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Abstract

We describe in detail a novel data structure for d-dimensional triangulations. In an arbitrary d-dimension triangulation, there are d! ways in which
a specific facet of an simplex can be glued to a specific facet of another simplex. Therefore, in data structures for general d-dimensional triangulations,
this information must be encoded using ⌈log

2
(d!)⌉ bits for each adjacent pair of simplices. We study a special class of triangulations, called the colored

triangulations, in which there is a only one way two simplices can share a specific facet. The gem data structure, described here, makes use of this
fact to greatly simplify the repertoire of elementary topological operators.
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SUMMARY

• Triangulations.

• Winged-edge, half-edge, etc..

• Quad-edge.

• Facet-edge.

• N-G-maps/cell-tuple.

• Corner-stitching, 4-8, SMC, ....

• The gem data structure.

• Conclusions ans future work.
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Triangulations

Triangulation: set of d-simplices, glued by facets.
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Triangulation data structures

Pointer data structures:
• One record per cell.

• One pointer per facet, to adjacent cell.

b

e

a

c d

Problem: which pointer is the right one?
• Check all links (D. T. Lee & B. J. Schachter 1980 [7]).

• Add ⌈log2((d + 1)!)⌉ permutation bits per link
(J. R. Shewchuck 1996 [10], J.-D. Boisonnat & al. 2002 [1], . . . )
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Quad-Edge and Voronoi

With Leo Guibas (TOG 4(2), 1985).
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Quad-Edge and Voronoi (2)
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Quad-Edge and Voronoi (3)
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Quad-Edge and Voronoi (4)

37

9



Quad-Edge and Voronoi (5)
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Quad-Edge and Voronoi (6)
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Quad-Edge and Voronoi (7)
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Toposcope

With Rober M. Rosi (Graph Drawing ’96).
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Toposcope (2)
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Toposcope (3)

15



Toposcope (4)
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With Lúıs A. P. Lozada (SIBGRAPI 2000).
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Toposcope (5)
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3D Triangulations (1)

3D Triangulations for animation of elastic objects.
Rogério L. W. Liesenfeld, IC-UNICAMP, 1994
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3D Triangulations (2)
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Colored triangulations

Colored triangulation:

• Vertices are labeled with “colors” 0, 1, . . . , d.

• Each element has at most one vertex of each color.
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Gems (1)

Gem = the dual graph of a colored triangulation:
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A regular graph, edge-colored with colors 0, 1, . . . , d.
(M. Ferri 1976 [5], S. Lins 1982 [9].
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Gems (2)

Self-loops denote unglued facets (free border).
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Data structure

The Gem data structure:

a

d

2
1

0 bc

Step(a,i) = φi(a) = follow pointer i of node a.
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Gem structure operations: Makenode

Makenode() creates an unattached simplex:
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Gem structure operations: Swap

Swap(a,b,i) exchanges the i-pointers of a and b:

Unsafe - to be used by authorized personnel only!
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Gem structure operations: Splice

Splice(a,b,i) exchanges four pointers of color i:

Splice(v,w,0):

Safe for any parameters!
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Barycentric subdivision

Barycentric gems and representation of general maps:

• n-G-maps (P. Lienhardt 1989 [8]).

• Cell-tuple structure (E. Brisson 1989 [2]).
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Relationship to quad-edge structure (1)

Quad-edge data structure for 2D maps

• L. J. Guibas and J. Stolfi 1985 [6].
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Relationship to quad-edge structure (2)

The barycentric gem partitions into (0, 2)-colored squares:
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Relationship to quad-edge structure (3)
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Relationship to facet-edge structure (1)

Facet-edge data structure for 3D maps

•D. P. Dobkin and M. J. Laszlo 1987 [4].
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Relationship to facet-edge structure (2)

The barycentric gem partitions into (0, 3)-colored squares:

2
1
0

3

32



Relationship to facet-edge structure (3)
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Generalizing quad-edge/facet-edge

Barycentric gem property
(Lienhardt’s n-G-map axiom 2 [8]):

φiφj = φjφi if |i − j| ≥ 2

Generalizes quad-edge/facet-edge for d dimensions!

Example for d = 7:

• edges colored 0, 2, 5, 7 comprise disjoint 4-cubes.

• store 16 nodes as 16 parts of same record.

• add 4 bits per pointer to identify which part.

• φ0, φ2, φ5, φ7 need no pointers.

• save more pointers using φ5 = φ2φ5φ2.

• structure supports duality.
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Applications: True convex hull (1)

Application of barycentric gems (n-G-maps, cell-tuple):
True exact convex hull, with non-simplicial facets.

Gift-wrapping algorithm (D. R. Chand & S. S. Kapur
1970 [3]).
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Application: True convex hull (2)

Rhombic dodecahedron (3D) Regular 24-cell (4D)
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Non-barycentric gems (1)

Gems need not be barycentric subdivisions:
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Non-barycentric gems (2)

The free border of a gem need not be of color d:

0

0

01

1

2

2

2
0

1

38



Applications: Adaptive subdivision (1)

Application of non-barycentric gems:
Approximation by adaptive triangular mesh.
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Applications: Adaptive subdivision (2)

Most popular subdivision schemes don’t work:
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Applications: Adaptive subdivision (3)

Local colored refinement schemes do exist:
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Applications: Adaptive subdivision (4)
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Applications: Adaptive subdivision (5)

Can be done with minimum-angle guarantee:
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Disadvantages

Disadvantages of gem data structure:

• Restricted triangulations (e.g. no Delaunay).

• Restricted operations (gluing, subdivision).

•More wasteful than quad-edge or facet-edge for maps.
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Advantages

Advantages of gem data structure:

• Extends n-G-maps and cell-tuple:

– Non-barycentric triangulations.

– Arbitrary free borders.

• Very simple data structure.

• Very simple topological operators.

• Simplified connection to geometry.

• Residues are gems too.

• Poly-ality (d! views) vs. duality (2 views).
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Conclusions and extensions

Conclusions:

•∆s: barycentric ⊂ colored ⊂ general.

• Colored ∆s are usable for modeling.

• Gem data structure for colored ∆s.

• Gem data structure and operations are very simple.

• Generalized quad-edge/facet-edge structures.
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Further work

Future work and open problems:

• Efficient adaptive subdivision in d dimensions.

• Colorizing general ∆s by frugal splitting.
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