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Abstract
This paper considers two graph covering problems, theMinimumConstellation Cover
(CC) and theMinimum k-Split Constellation Cover (k- SCC). The input of these prob-
lems consists on a graph G = (V , E) and a set C of stars of G, and the output is a
minimum cardinality set of stars C , such that any two different stars of C are edge-
disjoint and the union of the stars of C covers all edges of G. For CC, the set C must
be compound by edges of G or stars of C while, for k- SCC, an integer k is given and
the elements of C must be k-stars obtained by splitting stars of C. This work proves
that unless P = N P , CC does not admit polynomial time |C|O(1)-approximation
algorithms and k- SCC cannot be ((1 − ε) ln |E |)-approximated in polynomial time,
for any ε > 0. Additionally, approximation ratios are given for the worst feasible solu-
tions of the problems and, for k- SCC, polynomial time approximation algorithms are
proposed, achieving a (ln |E | − ln ln |E | + Θ (1)) approximation ratio. Also, polyno-
mial time algorithms are presented for special classes of graphs that include bounded
degree trees and cacti.

Keywords Exact graph cover · NP-hard · Inapproximability · Approximation
algorithm · Polynomial time algorithm

1 Introduction

Graph coverings include several classical problems of graph theory and have been
widely studied by the computer science community (Dinneen and Hua 2017; Fernan-
des et al. 2009; Fukunaga 2016; Hung and Chang 2007; Álvarez Miranda and Sinnl
2020; Pilipczuk et al. 2020; Rizzi et al. 2014). These problems find practical appli-
cations in diverse network scenarios, they may help to design monitoring systems
(Marques et al. 2019), and to divide the network in modular information processing
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units (Wegner 2014), among other functionalities. Some versions of these problems
consider to minimize exact edge coverings, where the graph must be partitioned in a
minimum number of subgraphs such that each edge is covered by exactly one sub-
graph. If the subgraphs must be stars selected from a previously given set, then the
problem is the Minimum Constellation Cover (CC). If the subgraphs must be k-stars
obtained by splitting the elements of a previously given set of stars, then the problem
is the Minimum k-Split Constellation Cover (k- SCC).

This work introduces CC and k- SCC, proving that both problems are N P-hard
and providing strong inapproximability results for them, even when the network is a
star. The approximability of the problems is analyzed and approximation ratios are
given for the worst feasible solution of each instance. Also, for k- SCC, polynomial
time approximation algorithms are given, achieving an approximation ratio very close
the inapproximability bound of the problem. Finally, a polynomial time algorithm is
proposed to solve instances where the network is a bounded degree class of graphs
that generalizes trees and cacti.

The rest of this paper is organized as follows. Section 2 gives some notations and
introduces the problems definitions. Section 3 proves strong N P-hard and inapprox-
imability results for both problems. Section 4 discusses on the approximability of the
problems, finding approximation ratios associated with the worst solutions and, for
k- SCC, giving different polynomial time approximation algorithms. Section 5 pro-
poses a polynomial time algorithm for a special class of graphs that includes paths,
cycles, trees, cacti, among others. The conclusions and future research directions are
given in Sect. 6.

2 Definitions and notation

This work considers simple undirected graphs, where a graph G = (V , E) is defined
by a set of nodes V and a set of edges E , being each edge a pair of different nodes.
Every edge 〈u, v〉 ∈ E is said to be incident on the nodes u, v ∈ V and the number
of edges incident over a node u is the degree of the node (δ (u)). Given a graph G, its
set of nodes can be denoted by VG and its set of edges by EG . Some graphs relations
used along this document are the subgraph and induced subgraph concepts.

Definition 1 Given two graphs G = (VG , EG) and H = (VH , EH ), H is subgraph
of G (denoted as H ⊆ G) iff VH ⊆ VG and EH ⊆ EG . If H ⊆ G and every edge
in EG defined between two nodes of VH is contained in EH , then H is the induced
subgraph of G over the set of nodes VH (denoted as G [VH ]).

To describe the special classes of graphs that will be studied, the definitions of
paths, cycles and connectivity are needed.

Definition 2 Given a graph G = (V , E), a path in G is a sequence of nodes
v1, v2, . . . , vn where, for all 1 ≤ i < j ≤ n, vi , v j ∈ VG , vi �= v j and
〈vi , vi+1〉 ∈ EG . The path v1, v2, . . . , vn of G connects the nodes v1 and vn and
if for every pair of nodes u, v ∈ V there exist a path connecting them, then G is
connected. If H is a maximal connected subgraph of G, then H is a component of
G.
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Definition 3 Given a graph G = (V , E), a cycle in G is a sequence of at least three
nodes v1, v2, . . . , vn−1, vn where v1 = vn , 〈vn−1, v1〉 ∈ E and v1, v2, . . . , vn−1 is a
path of G. If there are no cycle in G, then G is acyclic.

Using the above concepts, it is possible to define trees and cacti, which are special
classes of graphs for whom polynomial time algorithms will be given.

Definition 4 A graph G = (V , E) is a tree iff G is connected and acyclic.

Definition 5 A graph G = (V , E) is a cactus iff G is connected and any two cycles
of G have at most one node in common.

Before formalizing the studied problems, the concepts of stars, constellations, cov-
ering and k-splits should be defined.

Definition 6 A graph G = (V , E) is a star iff there exists a node u ∈ V (center) such
that the edges in E are defined between u and each one of the others nodes in V , i.e.
E = {〈u, v〉|∀v ∈ V \ {u}}. In order to simplify the notation, every single edge 〈u, v〉
is considered a star, where the center can be any of the nodes u or v. If G is a star,
then G is a k-star for any k ≥ |E |.
Definition 7 A set of graphs is edge-disjoint if no two graphs in the set have com-
mon edges. A constellation is an edge-disjoint set of stars. Notice that the stars of a
constellation may share nodes.

Definition 8 Given a graph G = (V , E) and an edge e, the edge e is covered by G iff
e ∈ E . A set of graphs covers an edge if at least one of the graphs covers the edge.

