MC909 - Computação Gráfica

© Jorge Stolfi

Primeiro Semestre de 1995

Notas de Aula – Fascículo 3 Transformações Geométricas no Plano

3.1 Transformações projetivas

Dentre todas as funções que levam pontos de \mathbb{T}^2 para pontos de \mathbb{T}^2 , existe uma classe importante, as transformações projetivas, ou projetividades, que se caracterizam por preservar as relações de colinearidade: isto é, se três pontos estão alinhados, suas imagens também o são, e vice-versa.

O conceito de projetividade engloba muitas transformações geométricas importantes, como as translações, rotações, e mudanças de escala, que estudaremos a seguir.

3.1.1 Caracterização algébrica

Pode-se provar que toda projetividade de \mathbb{T}^2 corresponde a uma transformação linear inversível das coordenadas homogêneas. Isto é, para toda projetividade F existe uma matriz real

$$\mathsf{F} = \left[\begin{array}{ccc} f_{ww} & f_{wx} & f_{wy} \\ f_{xw} & f_{xx} & f_{xy} \\ f_{yw} & f_{yx} & f_{yy} \end{array} \right]$$

com dimensão 3×3 e determinante não nulo, tal que

$$F([w, x, y]) = [w, x, y] \mathsf{F}$$

$$= \begin{bmatrix} w f_{ww} + x f_{xw} + y f_{yw} \\ w f_{wx} + x f_{xx} + y f_{yx} \\ w f_{wy} + x f_{xy} + y f_{yy} \end{bmatrix}$$
(3.1)

Note que, para fins desta fórmula, a tripla [w, x, y] deve ser vista como um vetor linha, isto é, uma matriz 1×3 .

A recíproca também é verdadeira: toda matriz 3×3 F, com determinante não nulo, define pela fórmula (3.1) uma projetividade de \mathbb{T}^2 . Este fato é fácil de provar, usando a definição de colinearidade (equação (2.8)), e o fato que o determinante de um produto de matrizes é o produto dos seus determinantes. Veja o exercício 3.1.

Ex. 3.1: Seja F uma matriz 3×3 . Prove que a função F de \mathbb{T}^2 para \mathbb{T}^2 definida pela fórmula (3.1) satisfaz

$$\Delta(F(p_0), F(p_1), F(p_2)) = \Delta(p_0, p_1, p_2) \cdot \operatorname{sgn} |\mathsf{F}|$$

O exercício 3.1 revela que as transformações projetivas se dividem em duas classes, as *positivas* e as *negativas*, conforme o sinal do determinante de sua matriz; sendo que uma projetividade positiva preserva as orientações de todos os triângulos, enquanto que uma projetividade negativa as inverte.

Note que, se aplicarmos a fórmula (3.1) a duas triplas homogêneas equivalentes, obteremos dois resultados equivalentes.

Note também que, se multiplicarmos todos os elementos da matriz F por um mesmo número $\alpha \neq 0$, a transformação projetiva F definida pela mesma não se altera. Portanto, duas matrizes F' e F'' determinam a mesma transformação se e somente se $F' = \alpha F''$ para algum $\alpha \neq 0$.

Ex. 3.2: Mostre que a função $F(p) = \neg p$, que leva cada ponto para seu antípoda, é uma projetividade negativa de \mathbb{T}^2 .

Ex. 3.3: Se F é uma projetividade, qual é a relação entre F(p) e $F(\neg p)$? Justifique.

Antes de estudar as propriedades gerais das projetividades, vamos conhecer alguns casos particulares, que são bastante importantes na prática.

3.1.2 Translações

Para deslocar uma figura no plano, mantendo-se sua orientação, basta somar às coordenadas cartesianas de cada um de seus pontos um mesmo vetor (X_0, Y_0) . Isto é, basta aplicar a cada ponto da figura a função

$$(X,Y) \mapsto (X + X_0, Y + Y_0) = (X,Y) + (X_0, Y_0)$$

Uma função desta forma é chamada de translação do plano \mathbb{R}^2 pelo vetor (X_0, Y_0) . Note que (X_0, Y_0) é também a imagem da origem (0, 0).

