
INSTITUTE OF COMPUTING - UNICAMP
Graduate Program

MO417A Design and Analysis of Algorithms

2015 - Semester 1 - Jorge Stolfi

Problem Set 03 - 2015-05-12

Nome RA

Item TOT

Nota

1. The following algorithm returns the list y of the m smallest elements in a list x =
(x[0], x[1], . . . , x[n − 1]) of n numbers (or all those numbers, if m ≥ n), in increasing
order. It also returns the number t of such elements (which is the smallest of m and
n).

Algorithm Smallest : given (n, x, m) returns (t, y)
t← 0;
for i from 1 to n− 1 do

if t < m or (t = m and x[i] < y[t− 1]) then
// Find the right place y[j] for x[i]:
j ← t;
while j > 0 and y[j − 1] > x[i] do;

if j < m then
[g] y[j]← y[j − 1];

endif;
j ← j − 1;

endwhile;
y[j]← x[i];
if t < m then t← t + 1; endif;

endif;
endfor;
return (t, y);

(a) Describe the “best-case” and “worst-case” input list x, for general n and m, in the
sense that they yield the minimum and maximum values for the count g(n, x, m).

(b) Give upper and lower bounds for the count g(n, x, n) in the general case, as a
function of n and m only.

(c) What is the asymptotic class (in the O/Ω/Θ notation) of g(n, x, m), as a function
of n and m only?

2. The following is Strassen’s matrix multiplication algorithm, that computes the product
C of two square matrices A and B, with N = 2k rows and columns. The matrix
elements are denoted by A[i, j] with i and j in {0.. N − 1}.

Algorithm StrassenMM : given (N, A, B) returns C
if N = 1 then

C[0, 0]← A[0, 0] B[0, 0]
else

split A into 4 matrices A00, A01, A10, A11 with N/2 rows and columns;
split B into 4 matrices B00, B01, B10, B11, likewise;
M1 ← StrassenMM(N/2, A00 + A11, B00 + B11);
M2 ← StrassenMM(N/2, A10 + A11, B00);
M3 ← StrassenMM(N/2, A00, B01 − B11);
M4 ← StrassenMM(N/2, A11, B10 − B00);
M5 ← StrassenMM(N/2, A00 + A01, B11);
M6 ← StrassenMM(N/2, A10 −A00, B00 + B01);
M7 ← StrassenMM(N/2, A01 −A11, B10 + B11);
C00 ← M1 + M4 −M5 + M7;
C01 ← M3 + M5;
C10 ← M2 + M4;
C11 ← M1 −M2 + M3 + M6;

join C00, C01, C10, C11 into a single matrix with N rows and columns;
endif;
return C;

(a) Count the total number α(N) of additions or subtractions of matrix elements
executed by one call of StrassenMM(N, A, B), ignoring the recursive calls (but
considering the computation of the arguments passed to the recursive calls). For
example, to compute the arguments A00 + A11 and B00 + B11 of the call that
computes M1, the procedure must do 2(N/2)2 = N2/2 element additions, when
N > 0. Note that the number µ(N) of multiplication of matrix elements, again
ignoring the recursive calls, is 1 if N = 1, and 0 if N > 0.

(b) Let α∗(N) be the total number of element additions or subtractions executed
by one call of StrassenMM(N, A, B), including the additions executed inside the
recursive calls. Write a recursive formula for α∗(N).

(c) Similarly, let µ∗(N) be the total number of element multiplications executed by
one call of StrassenMM(N, A, B), including the multiplications executed inside
the recursive calls. Write a recursive formula for µ∗(N).

(d) Find non-recursive formulas for α∗(N) and µ∗(N). (Hint: define α̂(k) = α∗(2k),
and similarly for µ∗.)

(c) What is the asymptotic class (in the O/Ω/Θ notation) of α∗(N) and µ∗(N), as a
function of N?

2

3. Consider a heap structure of n numbers, stored in a list x = (x[0], x[1], . . . , x[n− 1]),
where x[i] ≤ x[2i+1] and x[i] ≤ x[2i+2], for any index i such that the elements exist.
Write the procedures described below, that modify the heap preserving the above
invariant. For each procedure, give the maximum number of comparisons performed
by the procedure, as a function of n only.

(a) HAdd that adds one new value v to the heap, incrementing n. (Assume that there
is space in the list x for one more element.)

(b) HDelete that, given an index k in {0.. n− 1}, deletes element x[k] from the heap,
decrementing n.

(c) HModify that, given an index k in {0.. n− 1}, and a new value u, replaces element
x[k] by u, without changing n. (Try to find a method that is more efficient than
n← HDelete(n, x, k) and n← HAdd(n, v, v).)

(d) HRank that, given an index k in {0.. n− 1}, counts how many elements x[j] are
strictly less than x[k]

4. Consider a ternary heap structure with n numbers x = (x[0], x[1], . . . , x[n− 1]), where
x[i] ≤ x[3i + 1], x[i] ≤ x[3i + 2], and x[i] ≤ x[3i + 3], for any index i such that the
elements exist. Show how to modify the HeapSort algorithm and its associated routines
to use a ternary heap instead of a binary one. Which version would be faster for (say)
a few thousand input numbers?

5. Consider the QuickSort algorithm with the following modification M3Split to the Split

procedure: instead of picking one element of the array to be the separating value v,
M3Split takes three elements x[r], x[s], and x[t] (say, x[0], x[n− 1], and x[⌊n/2⌋]), and
lets v be their median. (I. e., it finds the maximum and minimum of the three, and
lets v be the one that is left out.)

It can be shown that, if all the input elements are distinct and all input orderings
are equally likely, the probablity that v will end up at some index m is Pr(m) =
m(n−1−m)/An where An = n(n2−3n+2)/6. (Note that this function is a quadratic
function of m that is zero when m = 0 or m = n−1, and is maximum when m = ⌊n/2⌋.)

Modify the analysis of expected number of element comparisons t∗(n) performed by
the average-case of the Quicksort algorithm, assuming this change to the Split rou-
tine. Compare it with the same number t(n) of the original algorithm. Note that
the expected number of comparisons in the recursive calls (not counting the com-
parison inside M3Split) will be

∑
n−2

m=1
Pr(m)(t∗(m − 1) + t∗(n − 1 − m)) instead of

(1/n)
∑

n−1

m=0
(t(m − 1) + t(n − 1−m)). You may assume that t∗(n) ≤ c∗n log n, while

t(n) ≤ cn log n, for some constants c∗ and c and for sufficiently large n.

3