Definition 9 Given a set of stars C and an integer k, a set of k-stars C is a k-split of C
iff every k-star of C is subgraph of at least one star in C.

With the graphs notation clarified, the problems approached in this work are defined
as follows.

Problem 1 Minimum Constellation Cover (CC)
Input: A tuple 〈G = (V , E) , C〉, where:

• G is a graph;
• C is a set of stars of G.

Output: a minimum cardinality constellation C ⊆ C ∪ E that covers all edges of
E.

Problem 2 Minimum k-Split Constellation Cover (k- SCC)
Input: A tuple 〈G = (V , E) , C, k〉, where:

• G is a graph;
• C is a set of stars of G, that covers every edge of G;
• k is a positive integer.

Output: a minimum cardinality k-split constellation C of C, that covers all edges
of E.

Next section proves strong N P-hard results and approximation limits for both
problems.
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3 NP-hardness and inapproximability bounds

In this section the hardness of CC and k- SCC are analyzed, proving that both problems
belong to the N P-hard complexity class. Moreover, strong inapproximability results
are presented for these problems. For CC, a reduction from the 3-Exact Cover (3- EC)
is given, establishing that CC does not admit a polynomial time |C|O(1)-approximation
unless P = N P . For k- SCC, the reduction is from theMinimumSet Cover (Min- SC)
proving that, for any ε > 0, k- SCC does not admit a polynomial time ((1 − ε) ln |E |)-
approximation unless P = N P .

First, the result for CC is given and the definition of 3- EC is as follows.

Problem 3 3-Exact Cover (3- EC)
Input: A tuple 〈X , T 〉, where:

• X is a set of elements;
• T is a set of triples of X, whose union is equal to X, i.e. each element of T is a
subset of X with cardinality 3 and

⋃
t∈T t = X.

Output: a subset T of T satisfying that each element of X is contained in exactly
one element of T , or inform that T does not exist.

The following theorem not only shows thatCC is strongly N P-hard, but also proves
that it cannot be approximated with a ratio less than or equal to a polynomial function
on the number of stars in the collection C.

Theorem 1 CC is NP-hard and, unless P = N P, for any instance I = 〈G, C〉, CC
cannot be |C|O(1)-approximated in polynomial time, even if G is a star.

Proof Let I = 〈X , T 〉 be an instance of 3- EC and � = |T |α × |X |, for some integer
constant α ≥ 1. Then, the instance I ′ = 〈G = (V , E), C〉 of CC is constructed as
follows:

• The node vo is defined in V .
• For each element x ∈ X , the nodes x1, . . . , x� are defined in V and the edges

{〈vo, xi 〉}�i=1 are defined in E . The structure associated with x determines an �-
star denoted by element-star of x . Figure 1 illustrates this construction.

Fig. 1 Element-star of x ∈ X
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Fig. 2 Triple-star of t = 〈x, y, z〉 ∈ T

• For each triple t = 〈x, y, z〉 ∈ T , the (3 × �)-star whose nodes are vo,
{xi }�i=1, {yi }�i=1 and {zi }�i=1, and whose edges are {〈vo, xi 〉}�i=1, {〈vo, yi 〉}�i=1 and
{〈vo, zi 〉}�i=1, is defined in C. Such star is denoted by triple-star of t and Fig. 2
illustrates it.

Formally the elements of I ′ are defined as follows:

V = {vo} ∪ {xi |∀x ∈ X , 1 ≤ i ≤ �} ,

E = {〈vo, xi 〉|∀x ∈ X , 1 ≤ i ≤ �} ,

C =
⋃

t∈T
{({vo} ∪ {xi |∀x ∈ t, 1 ≤ i ≤ �} , {〈vo, xi 〉|∀x ∈ t, 1 ≤ i ≤ �})} .

Trivially I ′ is a valid instance for CC and G is a star centered at vo. Bellow, it
is proved that there exists an exact cover for 3- EC with instance I iff there exists a
solution whose cardinality is at most |X |

3 for CC with instance I ′.
If there exists an exact cover T ⊆ T for 3- EC with instance I , then a solution

C for CC with instance I ′ can be constructed by selecting for each triple t ∈ T the
triple-star of t , i.e. S = {triple-star of t |∀t ∈ T }. Thus, each element of C is a triple-
star of some triple in T and C ⊆ C ⊆ C ∪ E . Since T is an exact cover, every element
x ∈ X is covered by exactly one triple t ∈ T , hence all edges of the element-star of x
are covered by exactly one triple-star in C (the triple-star of t). Consequently, C is a
constellation that covers all edges of G, implying that C is a feasible solution for CC
with instance I ′. Also, any triple of T covers three elements of X and each element of
X is covered by exactly one triple in T , implying that |T | = |X |

3 and |C | = |T | = |X |
3 .

For the other direction, suppose C is a feasible solution of CC with instance I ′
and |S| ≤ |X |

3 . Since C ⊆ C ∪ E , the elements of C can only be triple-stars or single
edges. Thus, if for some element x ∈ X , the element-star of x is not subgraph of some
triple-star in C , then each edge of the element-star of x is individually included in C
and, since the element-star of x has � edges, it follows:

|C | ≥ � = |T |α × |X | >
|X |
3

.
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Therefore, in order to guarantee that |C | ≤ |X |
3 , the element-star of each x ∈ X

must be subgraph of some triple-star in C . Furthermore, since C is a constellation,
the elements of C do not share edges and each element-star of G must be subgraph
of exactly one triple-star of C . Hence, the triples associated with the triple-stars of C
are disjoint and cover all elements of X , so the set of such triples is an exact cover for
3- EC with instance I .

The constructed graph G has 1 + � × |X | nodes and � × |X | edges, being |T | the
number of stars in C. Then, the size and the computational time required to construct
I ′ from I areO (� × |X | + |T |) = O

(|T |α × |X |2), which is polynomial on the size
of I , and, since 3- EC is NP-complete (Garey and Johnson 1979), CC is NP-hard.