Em termos de coordenadas homogêneas, a translação que leva a origem [1,0,0] para o ponto $[w_0,x_0,y_0]$ (necessariamente finito) é dada pela fórmula

$$[w, x, y] \mapsto [ww_0, xw_0 + wx_0, yw_0 + wy_0]$$

Note que as coordenadas do resultado são combinações lineares das coordenadas do argumento. Podemos portanto escrever a função acima como um produto da tripla homogênea [w, x, y] (vista agora como um vetor linha do \mathbb{R}^3) por uma matriz 3×3 :

$$[w, x, y] \mapsto [w, x, y] \begin{bmatrix} w_0 & x_0 & y_0 \\ 0 & w_0 & 0 \\ 0 & 0 & w_0 \end{bmatrix}$$
 (3.2)

Note que um ponto infinito p = [0, x, y] é levado para $[0, xw_0, yw_0] = [0, x, y] = p$. Ou seja, qualquer translação mantém a reta Ω fixa pontoa-ponto. Prova-se daí que as translações também preservam todas as distâncias, direções, e ângulos de qualquer figura.

Ex. 3.4: Escreva a matriz da translação que desloca o ponto (X_0, Y_0) para o ponto (X_1, Y_1) .

3.1.3 Rotações

Para rodar uma figura plana em torno da origem (0,0), por um ângulo θ em sentido anti-horário, basta aplicar a cada um de seus pontos a função

$$(X,Y) \mapsto (X\cos\theta - Y\sin\theta, X\sin\theta + Y\cos\theta)$$
$$= (X,Y) \begin{pmatrix} +\cos\theta & +\sin\theta \\ -\sin\theta & +\cos\theta \end{pmatrix}$$

Em termos de coordenadas homogêneas, esta função é

$$[w, x, y] \mapsto [w, x, y] \begin{bmatrix} 1 & 0 & 0 \\ 0 & +\cos\theta & +\sin\theta \\ 0 & -\sin\theta & +\cos\theta \end{bmatrix}$$
(3.3)

Como é sabido, uma rotação por qualquer ângulo preserva todos os ângulos e distâncias entre os pontos do plano.

Ex. 3.5: Escreva as matrizes de rotação para os ângulos 45° , 60° , 90° , 180° , e -90° .

Ex. 3.6: Determine a matriz de rotação que transforma o eixo X numa reta que passa pela origem e é paralela ao vetor (X, Y).

Note que a fórmula (3.3) descreve apenas rotações cujo centro (ponto fixo) é a origem. Na seção 3.1.9 veremos como construir uma matriz de rotação cujo centro é um ponto finito arbitrário.

3.1.4 Transformações de escala

Para ampliar ou reduzir uma figura, mantendo-se sua orientação, basta multiplicar cada coordenada cartesiana de cada ponto por um fator de escala conveniente; ou seja, aplicar a cada ponto a transformação de escala

$$(X,Y) \mapsto (\alpha X, \beta Y)$$

O par de fatores de escala (α, β) pode ser entendido como sendo a imagem do ponto cartesiano (1,1). Em coordenadas homogêneas, esta transformação é dada por

$$[w, x, y] \mapsto [w, x, y] \begin{bmatrix} 1 & 0 & 0 \\ 0 & \alpha & 0 \\ 0 & 0 & \beta \end{bmatrix}$$
 (3.4)

Se o fator de escala é o mesmo para as duas coordenadas, a ampliação ou redução é dita *uniforme*, e preserva todos os ângulos e direções entre os pontos do plano. Caso contrário, apenas as direções horizontais e verticais são preservadas.

Ex. 3.7: Escreva a matriz de mudança de escala que leva (X_0, Y_0) para (X_1, Y_1) . (Suponha que nenhum desses números é zero.)

