The gem data structure for d-dimensional colored triangulations

Jorge Stolfi
Instituto de Computação
Universidade Estadual de Campinas (UNICAMP)
13084-971 Campinas, SP, Brasil
stolfi@ic.unicamp.br
Talk at Meshing Workshop, 29th ACM SOcG, 2013-06-18.
Joint work with Arnaldo Jovanini Montagner and Lucas Moutinho Bueno

June 16, 2013

Abstract

We describe in detail a novel data structure for d-dimensional triangulations. In an arbitrary d-dimension triangulation, there are d ! ways in which a specific facet of an simplex can be glued to a specific facet of another simplex. Therefore, in data structures for general d-dimensional triangulations, this information must be encoded using $\left\lceil\log _{2}(d!)\right\rceil$ bits for each adjacent pair of simplices. We study a special class of triangulations, called the colored triangulations, in which there is a only one way two simplices can share a specific facet. The gem data structure, described here, makes use of this fact to greatly simplify the repertoire of elementary topological operators.

SUMMARY

- Triangulations and their data structures
- The gem data structure.
- Relation to other structures.
- Subdivision schemes for gems.
- Turning a triangulation into a gem.
- Conclusions and future work.

Triangulations

Triangulation: set of d-simplices, glued by facets.

Triangulation data structures

Pointer data structures:

- One record per cell.
- One pointer per facet, to adjacent cell.

Problem: which pointer is the right one?

- Check all links (D. T. Lee \& B. J. Schachter 1980 [7]).
- Add $\left\lceil\log _{2}((d+1)!)\right\rceil$ permutation bits per link
(J. R. Shewchuck 1996 [10], J.-D. Boisonnat \& al. 2002 [1], ...)

Colored triangulations

Colored d-dimensional triangulation:

- Vertices are labeled with d "colors" $0,1, \ldots, d$.
- Each element (simplex) has at most one vertex of each color.

Gems (1)

Gem $=$ the dual graph of a colored triangulation:

A regular graph, edge-colored with colors $0,1, \ldots, d$.
(M. Ferri 1976 [5], S. Lins 1982 [9].

Data structure

The gem data structure:

$\operatorname{Step}(a, i)=\phi_{i}(a)=$ follow pointer i of node a.

Gem structure operations: Makenode

Makenode() creates an unattached simplex:
a = MakeNode();
b = MakeNode();
c = MakeNode();
d = MakeNode();
e = MakeNode();

Gem structure operations: Swap

$\operatorname{Swap}(a, b, i)$ exchanges the i-pointers of a and b :

Unsafe - to be used by authorized personnel only!

Gem structure operations: Splice

Splice (a, b, i) exchanges four pointers of color i :

Splice (v, w, i) :
$v^{\prime} \leftarrow \phi_{i}(v) ;$
$w^{\prime} \leftarrow \phi_{i}(w)$;
Swap ($v^{\prime}, w^{\prime}, \mathrm{i}$);
Swap (v, w, i).

Splice $(v, w, 0)$:

Safe for any parameters!

Barycentric subdivision

Barycentric gems and representation of general maps:

- n-G-maps (P. Lienhardt 1989 [8]).
- Cell-tuple structure (E. Brisson 1989 [2]).

Relationship to quad-edge structure (1)

Quad-edge data structure for 2D maps

- L. J. Guibas and J. Stolfi 1985 [6].

Relationship to quad-edge structure (2)

The barycentric gem partitions into (0,2)-colored squares:

Relationship to facet-edge structure (1)

Facet-edge data structure for 3D maps

- D. P. Dobkin and M. J. Laszlo 1987 [4].

The barycentric gem partitions into (0,3)-colored squares:

Generalizing quad-edge/facet-edge

Barycentric gem property (Lienhardt's n-G-map axiom 2 [8]):

$$
\phi_{i} \phi_{j}=\phi_{j} \phi_{i} \quad \text { if }|i-j| \geq 2
$$

Generalizes quad-edge/facet-edge for d dimensions!
Example for $d=7$:

- edges colored $0,2,5,7$ comprise disjoint 4 -cubes.
- store 16 nodes as 16 parts of same record.
- add 4 bits per pointer to identify which part.
- $\phi_{0}, \phi_{2}, \phi_{5}, \phi_{7}$ need no pointers.
- save a few more pointers using $\phi_{6}=\phi_{2} \phi_{6} \phi_{2}$.
- structure supports duality.