If CC admits a polynomial time |C|θ -approximation algorithm, for some constant
θ > 0, then consider α = �θ. Such an algorithm computes a solution C for CC with
instance I ′ satisfying:

|C | ≤ |C|θ × ∣
∣C∗∣∣ = |T |θ × ∣

∣C∗∣∣ ,

where C∗ is an optimal solution for CC with instance I ′. If there exists an exact cover
for 3- EC with instance I , then |C∗| ≤ |X |

3 , implying that:

|C | ≤ |T |θ × ∣
∣C∗∣∣ ≤ |T |θ × |X |

3
.

If an element-star for some x ∈ X is not subgraph of a triple-star in C , then each
edge of the element-star of x will be an element of S and it follows:

|C | ≥ |T |α × |X | > |T |θ × |X |
3

.

Thus, all element-stars are subgraphs of some triple-star inC . Therefore, the triples
associated with triple-stars in C form an exact cover for 3- EC with instance I , and
there exists a polynomial time algorithm for 3- EC. Moreover, unless P = N P , CC
does not admit a polynomial time algorithm with approximation ratio less than or
equal to |C|θ , for any constant θ > 0. Since the graph constructed in the reduction is
a star, the result holds even for stars. ��

The hardness and inapproximability results for k- SCC are obtained by a reduction
from Min- SC.

Problem 4 Minimum Set Cover (Min- SC)
Input: A tuple 〈X , T 〉, where:

• X is a set of elements;
• S is a set of subsets of X, whose union is equal to X, i.e. each element of S is a
subset of X and

⋃
s∈S s = X.

Output: a minimum cardinality subset S of S satisfying that each element of X is
contained in at least one element of S (

⋃
s∈S s = X).
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Fig. 3 Node and element-edge
of x ∈ X vo

x

Fig. 4 Set-star of
s = {

x1, x2, . . . , x|s|
} ∈ S vo

x1 x2 x|s|. . .

The following proposition shows that any α-approximation algorithm for k- SCC
will also α-approximate Min- SC.

Proposition 1 If, for some α, there exists a polynomial time α-approximation algo-
rithm for k- SCC, then there exists a polynomial time α-approximation algorithm for
Min- SC.

Proof Consider an instance I = 〈X ,S〉 of Min- SC and construct an instance I ′ =
〈G = (V , E), C, k〉 of k- SCC as follows:

• Define the node vo in V .
• For each element x ∈ X , define the node x in V and the edge 〈vo, x〉 in E . The edge

〈vo, x〉 is denoted by element-edge of x . Figure 3 illustrates this construction.
• For each set s = {

x1, x2, . . . , x|s|
} ∈ S, define in C the star whose nodes are vo

and {xi }|s|i=1, and whose edges are {〈vo, xi 〉}|s|i=1. Such star is denoted by set-star
of s. Figure 4 illustrates this construction.

• Finally, the integer k is set equal to |X |, so every set-star is a k-star.

The elements of I ′ can be formally defined as follows:

V = {vo} ∪ {x |∀x ∈ X} ,

E = {〈vo, x〉|∀x ∈ X} ,

C =
⋃

s∈S
{({vo} ∪ {x |∀x ∈ s} , {〈vo, x〉|∀x ∈ s})} ,

k = |X | .

Since each element x ∈ X is covered by at least one set s ∈ S, the element-edge
of x is covered by the set-star of s. Thus, every edge of G is covered by at least one
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star of C. Also, all set-stars are subgraphs of G, implying that I ′ is a valid instance for
k- SCC.

Below, it is proved that there exists a feasible solution S for Min- SC with instance
I if there exists a feasible solution C with same cardinality as S, for k- SCC with
instance I ′, i.e. |S| = |C |.

If S ⊆ S is a solution for Min- SC with instance I , then a solution C for k- SCC
with instance I ′ can be constructed by selecting, for each set s ∈ S, the set-star of
s, i.e. C = {set-star of s|∀s ∈ S}. After that, whenever two stars of C share an edge,
the edge and the corresponding non-center node are removed from one of the stars,
transforming C in a constellation. The edge deletion does not increase the size of C ,
so |C | = |S|. Also, the elements of C are subgraphs of set-stars associated with sets
in S, hence they are subgraphs of some stars in C. Besides that, any star of G has at
most k = |X | edges, implying that C is a k-split constellation of C. Since each x ∈ X
is covered by at least one s ∈ S, the element-edge of x is covered by a star in C and,
consequently, C covers all edges in E . Therefore, C is a feasible solution of k- SCC
with instance I ′ and |C | = |S|.

Furthermore, if S∗ is an optimal solution of Min- SC with instance I , then there
exists a feasible solutionC for k- SCCwith instance I ′, such that |S∗| = |C |, implying
that the optimal value of Min- SC with instance I is greater than or equal to the
optimal value of k- SCC with instance I ′. Then, for any α, a feasible solution C that
α-approximates an optimal solution C∗ of k- SCC with instance I ′ satisfies:

|C | ≤ α × ∣
∣C∗∣∣ ≤ α × ∣

∣S∗∣∣ .

From any feasible solution C of k- SCC with instance I ′, a solution S forMin- SC
can be constructed by selecting, for each star c in C , the set of S associated with a
set-star of C that contains the star c. The construction guarantees that S ⊆ S and, since
C covers all edges of G, the union of the sets in S covers all elements of X , implying
that S is feasible for Min- SC with instance I . Moreover, since for each star of C at
most one set was included in S, it follows that |S| ≤ |C | and:

|S| ≤ |C | ≤ α × ∣
∣S∗∣∣ .