3.1.5 Reflexões

A transformação

$$(X,Y) \mapsto (-X,Y) \tag{3.5}$$

aplicada aos pontos de uma figura reflete a mesma em torno do eixo Y, invertendo o sentido do eixo X. É um caso particular de transformação de escala, com fatores (-1,1).

Ex. 3.8: Escreva a matriz da transformação (3.5), em coordenadas homogêneas.

A reflexão em torno do eixo X é análoga. Na seção 3.1.9 veremos como construir uma matriz de reflexão cujo eixo é uma reta ordinária qualquer.

Note que reflexões preservam distâncias, e invertem o sentido dos ângulos, preservando seu valor absoluto.

Ex. 3.9: Uma reflexão é uma projetividade positiva ou negativa?

Ex. 3.10: Que tipo de projetividade é a definida pela matriz

$$\left[\begin{array}{ccc} +1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{array}\right]$$

3.1.6 Cisalhamentos

A transformação

$$(X,Y) \mapsto (X + \alpha Y, Y)$$

é chamada de cisalhamento horizontal: Esta transformação preserva a coordenada Y do argumento, e desloca a coordenada X por uma distância proporcional à coordenada Y. (Assim, ela poderia ser usada para converter letras "romanas" em "itálicas".) Em particular, o ponto (0,1) é levado para $(\alpha,1)$. A forma homogênea desta transformação é

$$[w, x, y] \mapsto [w, x, y] \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & \alpha & 1 \end{bmatrix}$$
 (3.6)

As transformações de cisalhamento vertical são definidas de modo análogo.

O cisalhamento mais geral mantém fixos os pontos de uma reta ordinária r, e desloca qualquer outro ponto finito numa direção paralela a r, sendo o deslocamento proporcional à distância de p a r. Na seção 3.1.9 veremos como construir esta matriz, dadas r e a constante de proporcionalidade.

Ex. 3.11: Construa uma matriz de cisalhamento horizontal que transforma um triângulo equilátero com base paralela ao eixo X num triângulo retângulo.

3.1.7 Composição de transformações

Se F e G são duas funções de \mathbb{T}^2 para \mathbb{T}^2 , como as descritas acima, a $transformação \ composta \ p \mapsto G(F(p))$ equivale aplicar F e G em seqüência, nesta ordem, a cada ponto.

Observe que, na notação funcional ordinária G(F(p)), a ordem em que essas funções são escritas é oposta à ordem em que elas são aplicadas. Para evitar este inconveniente, adotaremos neste curso a notação funcional pós-fixa usada pelos algebristas. Ou seja, a aplicação de uma função F a um argumento x será denotada por xF, em vez de F(x); e a composição de duas funções F e G, aplicadas nessa ordem, será denotada por FG, em vez de $G \circ F$. Portanto, em lugar de F(G(x)) escreveremos xFG, que pode ser lido tanto (xF)G quanto x(FG).

Compondo as transformações "básicas" vistas nas seções 3.1.2-3.1.6, podemos obter outras classes interessantes. Por exemplo, combinando rotações, translações, e reflexões obtemos as chamadas transformações isométricas, ou isometrias, ou movimentos rígidos do plano, que são justamente todas as funções de \mathbb{T}^2 em \mathbb{T}^2 que preservam as distâncias e ângulos entre os pontos. Se juntarmos a essas as transformações uniformes de escala, obtemos as transformações euclidianas, ou similaridades, que preservam apenas os ângulos e as razões entre distâncias. Por outro lado, se combinarmos as isometrias com os cisalhamentos horizontais e verticais, obtemos as transformações unitárias, que preservam áreas e o paralelismo entre retas.

7

Em qualquer caso, note que toda transformação F assim obtida pode ser escrita na forma $[w,x,y]\mapsto [w,x,y]$ F, onde F é uma matriz 3×3 . A composição FG de duas transformações F e G equivale obviamente ao produto FG das matrizes correspondentes, nessa ordem.

Ex. 3.12: Seja R a rotação por 90° em torno da origem, e T a translação pelo vetor (2,3). Calcule as matrizes para as transformações A=TR e B=RT. Explique (geometricamente) o efeito de A e B, e a diferença entre as duas.