Applications: True convex hull (1)

Application of barycentric gems (n-G-maps, cell-tuple): True exact convex hull, with non-simplicial facets. Gift-wrapping algorithm (D. R. Chand \& S. S. Kapur 1970 [3]).

Gems need not be barycentric subdivisions:

The free border of a gem need not be of color d :

Applications: Adaptive subdivision (1)

Application of non-barycentric gems: Approximation by adaptive triangular mesh.

Applications: Adaptive subdivision (2)

Most popular subdivision schemes don't work:

Applications: Adaptive subdivision (3)

Local colored refinement schemes do exist:

Applications: Adaptive subdivision (5)

Can be done with minimum-angle guarantee:

Applications: Colorizing by splitting (2)

Turning an arbitrary triangulation into colored one. Barycentric: easy but expensive, $n_{\mathrm{F}} \rightarrow 6 n_{\mathrm{F}}$. Moutinho's algorithm: $n_{\mathrm{F}} \rightarrow \leq 2 n_{\mathrm{F}}$:

Applications: Colorizing by splitting (2)

Sometimes splits a triangle in 2 to 6 pieces.
On average each triangle becomes at most 2 , usually less.
If the triangulations is 3-colorable, does not split.

Applications: Colorizing by splitting (3)

Border-sensitive shelling:

Conclusions

Triangulations: barycentric \subset colored \subset general.

Disadvantages of the gem data structure:

- Restricted triangulations (e.g. no Delaunay).
- Needs care in creation, or a splitting step.
- Restricted operations (gluing, subdivision).
- More wasteful than quad-edge or facet-edge for maps.

Conclusions

Advantages of the gem data structure:

- Extends n-G-maps and cell-tuple:
- Non-barycentric triangulations.
- Arbitrary free borders.
- Very simple data structure and topological operators.
- Simplified connection to geometry.
- Generalized quad-edge/facet-edge structures.
- Residues are gems too.
- Poly-ality (d ! views) vs. duality (2 views).

Further work

Future work and open problems:

- Efficient adaptive subdivision in $d \geq 3$ dimensions.
- Colorizing by frugal splitting in $d \geq 3$ dimensions.

References

[1] J.-D. Boisonnat, O. Devillers, S. Pion, M. Teillaud, and M. Yvinec. Triangulations in CGAL. Computational Geometry, 22(1-3):5-19, 2002.
[2] Erik Brisson. Representing geometric structures in dimensions: Topology and order. Proc. 5th Annual ACM Symp. on Computational Geometry, pages 218-227, June 1989.
[3] Donald R. Chand and Sham S. Kapur. An algorithm for convex polytopes. Journal of the ACM, 17(1):78-86, 1970.
[4] David P. Dobkin and Michel J. Laszlo. Primitives for the manipulations of three-dimensional subdivisions. In Proc. 3rd ACM Symp. on Comp. Geometry, pages 86-99. ACM Press, June 1987.
[5] M. Ferri. Una rappresentazione delle varietà topologiche triangolabili medianti grafi $(n+1)$-colorati. Bolletino dell'Unione Matematica Italiana, 13-B:250-260, 1976.
[6] Leonidas J. Guibas and Jorge Stolfi. Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams. ACM Transactions on Graphics, 4(2):74-123, April 1985.
[7] D.-T. Lee and B. J. Schachter. Two algorithms for constructing a delaunay triangulation. Int. J. Computer Information Science, 9:219-242, 1980.
[8] Pascal Lienhardt. Subdivisions of n-dimensional spaces and n-dimensional generalized maps. Proc. 5th Annual ACM Symp. on Computational Geometry, pages 228-236, June 1989.
[9] Sóstenes Lins. Graph-encoded maps. Journal of Combinatory Theory (B), 32:171-181, 1982.
[10] Jonathan R. Shewchuck. Triangle: Engineering a 2D quality mesh generator and Delaunay triangulator. In Proceedings of the 1st Workshop on Applied Computational Geometry, pages 124-133, May 1996.