The instance I ′ has 1+ |X | nodes, |X | edges and |S| stars in C. Thus, the size of I ′
is O (|X | + |S|), which is also the computational time required to construct I ′ from
I . Also, the construction of S from C can be done in O (|X | × |S|) time. Hence, if
there exists a polynomial time algorithm that α-approximates k- SCC, then there also
exists a polynomial time algorithm that α-approximates Min- SC. ��

Since the graph on the above reduction is a star and, unless P = N P , Min- SC
does not admit a polynomial time ((1 − ε) × ln |X |)-approximation for any ε > 0
(Dinur and Steurer 2014), it follows.

Theorem 2 k- SCC is NP-hard and, unless P = N P, for any instance I = 〈G =
(V , E) , C, k〉 and ε > 0, k- SCC cannot be ((1 − ε) × ln |E |)-approximated in poly-
nomial time, even if G is a star.
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Despite the strong inapproximability results for CC and k- SCC, the next section
analyzes approximation ratios that can be obtained in polynomial time for both prob-
lems.

4 Approximation ratios

This section discuss on the approximability of CC and k- SCC, presenting the worst
approximation ratios any feasible solution can have and, for k- SCC, different approx-
imation algorithms are given.

The following proposition states an approximation ratio for the worst solution of
CC. In this context, the worst solution is considered among the feasible constellations
where every star covers at least one edge (if a feasible constellation contains an star
without edges, then such star can be removed and the constellation remains feasible).

Proposition 2 For any fixed integer i ≥ 1, the worst feasible solution for CC with
instance I = 〈G, C〉 is a ηi

i -approximation of the optimal value, where ηi is the
largest number of edges covered by any constellation C ⊆ C with at most i stars.

Proof Consider an instance I = 〈G, C〉, an optimal solution C∗ of CC with instance
I and a fixed integer i ≥ 1. If ηi is the largest number of edges covered by any
constellation C ⊆ C with at most i stars, then any subset with at most i stars of C∗
covers at most ηi edges. Consequently, since C∗ covers every edge of |E |, it follows:

|C∗|
i

≥ |E |
ηi

≡ |E | ≤ ηi

i

∣
∣C∗∣∣ .

The domain of feasible solutions only contemplates constellations not containing
0-stars, so the worst feasible solution is the one where each star covers only one edge
of E , being the cardinality of that solution |E | which is a ηi

i -approximation of the
optimal value. ��

An immediate result of the above proposition is obtained when i = 1.

Remark 1 The worst feasible solution for CC with instance I = 〈G, C〉 is a η-
approximation of the optimal solution value, where η is the number of edges of the
largest star in C.

An analogous proof can be considered for k- SCC with the difference that in any
optimal solution each star covers at most k edges, obtaining the following result.

Proposition 3 The worst feasible solution for k- SCC with instance I = 〈G, C, k〉 is
a k-approximation of the optimal solution.

The proposal of “good” approximation algorithms for CC may be very difficult
given the very strong inapproximability result of Theorem 1. However, even when the
inapproximability for k- SCC is also strong, the relation of this problemwithMin- SC
allows to obtain some interesting approximation ratios.
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4.1 K-SCC andMIN-SC

Besides the reduction from Min- SC to k- SCC given by Proposition 1, a reduction
from k- SCC to Min- SC is also possible. The following proposition shows that any
approximation algorithm for Min- SC can be adapted to approximate k- SCC.

Proposition 4 If, for some α and polynomial function p, there exists an α-
approximation algorithm for Min- SC with any instance 〈X ,S〉, whose time
complexity is O (p (|X | , |S|)), then, for any instance 〈G = (V , E) , C, k〉 of
k- SCC, there exists an α×η

k -approximation algorithm whose time complexity is
O (p (|E | , |C|) + |E | × |C|), being η the number of edges of the largest star in C.
Proof Consider the instance I = 〈G = (V , E) , C, k〉of k- SCC anddefine an instance
I ′ = 〈X ,S〉 of Min- SC, where the elements of X are the edges ofG and the subsets in
S are the sets of edges associatedwith each star of C, i.e. X = E andS = {Ec|∀c ∈ C}.

Let S be a feasible solution of Min- SCwith instance I ′ and, for each s ∈ S, include
in a set C the star of C associated with s. After that, whenever an edge is covered by
two stars of C , remove the edge and the corresponding non-center node from one of
the stars. Then, C is a constellation whose stars are subgraphs of elements in C and,
since S covers every element of X , it follows that C covers all edges of G. Any star
c ∈ C with more than k edges can be splitted into |Ec|

k edge-disjoint k-stars (take the
edges of c in some order and define one star with the first k edges, the second one
with the next k edges and so on until the last one). Therefore, after splitting the stars,
the constellation C is a k-split of C, implying that C is a feasible solution for k- SCC
with instance I .

Before splitting the stars in C , the cardinalities of C and S were the same and, after
the splitting, each star in C was replaced by at most η

k stars, being η the number of
edges of the largest star in C. Thus, |C | ≤ η

k × |S|.
If C∗ is an optimal solution for k- SCC with instance I , then a feasible solution

S′ for Min- SC with instance I ′ can be constructed by selecting, for each star c ∈ C ,
the set in C associated with a star in C that covers all edges of c. The construction of
S′ guarantees that |C∗| ≥ ∣

∣S′∣∣. Hence, if S∗ is an optimal solution of Min- SC with
instance I ′ and S is an α-approximation of S∗, for some α, then:

|C | ≤ η

k
× |S| ≤ η

k
× α × ∣

∣S∗∣∣ ≤ η

k
× α × ∣

∣S′∣∣ ≤ η

k
× α × ∣

∣C∗∣∣ .

Consequently, C is an α×η
k -approximation for C∗. Since I ′ has an element in X for

each edge in E and I ′ also has a set inSwith size atmost |E | for each star inC, it follows
that the size of I ′ is O (|C| × |E |), which is also the computational time required to
construct I ′ from I and to construct C from S. If, for some polynomial function p,
there exist an O (p (|X | , |S|)) time α-approximation algorithm for Min- SC, then
there exists an O (p (|E | , |C|) + |E | × |C|) time α×η

k -approximation algorithm for
k- SCC, where η is the number of edges of the largest star in C. ��

In Williamson and Shmoys (2011), polynomial time algorithms were given to
f -approximate Min- SC and by applying the above proposition a polynomial time
approximation algorithm is obtained for k- SCC.
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Remark 2 For any instance I = 〈G = (V , E) , C, k〉 of k- SCCwhere η is the number
of edges of the largest star in C and f is the maximum number of stars in C sharing a
same edge, there exists a polynomial time algorithm with approximation ratio equals
to f ×η

k .