Ex. 3.13: Mostre que uma transformação é de similaridade se e somente se sua matriz tem a forma

$$\begin{bmatrix} 1 & x_d & y_d \\ 0 & +a & +b \\ 0 & -b & +a \end{bmatrix}$$

onde a e b são números reais, não ambos nulos, e x_d , y_d são números reais quaisquer. Qual o significado geométrico desses parâmetros?

3.1.8 Transformação inversa

Toda transformação F dentre as classes descritas acima é uma bijeção de \mathbb{T}^2 para \mathbb{T}^2 ; portanto, ela admite uma transformação inversa F^{-1} , tal que FF^{-1} e $F^{-1}F$ são a função identidade de \mathbb{T}^2 . Obviamente, a matriz da inversa de F é a inversa da matriz de F.

Cada uma das classes de transformações mencionadas acima é fechada também sob inversão; por exemplo, a inversa da translação por (X_0, Y_0) é a translação por $(-X_0, -Y_0)$, etc.

Ex. 3.14: Para cada uma das transformações elementares vistas acima (translações, rotações, reflexões, mudanças de escala, e cisalhamento), dê a matriz homogênea da transformação inversa.

Como sabemos, a inversa da composição FG é a composição das inversas na ordem inversa, $G^{-1}F^{-1}$.

3.1.9 Transformações conjugadas

Composição e inversão são ferramentas extremamente úteis quando queremos construir projetividades mais complexas que as descritas acima.

Para esse fim, usamos freqüentemente o idioma $G^{-1}FG$, chamado de conjugada de F por G. Observe que se F leva o ponto p no ponto q, sua conjugada $G^{-1}FG$ leva o ponto pG no ponto qG; e se p é um ponto fixo de F, então pG é um ponto fixo de $G^{-1}FG$.

Por exemplo, a transformação que roda o plano de 30° em torno do ponto (3,5) pode ser obtida pela composição $T^{-1}RT$, onde T é a translação por (3,5), e R é a rotação de 30° em torno da origem.

Ex. 3.15: Para cada uma das transformações abaixo, diga como obtêla através da composição de projetividades simples (translações, rotações em torno da origem, mudanças de escala, reflexões nos eixos, e cisalhamentos horizontais e verticais):

- (a) Reflexão em torno da reta vertical de abscissa X.
- (b) Reflexão em torno da reta paralela ao vetor (X_d, Y_d) passando pela origem.
- (c) Reflexão em torno da reta paralela ao vetor (X_d,Y_d) passando pelo ponto (X_p,Y_p)
- (d) Mudança de eixos e escalas que transforma o retângulo cartesiano $[2_4] \times [3\times5]$ no retângulo $[-1_+1] \times [0_1]$.

3.1.10 Efeito de projetividades em retas

Seja F uma projetividade de \mathbb{T}^2 e r uma reta. Por definição, a imagem de r por F é a única reta F(r) tal que

$$r \diamond p = F(r) \diamond F(p)$$

para todo ponto p. Note, em particular, que p está em r se e somente se F(p) está em F(r).

Os coeficientes da reta F(r) podem ser obtidos multiplicando-se a inversa da matriz de F pelos coeficientes de r, que devem ser considerados como um vetor coluna (isto é, uma matriz 3×1). Ou seja,

$$F(\langle \mathcal{W}, \mathcal{X}, \mathcal{Y} \rangle) = \mathsf{F}^{-1} \langle \mathcal{W}, \mathcal{X}, \mathcal{Y} \rangle \tag{3.7}$$

Ex. 3.16: Determine a imagem do ponto [1, 1, 1] e da reta (1, 1, 1) sob uma translação pelo vetor (2, 3).

