# INSTITUTE OF COMPUTING - UNICAMP 

Graduate Program
MO417A Design and Analysis of Algorithms
2015 - Semester 1 - Jorge Stolfi
Problem Set 02-2015-04-05

| Nome |  |  |  |  |  |  |  |  |  |  | RA |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Item |  |  |  |  |  |  |  |  |  |  |  |  | TOT |
| Nota |  |  |  |  |  |  |  |  |  |  |  |  |  |

1. The two algorithms below solve the same problem: given an integer $n \geq 0$ and the letters $x=(x[0], x[1], . . x[n-1]$ ) of some word (uppercase only, 'A' to ' Z ', without accent marks), returns a letter that occurs twice in the word; or ' $*$ ' if all the letters are distinct.
For example, if $x=\left({ }^{\prime} B^{\prime},{ }^{\prime} A^{\prime},{ }^{\prime} N^{\prime},{ }^{\prime} A^{\prime},{ }^{\prime} N^{\prime},{ }^{‘} A^{\prime}\right)$, they return ' $A^{\prime}$; if $x=\left({ }^{\prime} G^{\prime},{ }^{\prime} A^{\prime},{ }^{\prime} R^{\prime}\right.$, ' $L^{\prime}$, ' $I^{\prime}$, ' $C^{\prime}$ ), they return ' $*$ '. (As before, the notation $[v]$ before a statement means " $v$ is the number of times that this statement gets executed when the algorithm is executed once".)
```
    Algorithm \(A(n, x)\)
    for \(i\) from 1 to \(n-1\) do
        for \(j\) from 0 to \(i-1\) do;
\(\begin{array}{ll}{[f]} & \text { if } x[j]=x[i]\end{array} \quad[f]\)
                return \(x[i]\);
            endif;
        endfor;
    endfor;
    return '*';
Algorithm \(B(n, x)\)
for \(i\) from 0 to \(n-2\) do
for \(j\) from \(i+1\) to \(n-1\) do;
if \(x[j]=x[i]\)
return \(x[i] ;\)
endif;
endfor;
endfor;
return ' \(*\) ';
    return '*';
```

For each algorithm:
(a) Find a "best-case" input word $x$ with $n=100$ letters, that minimizes the count $f$. What is the value of $f$ for that word?
(b) Find a "worst-case" input word $x$ with $n=100$ letters, that maximizes the count $f$. What is $f$ for that word?
(c) Give upper and lower bounds for the count $f(n, x)$ in the general case, as a function of $n$ only.
(d) What is the asymptotic class (in the $O / \Omega / \Theta$ notation) of $f(n, x)$, as a function of $n$ only?
2. Consider the algorithm below, that finds the maximum and minimum of a list of $n$ numbers at the same time:

```
    Algorithm \(\operatorname{MinMax}(n, x)\)
    \(i \leftarrow 0 ;\)
    while \(i<n\) do
[f] if \(i+1<n\)
        if \(x[i]<x[i+1]\)
            \(a \leftarrow x[i] ; b \leftarrow x[i+1] ;\)
            else
            \(a \leftarrow x[i+1] ; b \leftarrow x[i] ;\)
            endif;
        else
            \(a \leftarrow x[i] ; b \leftarrow x[i]\)
        endif;
        if \(i=0\) or \(a<x \min\)
            \(x \min \leftarrow a ;\)
        endif;
        if \(i=0\) or \(b>x \max\)
            \(x \max \leftarrow b ;\)
        endif;
        \(i \leftarrow i+2 ; \quad / / \Leftarrow\) note \(\quad\).
    endwhile;
    return \(x \min , x \max\);
```

Assuming that $n$ is even (to simplify the analysis), determine the following quantities as a function of $n$ :
(a) the number of times $f$ that the main loop is executed.
(b) The total number $h$ of comparisons between elements of the list, namely " $x[i]<$ $x[j] ", " a<x \min "$, and " $b>x \max "$.
(c) An upper (worst case) bound for $g_{0}$ and $g_{1}$, the number of times that $x m i n$ and xmax are updated, respectively.
(d) A lower (best-case) bound for $g_{0}$ and $g_{1}$.
(e) The expected values of $g_{0}$ and $g_{1}$, assuming that the elements of $x$ are all distinct and all possible orders are equally likely.
3. Find upper and lower bounds for the following summations, using the integral method. Recall that $x-1<\lfloor x\rfloor \leq x, \sqrt{x}=x^{1 / 2}$, and $\log _{a} x=\ln x / \ln a$ for any $x$ and $a$ such that the formulas are defined. Recall also that $\int \ln x d x=x(\ln x-1)$.
(a) $s(n)=\sum_{i=1} n \sqrt{i+2}$
(b) $s(n)=\sum_{i=1 n} \log _{2} i$
(c) $s(n)=\sum_{i=1 n}\left\lfloor n^{2} / i^{2}\right\rfloor$
4. The factorial function is defined as $f(n)=n!=\prod_{i=1}^{n} i=1 \times 2 \times 3 \times \cdots \times n$.
(a) Write a summation formula for the natural logarithm of the factorial, $g(n)=$ $\ln f(n)$.
(b) Find upper and lower bounds for $g(n)$, using the integral method.
(c) From those bounds, get upper and lower bounds for the factorial $f(n)$.
(d) Based on these bounds, what is the asymptotic class of $f(n)$ ?
5. Consider the function $f$, from the natural numbers $\mathbb{N}$ to $\mathbb{N}$, defined recursively by

$$
f(n)= \begin{cases}0 & \text { if } n=0  \tag{1}\\ (n \bmod 10)+f(\lfloor n / 10\rfloor) & \text { if } n>0\end{cases}
$$