Another approximation result for Min- SC was given in Slavík (1996), where the
proposed approximation ratio was (ln |X | − ln ln |X | + Θ (1)), allowing to obtain the
following result for k- SCC.

Remark 3 For any instance I = 〈G = (V , E) , C, k〉 of k- SCC where η is the num-
ber of edges of the largest star in C, there exists a polynomial time algorithm with
approximation ratio equals to (ln|E |−ln ln|E |+Θ(1))×η

k .

The approximations ratios given by the above remarks can be improved by propos-
ing new approaches for k- SCC inspired in the results for Min- SC of Slavík (1996),
and Williamson and Shmoys (2011).

4.2 Integer linear program for K-SCC

An strategy to obtain an approximation ratio for k- SCC, that can be better than the
one given by Remark 2 for some instances, is to propose an integer linear formulation
for the problem, rounding an optimal solution of the linear relaxation. In that direction,
consider the following integer linear program.

Model 1 Formulation for k- SCC with instance I = 〈G = (V , E) , C, k〉:

min
∑

s∈C
xs (1)

s.t :
∑

s∈{s′|s′∈C,e∈Es′ }
yse = 1 ∀e ∈ E (2)

∑

e∈Es

yse ≤ k × xs ∀s ∈ C (3)

xs ∈ Z, yse ∈ {0, 1} ∀s ∈ C, e ∈ Es (4)

The following lemma shows that, given an instance I , for any feasible solutionC of
k- SCC with instance I , there exists a feasible solution XY of Model 1 with instance
I such that C and XY have the same value. This result implies that the optimal value
of Model 1 with instance I is less than or equal to the optimal value of k- SCC with
instance I .

Lemma 1 For any instance I = 〈G = (V , E) , C, k〉 of k- SCC and each feasible
solution C of k- SCC with instance I , there exists a feasible solution for Model 1 with
instance I satisfying |C | = ∑

s∈C xs .
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Proof Let I = 〈G = (V , E) , C, k〉 be an instance of k- SCC. Given a feasible solution
C for k- SCC with instance I , a solution for Model 1 can be constructed as follows:

1. For each star s ∈ C , select one star sC ∈ C such that s is subgraph of sC .
2. For each edge e ∈ E , select the star s ∈ C that covers e, then set ysCe = 1 and,

for each s′ ∈ C \ {sC} with e ∈ Ec′ , set ys′e = 0.
3. For each star s ∈ C, set xs equals to the number of stars in C for whom s was

selected on first step, i.e. xs = ∣
∣
{
s′|s′ ∈ C and s′

C = s
}∣
∣.

Trivially, yse ∈ {0, 1} and xs ∈ Z for each s ∈ C and e ∈ E , so the set of constraints
4 is satisfied. Also, for each edge e ∈ E , yse = 1 only for one star s ∈ C that covers e,
being zero for the rest of the stars in C, hence the set of constraints 2 is also satisfied.
Since each star in C covers at most k edges, it follows that for each s ∈ C the number
of edges with yse = 1 is at most k multiplied by the number of stars in C where s was
selected on the first step, i.e. |{e|e ∈ Es and yse = 1}| ≤ k×∣

∣
{
s′|s′ ∈ C and s′

C = s
}∣
∣,

implying that:

∑

e∈Es

yes = |{e|e ∈ Es and yse = 1}| ≤ k × ∣
∣
{
s′|s′ ∈ C and s′

C = s
}∣
∣ = k × xs .

Thus, the solution satisfies all constrains and is feasible for Model 1 with instance
I . Furthermore, exactly one sC was selected for each s ∈ C , so:

∑

s∈C
xs =

∑

s∈C

∣
∣
{
s′|s′ ∈ C and s′

C = s
}∣
∣ = |C | .

��
The next lemma gives a rounding algorithm that receives a feasible solution of

Model 1 with an instance I and constructs a feasible solution for k- SCCwith instance
I . Moreover, the lemma proves that both solutions have the same value.

Lemma 2 Given an instance I = 〈G = (V , E) , C, k〉 and a feasible solution XY of

Model 1 with instance I , if XY satisfies that xs =
⌈∑

e∈Es yse
k

⌉
for each s ∈ C, then

there exists a feasible solution C for k- SCC with instance I , that can be constructed
from XY within O (|E | × |C|) time complexity and satisfies |C | = ∑

s∈C xs .

Proof Let XY = 〈{xs}s∈C , {yse}s∈C,e∈Es

〉
be a feasible solution of Model 1 with

instance I = 〈G = (V , E) , C, k〉. Also, suppose that, for each s ∈ C, XY satisfies

that xs =
⌈∑

e∈Es yse
k

⌉
.

Consider the set of stars C where, for each star s ∈ C, C contains the subgraph of
s with all edges e ∈ Es satisfying yse = 1 iff such subgraph is not a 0-star. That is,

C = {
s′|s′ ⊆ s ∈ C, |Es′ | > 0 and ∀e ∈ Es, e ∈ Es′ iff yse = 1

}
.

Since XY satisfies constraints set 2, it follows that for each edge e ∈ E there exists
exactly one set s ∈ C for whom yse = 1, being the subgraph of s the only star in C
covering e. Thus, C is a constellation that covers every edge of E .
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In order to guarantee C contains only k-stars, the constellation passes through a
splitting/replacement process. For each star s ∈ C , if |Es | > k, then replace s by

the edge-disjoint stars in the sequence {si }
⌈
Es
k

⌉

i=1 , where the star si is the subgraph of s
covering the edges from k× i to k× i + k−1 (considering some sorting for the edges
of s). Therefore, the resulting C is a k-split constellation of C that covers all edges in
E , implying that C is a feasible solution for k- SCC with instance I .