3.1.11 Transformações afins

Todas as transformações vistas até agora são casos particulares das transformações afins do plano, cuja forma cartesiana geral é

$$(X, Y) \mapsto (aX + bY + e, cX + dY + f)$$

= $(X, Y) \begin{pmatrix} a & b \\ c & d \end{pmatrix} + (e, f)$

onde $\binom{a\ b}{c\ d}$ é uma matriz real não singular, e (e,f) um vetor real. A versão homogênea é

$$[w, x, y] \mapsto [w, x, y] \begin{bmatrix} 1 & e & f \\ 0 & a & b \\ 0 & c & d \end{bmatrix}$$
 (3.8)

É fácil verificar que as transformações afins são fechadas sob composição e inversão.

Mais ainda, toda transformação afim preserva o sinal da coordenada peso w, levando portanto pontos infinitos para pontos infinitos, e pontos finitos para pontos finitos. Ou seja, ela mantém fixos a reta Ω , o aquém, e o além de \mathbb{T}^2 (como conjuntos, não necessariamente ponto-aponto). Na verdade, estas propriedades caracterizam as transformações afins; que são, portanto, exatamente as projetividades que podem ser estudadas na geometria euclidiana (ou cartesiana), sem sair do \mathbb{R}^2 .

Pode-se concluir também que toda transformação afim preserva o paralelismo entre retas, pois duas retas finitas são paralelas se e somente se elas encontram num ponto infinito.

Existe uma única transformação afim do plano que leva os três pontos (0,0), (1,0), e (0,1) para três pontos dados (finitos e não colineares) $p_0 = (X_0, Y_0)$, $p_1 = (X_1, Y_1)$, $p_2 = (X_2, Y_2)$. A matriz homogênea dessa transformação é

$$A_{p_0p_1p_2} \equiv [w, x, y] \mapsto [w, x, y] \begin{bmatrix} 1 & X_0 & Y_0 \\ 0 & X_1 - X_0 & Y_1 - Y_0 \\ 0 & X_2 - X_0 & Y_2 - Y_0 \end{bmatrix}$$
(3.9)

Portanto, dados quaisquer dois triângulos abc e pqr (finitos e nãodegenerados), existe uma única transformação afim do plano que leva $a \mapsto p, b \mapsto q$, e $c \mapsto r$, que é simplesmente a composição $A_{abc}^{-1}A_{pqr}$.

Ex. 3.17: Determine a matriz da transformação afim que leva

para, respectivamente,

$$[1,2,0],[1,-1,1],[1,-1,-1]$$

3.1.12 Transformações projetivas gerais

A transformações afins são um subconjunto próprio das projetividades de T². Em geral, uma projetividade pode levar pontos finitos para o infinito, e vice-versa. Considere por exemplo a transformação

$$[w, x, y] \mapsto [w, x, y] \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = [x, w, y]$$
 (3.10)

que mantém o "pólo norte" [0,0,1] fixo, e troca a origem [1,0,0] com o "pólo leste" [0,1,0]. Esta projetividade troca o eixo Y com a reta no infinito Ω ; portanto, ela transforma retas horizontais em retas que passam pela origem, e vice-versa. Em coordenadas cartesianas, ela equivale a

$$(X,Y)\mapsto (1/X,Y/X)$$

Note que esta fórmula é indefinida quando X=0; e, reciprocamente, não existe nenhum ponto do \mathbb{R}^2 cuja imagem tenha X=0. Portanto, este é um exemplo de transformação geométrica que é melhor estudada em \mathbb{T}^2 do que em \mathbb{R}^2 .

Ex. 3.18: Considere um tabuleiro de xadrez desenhado no plano \mathbb{T}^2 com cantos opostos nos pontos (-4, -4) e (4, 4). Desenhe a imagem deste tabuleito pela projetividade (3.10).

Ex. 3.19: Determine uma projetividade que mantém a origem fixa, levando [1, 1, 0] para [0, 1, 0], [1, 0, 1] para [0, 0, 1], e [3, 1, 1] para [1, 1, 1].

Ex. 3.20: Determine todas as projetividades que mantém fixos os três pontos [1,0,0], [0,1,0], e [0,0,1].