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1. For any positive integer k, let ϕk be the number of distinct divisors of k. So, for
example, k = 24 has 8 divisors (1, 2, 3, 4, 6, 8, 12, and 24), so ϕ24 = 8.

The following algorithm takes a positive integer n, and retuns the list ϕ = (ϕ1, ϕ2, . . . , ϕn)
of the first n values of that function. So, for example, given n = 10 the algorithm will
return ϕ = (1, 2, 2, 3, 2, 4, 2, 4, 3, 4). (The notation [v] before a statement means “v is
the number of times that this statement gets executed when the algorithm is executed
once”.)

Algorithm NDivs(n)
for k from 1 to n do

[f ] ϕk ← 1;
endfor;
d← 2;
while d2 ≤ n

[g] k ← d;
while k ≤ n do;

[h] ϕk ← ϕk + 1
k ← k + d;

endwhile;
d← d+ 1;

endwhile;
return ϕ;

(a) Determine formulas for the statement execution counts f = f(n), g = g(n),
h = h(n), as a function of n.
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(b) What is the asymptotic class (in the O/Ω/Θ notation) of h(n), as a function of n?
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2. Consider the algorithm below, that rearranges the elements of a list x = (x1, x2, . . . , xn)
in increasing order, assuming that each element xi is between 0 and m, inclusive:

Algorithm CtSort(n,m, x)
for k from 0 to m do

[f ] c[k]← 0;
endfor;
for i from 1 to n do

[g] k ← x[i];
c[k]← c[k] + 1;

endfor;
i← 1;
for k from 0 to m do

[r] t← 0;
while t < c[k] do

[s] x[i]← k;
i← i+ 1;
t← t+ 1;

endwhile;
endfor;

(a) Determine the maximum and minimum execution counts f = f(n,m), g =
g(n,m), r = r(n,m), s = s(n,m), as a function of n and m;
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(b) Would this algorithm be better than mergesort, if n = 1 000 000 and m = 1000?
And if n = 1000, m = 1 000 000? (Justify the answers)

(c) What is the asymptotic class of the running time of this algorithm, as a function
of n and m?
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3. Find upper and lower bounds for the following summations, using the integral method.
Recall that x − 1 < ⌊x⌋ ≤ x,

√
x = x1/2, and loga x = ln x/ ln a for any x and a such

that the formulas are defined. Recall also that
∫

ln xdx = x(ln x− 1).

(a) s(n) =
n

∑

k=m

(k − 2)(k + 2)

k

(b) s(n) =

n
∑

k=m

ln(k + 1)

(c) s(n) =
n

∑

k=m

⌊

i2/π
⌋
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4. Consider the infinite sequences x0, x1, . . . , xn, . . . that satisfy the homogeneous linear
recurrence

xn = −xn−1 + 6xn−2 (1)

(a) Write the characteristic polynomial of this recurrence.

(c) Determine the roots ri of the polynomial.

(d) Determine a general non-recursive formula for the term xn of any sequence that
satisfies that recurrence.

(d) Determine a non-recursive formula for xn, for the specific sequence such that
x0 = 1 and x1 = 2.
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(e) What is the asymptotic class for xn, for that specific sequence?
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