(a) What is $f(235)$ ?
(b) Determine the maximum and minimum values of $f(n)$, for any number $n$ with $k$ decimal digits as a function of $k$ alone.
(c) What is the asymptotic class of $f(n)$ as a function of $k$ ? And as a function of $n$ ?
6. Consider the function $g$, from the natural numbers $\mathbb{N}$ to the integers $\mathbb{Z}$, defined recursively by the homogeneous linear recurrence

$$
g(n)= \begin{cases}5 & \text { if } n=0  \tag{2}\\ 0 & \text { if } n=1 \\ g(n-1)+6 g(n-2) & \text { if } n \geq 2\end{cases}
$$

(a) Tabulate the value of $g(n)$ for a few values of $n$.
(b) Write the characteristic polynomial of the recurrence.
(c) Dtermine the roots $r_{i}$ of the polynomial.
(d) Dtermine the explicit formula for $g(n)$.
(d) What is the asymptotic class of $g$ as a function of $n$ ?
7. The following recursive algorithm $\operatorname{Permute}(n, x, k, u s e)$ generates all permutations of the elements of a list $x=(x[0] . . x[n-1])$ of $n$ arbitrary elements, leaving the first $k$ elements fixed.

In particular, if $k=0$ the procedure generates all permutations; if $k=n$, it generates a single permutation, namely the given list $x$ itself. For each generated permutation, Permute calls the function use, provided by the calling program, with arguments $(n, x)$. The elements of $x$ are rearranged while call is in progress, but, at the end, they will be restored to their original order.
For example, if $n=5, x=(07,97,27,35,45)$, and $k=2$, then $\operatorname{Permute}(n, x, k$, use) will call

$$
\begin{aligned}
& \text { use }(5,(07,97,27,35,45)) \\
& \text { use }(5,(07,97,27,45,35)) \\
& \text { use }(5,(07,97,35,27,45)) \\
& \text { use(5, (07, 97, 35, 45, 27)) } \\
& \text { use(5, (07, 97, 45, 35, 27)) } \\
& \text { use(5, (07, 97, 45, 27, 35)) }
\end{aligned}
$$

and the list $x$ will again contain $(07,97,27,35,45)$.

```
    Algorithm Permute(n, x,k,use)
    if }k=
[u] use(n,x);
    else
        for }i\mathrm{ from }k\mathrm{ to }n-1\mathrm{ do
[f] swap x[k]\leftrightarrowx[i];
                Permute(n, x,k+1,use);
                swap }x[k]\leftrightarrowx[i]
            endfor;
    endif;
```

(a) Assuming that the algorithm is correct, determine the number $u$ of times the procedure use is called (including inside the recursive calls) when Permute is called with generic $n$ and $k$.
(b) Write a recursive formula for $f(n, k)$, the total number of times that two elements are swapped (including inside the recursive calls) when Permute is called with generic $n$ and $k$.
(c) Find a non-recursive formula for $f(n, k)$. The formula should depend only on the difference $m=n-k$, not on $n$ an $k$ explicitly.
(d) Prove that the formula satisfies the recursive definition, by induction on $m$.
8. The algorithm Scramble below rearranges a list $x=(x[0], . . x[n-1])$ of $n$ elements according to a permutation $p$. The permutation is a list $(p[0], . . p[n])$ of $n$ integer indices, all distinct, all between 0 and $n-1$. The effect of the algorithm is to put in $x[i]$ the value of $x[p[i]]$, for all $i$ in $0 . . n-1$.
For example, if we have $x=(05,15,25,35,45,55,65)$ and $p=(3,4,6,1,0,5,2)$ on input, then we will have $x=(35,45,65,15,05,55,25)$ at the end. (Note that the "obvious" algorithm "for $i$ in $0 . . n-1$ do $x[i] \leftarrow x[p[i]]$ " would not work; try it.)

$$
\begin{aligned}
& \text { Algorithm } \operatorname{Scramble}(n, x, p) \\
& \text { for } i \text { in } 0 . . n-1 \text { do } \\
& \text { if } p[i] \geq 0 \\
& \quad / / \text { Start of a new cycle: } \\
& t \leftarrow x[i] ; j \leftarrow i \text {; } \\
& \text { while } p[j] \neq i ; \\
& k \leftarrow p[j] ; \\
& x[j] \leftarrow x[k] ; \\
& p[j] \leftarrow p[j]-n ; / / \text { Makes } p[j] \text { negative. } \\
& j \leftarrow k ; \\
& \text { endwhile; } \\
& x[j] \leftarrow t ; p[j] \leftarrow p[j]-n ; \\
& \text { endif; } \\
& \text { endfor; } \\
& \text { // Restore the permutation } p: \\
& \text { for } i \text { in } 0 . . n-1 \text { do } \\
& p[i] \leftarrow p[i]+n ; \\
& \text { endfor; }
\end{aligned}
$$

Determine the number of times $f$ that the inner loop is executed, as a function of $n$. Hint: simulate the example above to understand how the algorithm works. What is the asymptotic class of $f$ as a function of $n$ ?

