midterm exam 2 - 2015-05-27

Name

RA Number Signature

Item TOT

Points

You must do the exam by yourself, without any help.
You may not consult notes, books, tables, etc..
Computers and calculators may not be used during the exam.
Turn off and put away cellphones, music players, etc..
Do not separate the sheets of this exam booklet.
You cannot use any scratch paper besides this booklet.
Only answers in the marked-off spaces will be considered.
Purely numerical calculations need not be carried out.
Write your name legibly, and sign with a pen (not pencil or marker).
Once the exam booklet has been distributed:
* if you leave the room, you will not be allowed to return.
* after someone leaves the room, no one else will be admitted.



1. If z = (z0, .. zn−1) is a list of n complex numbers, the Fourier transform of z is another
list Z = (Z0, Z1, .. Zn) of n complex numbers, where

Zk =
1
√
n

n−1∑

i=0

zi ω
ik (1)

where ω is the primitive nth root of unity, the complex number cos(2π/n)+i sin(2π/n).
Note that ωn = 1, and therefore ωk = ωk mod n for any integer k.

The Fourier transform has many extremely useful properties, but they do not matter
for this equation. What matters is that computing the Fourier transform by formula (1)
would require n2 complex number multiplications and almost as many complex number
additions. The following algorithm, known as fast Fourier transform (FFT), is much
more efficient, in theory and practice. It requires n to be a power of 2, n = 2r.

Algorithm FFT(n, z, ω) returns Z
if n = 1 then return z; endif
// Split even and odd:
h← n/2
for i from 0 to h− 1 do

z′
i
← z2i;

z′′
i
← z2i+1;

endfor;
// Recurse fro each subsequence:
Z ′ ← FFT(h, z′, ω2)
Z ′′ ← FFT(h, z′′, ω2)
// Combine th transforms:
σ ← 1
for k from 0 to h− 1 do

[g] Z ′′

k
← σZ ′′

k
;

Zk ← Z ′

k
+ Z ′′

k
;

Zk+h ← Z ′

k
− Z ′′

k
;

σ ← σω;
endfor;
return Z;

Note that, the algorithm executes 2 complex multiplications and 2 complex additions
for each execution of the statement labeled g. (We can ignore the computation of ω2 in
the arguments to the recursive call, since it can be taken from a precomputed table.).
Assuming that n is a power of 2:

2



(a) Give recurrence formulas for the total number of multiplications µ(n) and the
total number of additions α(n) performed by FFT, including operations inside
the recursive calls.

(b) Find explicit (non-recursive) formulas for µ(n) and α(n).

3



2. The following recursive algorithm Permute(n, x, k, use) generates all permutations of
the elements of a list x = (x[0].. x[n − 1]) of n arbitrary elements, leaving the first k
elements fixed.

In particular, if k = 0 the procedure generates all permutations; if k = n, it generates
a single permutation, namely the given list x itself. For each generated permutation,
Permute calls the function use, provided by the calling program, with arguments (n, x).
The elements of x are rearranged while call is in progress, but, at the end, they will
be restored to their original order.

For example, if n = 5, x = (07, 97, 27, 35, 45), and k = 2, then Permute(n, x, k, use)
will call

use(5, (07, 97, 27, 35, 45))
use(5, (07, 97, 27, 45, 35))
use(5, (07, 97, 35, 27, 45))
use(5, (07, 97, 35, 45, 27))
use(5, (07, 97, 45, 35, 27))
use(5, (07, 97, 45, 27, 35))

and the list x will again contain (07, 97, 27, 35, 45).

Algorithm Permute(n, x, k, use)
if k = n

[u] use(n, x);
else

for i from k to n− 1 do
[f ] swap x[k]↔ x[i];

Permute(n, x, k + 1, use);
swap x[k]↔ x[i];

endfor;
endif;

4