If xs = 0 for some star s ∈ C, then yse = 0 for every edge e ∈ Es , so only if
xs > 0 there will be subgraphs included in C for s ∈ C. Moreover, if s′ ∈ C is the
subgraph of s before the above splitting/replacement, then |Es′ | = ∑

e∈Es
yse and,

after the splitting/replacement, the number of stars included for s in C is equal to⌈∑
e∈E yse
k

⌉
= xs . Thus, |C | = ∑

s∈C xs and the construction of C from XY can be

done within O (|E | × |C|) time complexity by selecting for each star in s ∈ C the
edges e ∈ Es for whom yse = 1. ��

Supported by the results of lemmata 1 and 2, the following theorem proves the
existence of a polynomial time ( f × k)-approximation algorithm that improves the
f ×η
k ratio given by Remark 2 if η > k2 (e.g., instances where k is a constant value

and η = ω(1)).

Theorem 3 For any instance I = 〈G = (V , E) , C, k〉 of k- SCC there exists a
polynomial time ( f × k)-approximation algorithm, where f is the maximum number
of stars in C sharing a same edge.

Proof Consider an instance I = 〈G = (V , E) , C, k〉 of k- SCC, an integer f equals
to the maximum number of stars in C that share a same edge, and an optimal solu-

tion XYr =
〈{
xrs

}
s∈C ,

{
yrse

}
s∈C,e∈Es

〉
of the linear relaxation of Model 1. Construct

an integer solution XY = 〈{xs}s∈C , {yse}s∈C,e∈Es

〉
for Model 1 using the following

rounding strategy:

– For each edge e ∈ E , select one star s ∈ C (with e ∈ Es) for whom yrse is
maximum. For that star set yse = 1, setting ys′e = 0 for the other stars s′ ∈ C with
e ∈ Es′ . So, the set of constraints 2 is satisfied.

– For each star s ∈ C, set xs equals to the minimum integer that satisfies constraints

3, i.e. xs =
⌈∑

e∈Es yse
k

⌉
. Guaranteeing the set of constraints 3 is satisfied.

Since, yse ∈ {0, 1} and xs ∈ Z for each s ∈ C and e ∈ E , the set of constraints 4 is
satisfied and the rounded solution XY is feasible for Model 1. Furthermore, for each
edge e ∈ E the number of stars in C that cover e is at most f and since XYr satisfies
constraints 2, it follows:

f × max
s∈C,e∈Es

{
yrse

} ≥
∑

s∈C,e∈Es

yrse = 1.

For any s ∈ C and e ∈ Es , if yse = 1, then the rounding strategy guarantees
that yrse = max

s′∈C,e∈Es′

{
yrs′e

} ≥ 1
f = yse

f , implying that yse ≤ f × yrse. Otherwise,
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yse = 0 ≤ yrse ≤ f × yrse. Therefore, for each s ∈ C:

∑

e∈Es

yse ≤
∑

e∈Es

f × yrse ≤ f × k × xrs .

The last inequality is given by constraints 3, which XYr satisfies. Since xs =⌈∑
e∈Es yse
k

⌉
for each s ∈ C, trivially xs ≤ ∑

e∈Es
yse and:

∑

s∈C
xs ≤

∑

s∈C

∑

e∈Es

yse ≤ ( f × k) ×
∑

s∈C
xrs .

The optimal value of the linear relaxation (
∑

s∈C xrs ) is less than or equal to the
optimal solution value of Model 1 which, by Lemma 1 is less than or equal to the
cardinality of an optimal solution of k- SCC. Hence, a constellation C obtained from
XY byLemma 2, is a ( f ×k)-approximation for k- SCCwith instance I . The existence
of polynomial time algorithms for linear programs was proved in Khachiyan (1980)
and the construction of XY from XYr can be done inO (|E | × |C|), which is the same
time required to construct C from XY in Lemma 2. Thus, there exists a polynomial
time ( f × k)-approximation algorithm for k- SCC with instance I . ��

4.3 Greedy algorithm for K-SCC

Another approach for approximating k- SCC may be to consider a greedy algorithm
and to analyze its approximation ratio. Algorithm 1 is an example of this strategy.

input : I = 〈G = (V , E) ,C, k〉 instance of k- SCC
output : C a k-split constellation of C covering all edges in E .

1 begin
2 C = ∅
3 EC = ∅
4 while |EC | < |E | do
5 s ← star in C that covers most edges of E \ EC
6 s ← subgraph of s obtained by removing the edges in EC
7 if s has more than k edges then
8 s ← subgraph of s with k edges
9 end

10 C ← C ∪ {s}
11 EC ← EC ∪ Es
12 end
13 return C
14 end

Algorithm 1: Greedy algorithm for k- SCC.

The next lemma shows that Algorithm 1 constructs in polynomial time a feasible
solution for k- SCC over any valid instance.
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Lemma 3 Forany instance I = 〈G = (V , E) , C, k〉of k- SCC, Algorithm1computes
a feasible solution within O

(|E |2 × |C|) time.

Proof Consider an instance I = 〈G = (V , E) , C, k〉 of k- SCC as input of Algorithm
1.

If, at the beginning of an iteration of the loop between lines 4 and 12, the set C is a
k-split constellation of C that covers the edges in EC ⊂ E , then the star s ∈ C selected
at line 5 covers at least one edge in E \ EC and after the update at line 6, the star s
still covers such edge. Moreover, all edges covered by s after executing line 6 are not
covered by any star of C and, if s covers more than k edges, then s is updated to a
maximal k-star that is subgraph of its previous value (between lines 7 and 9). Thus,
at line 9 the star s is a k-star that is subgraph of some star in C, whose edges are not
covered by any star of C , hence C ∪ {s} is a k-split constellation of C that covers the
edges in EC ∪ Es and, since s covers at least one edge, |EC | < |EC ∪ Es |. Therefore,
after executing lines 10 and 11, the new value of C is a k-split constellation of C that
covers the edges of the new value of EC and EC contains at least one new edge.

The first value of C is the empty constellation (line 2) which covers the first value
of EC ⊂ E (the empty set of edges, line 3), implying that at each iteration of the loop
between lines 4 and 12, the set C is a k-split constellation of C that covers EC ⊆ E .
Since the loop stops when EC = E , it follows that, at line 13, C is a feasible solution
for k- SCC with instance I .

The computation of lines 2, 3 and 13 requires O (1) elementary operations. The
number of iterations of the loop between lines 4 and 12 is O (|E |) because at least
one new edge of E is included in EC at each iteration. The computation of line 5 can
be done in O (|E | × |C|) time, while the computation between lines 6 and 11 can be
done inO (|E | + |C|) time. In consequence, the overall time complexity of Algorithm
1 with instance I is O

(|E |2 × |C|). ��

Inspired on the results of Slavík (1996), next lemma demonstrates that Algorithm 1
provides a solution whose approximation ratio is very close to the inapproximability
limit given by Theorem 2.

Lemma 4 For any instance I = 〈G = (V , E) , C, k〉 of k- SCC, the solution of
Algorithm 1 is an (ln |E | − ln ln |E | + Θ (1))-approximation to the optimal value.

Proof Consider an instance I = 〈G = (V , E) , C, k〉 of k- SCC, where C∗ is an
optimal solution andC is the solution given byAlgorithm 1, being {si }|C|

i=1 the sequence
in which the stars were added to C by Algorithm 1.

Since C∗ is a feasible solution of k- SCC with instance I , the edges in E can be
covered by |C∗| stars that are subgraphs of elements in C, implying that at least one

of those stars covers
⌈ |E |

|C∗|
⌉
edges of E . The star s1 ∈ C is selected by Algorithm 1 in

order to cover the greater quantity of edges, thus:

∣
∣Es1

∣
∣ ≥

⌈ |E |
|C∗|

⌉

=
⌈∑|C|

j=1

∣
∣Es j

∣
∣

|C∗|

⌉

,
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where
∑|C|

j=1

∣
∣Es j

∣
∣ = |E | because the stars of C are edge-disjoint and cover all edges

in E .

Analogously, at least one star of C∗ covers

⌈
|E |−∣

∣Es1

∣
∣

|C∗|
⌉

edges of E \ Es1 and the

star s2 ∈ C satisfies:

∣
∣Es2

∣
∣ ≥

⌈
|E | − ∣

∣Es1

∣
∣

|C∗|

⌉

=
⌈∑|C|

j=2

∣
∣Es j

∣
∣

|C∗|

⌉

.

Generalizing the analysis for each 1 ≤ i ≤ |C |, it follows:

∣
∣Esi

∣
∣ ≥

⌈ |E | − ∑i−1
j=1

∣
∣Es j

∣
∣

|C∗|

⌉

=
⌈∑|C|

j=i

∣
∣Es j

∣
∣

|C∗|

⌉

≡ ∣
∣Esi

∣
∣ ≥

⌈∑|C|
j=i+1

∣
∣Es j

∣
∣

|C∗| − 1

⌉

Any star s ∈ C must cover at least one edge, otherwise s would not be included in
C by Algorithm 1. Hence,

∣
∣Es|C |

∣
∣ ≥ 1 = a1 and:

∣
∣Es|C |−1

∣
∣ ≥

⌈
a1

|C∗| − 1

⌉

= a2, . . .
∣
∣Es1

∣
∣ ≥

⌈∑|C|−1
j=1 a j

|C∗| − 1

⌉

= a|C|.

If the greedy number of Slavík (1996) (N (|C | , |C∗|) = ∑|C|
i=1 ai ) is considered,

then:

|E | =
|C|∑

i=1

∣
∣Esi

∣
∣ ≥

|C|∑

i=1

ai = N
(|C | , ∣∣C∗∣∣) ,

where, if N (l,m) ≤ n, then l
m ≤ (ln n − ln ln n + Θ(1)) (Slavík 1996). Therefore:

|C | ≤ (ln |E | − ln ln |E | + Θ(1)) × ∣
∣C∗∣∣ .

��
The next theorem is obtained by joining the results of lemmata 3 and 4, improving

the approximation ratio given by Remark 3.

Theorem 4 For any instance I = 〈G = (V , E) , C, k〉 of k- SCC, there exists an
O

(|E |2 × |C|) time (ln |E | − ln ln |E | + Θ (1))-approximation algorithm.

5 Polynomial time special cases

In addition to the complexity and approximability results, this work considers special
classes of graphs for whom CC and k- SCC can be solved in polynomial time. This
section presents a study over bounded degree recursively (�, μ, L)-balanced graphs,
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which is a class that includes paths, cycles, bounded degree trees and cacti, among
other graph subclasses. The definition of this class is presented below.

Definition 10 Given an integer number � ≥ 1 and a rational number μ > 1, a graph
G = (V , E) with |V | > � is (�, μ)-balanced if there exists a set of nodes B ⊂ V
(named (�, μ)-balance set ofG), such that |B| = � and each component of the induced
subgraph of G over the nodes in V \ B has at most |V |

μ
− � nodes (|VH | ≤ |V |

μ
− � for

each component H ⊆ G [V \ B]). If |V | ≤ �, then G is considered (�, μ)-balanced.

Definition 11 Given two integers L ≥ � ≥ 1 and a rationalμ > 1, a graphG = (V , E)

is recursively (�, μ, L)-balanced if |V | ≤ L or if G is (�, μ)-balanced and for any
(�, μ)-balance set B ofG, every component H ⊆ G [V \ B] is a recursively (�, μ, L)-
balanced graph.

Next theorem shows that CC and k- SCC can be solved in polynomial time for
recursively (�, μ, L)-balanced graphs with bounded degree.

Theorem 5 Given three fixed integers Δ ≥ 0 and L ≥ � ≥ 1 and a rational constant
μ > 1, for any instance I = 〈G = (V , E) , C〉 (I = 〈G = (V , E) , C, k〉) where G
is recursively (�, μ, L)-balanced andmaxu∈V δ (u) = Δ, CC (k- SCC) can be solved
within the following time complexity:

⎧
⎪⎪⎨

⎪⎪⎩

O
(
|V |Δ×�×logμ 2+1

)
, if 2Δ > μ

O
(
|V |Δ×�×logμ 2+1 × log |V |

)
, if 2Δ = μ

O
(|V |�+1) , if2Δ < μ

Proof Let I = 〈G = (V , E) , C〉 (I = 〈G = (V , E) , C, k〉) be an instance of CC (k-
SCC), where the maximum degree of the nodes in V is less than or equal to a constant
Δ, being G recursively (�, μ, L)-balanced, for some constant values L ≥ � ≥ 1 and
μ > 1.

IfΔ < 2, trivially there are no star with more than one edge and an optimal solution
would be E . So, the following analysis is made for Δ ≥ 2.

Consider a (�, μ)-balance set B of G and an optimal solution C∗ for CC (k-
SCC) with instance I . Denote by B∗ the subset of C∗ containing the stars centered
at some node of B and, for each component H = (VH , EH ) ⊆ G [V \ B] denote by
HB∗ = (

VHB∗ , EHB∗
)
the subgraph of G obtained after including in H the edges of

E that are not covered by B∗ and have one node in B and the other in H , i.e.,

VHB∗ = VH ∪ {
u|u ∈ B, v ∈ VH , 〈u, v〉 ∈ E, B∗ does not cover 〈u, v〉} ,

EHB∗ = EH ∪ {〈u, v〉|u ∈ B, v ∈ VH , 〈u, v〉 ∈ E, B∗ does not cover 〈u, v〉} .

The above definition guarantees that, for each pair of different components
H1, H2 ⊆ G [V \ B], the graphs H1B∗ and H2B∗ are edge-disjoint and if they
have some common nodes, then those nodes belong to B. Thus, for any component
H ⊆ G [V \ B], the stars ofC∗ covering the edges of HB∗ form an optimal solution of
CC(k- SCC) over the instance that considers as input the graph HB∗ and the stars C that
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are subgraphs of HB∗ (for k- SCCare also considered the subgraphs of the elements
in C that are subgraphs of HB∗ ).

Therefore, given a (�, μ)-balance set B of G, an optimal solution for CC(k- SCC)
with instance I can be computed as follows:

– Iterate over each constellation B ′ ⊆ C (for k- SCCB ′ also considers subgraphs of
elements in C) whose stars are centered in B. Construct a solution CB′ with the
stars of B ′ (for k- SCCwith any minimum cardinality k-split of B ′) and, for each
H ⊆ G[V \ B], include in CB′ an optimal solution of the subproblem considering
the graph HB′ and the respective stars of C.

– Select a constellation CB′ with minimum cardinality.

If two constellations B ′ and B ′′ of the above iteration satisfy that the edges covered
by the stars of B ′ are the same edges covered by the stars of B ′′, then HB′ = HB′′ for
each H ⊆ G[V \ B]. Hence, the computation of the subproblems optimal solutions
need to be done only over constellations centered at B that cover different edges.

Algorithm 2 uses the above idea to exactly solve CC(k- SCC) when the graph is
recursively (�, μ, L)-balanced. Between lines 2 and 4 the algorithm starts checking if
the instance is small enough to be exactly solved. If not, between lines 5 and 11 the
algorithm searches for an (�, μ)-balance set B by iterating over all possible subsets
of size � in G. If such set does not exists, then the graph is not recursively (�, μ, L)-
balanced and the algorithm halts with an error at Line 13, otherwise, between lines
15 and 32 the algorithm implements the idea previously described and at Line 33 an
optimal solution is returned. ��

Given a set of nodes S, the total number of constellations whose stars are centered
at elements of S is bounded by the multiplication, over each u ∈ S, of the total number
of edge-disjoint sets of stars centered at u. For each 0 ≤ i ≤ δ (u), there are at most(

δ (u)

i

)

stars with i edges centered at u, being
∑δ(u)

i=0

(
δ (u)

j

)

= 2δ(u) an upper

bound for the number of stars centered at u. Thus, the number of sets with i stars

centered at u is bounded by

(
2δ(u)

i

)

, and the total number of edge-disjoint sets of

stars centered at u is bounded by
∑δ(u)

i=0

(
2δ(u)

i

)

≤ 2δ(u)2 ≤ 2Δ2
. Furthermore, the

number of constellations whose stars are centered at elements of S is less than or equal
to

∏
u∈S 2Δ2 ≤ 2|S|×Δ2

.
From the above discussion, when Algorithm 2 executes Line 3, the computational

time required is O
(
2L×Δ2

)
and since L and Δ are constant values the overall com-

putation between lines 2 and 5 results O (1). There are

( |V |
�

)

≤ |V |� possible sets
of � nodes and, by counting the nodes at each component in a Deep First Search
(Cormen et al. 2009) one may check if a set is an (�, μ)-balance of G. Hence, since
2 × |E | = ∑

u∈V δ (u) ≤ Δ × |V | (Handshaking Lemma, Bollobás 1998), the com-
putation between lines 6 and 11 can be done inO

(|V |� × (|V | + |E |)) = O
(|V |�+1)

time.
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input : I = 〈G = (V , E) ,C〉 (I = 〈G = (V , E) ,C, k〉) instance of CC (k- SCC) and constants
L ≥ � ≥ 1 and μ > 1

output : C∗ optimal solution of CC (k- SCC) with instance I , if G is recursively (�, μ)-balanced.
1 begin
2 if |V | ≤ L then
3 Enumerate all feasible constellations and return the best one
4 end
5 B = ∅
6 for each set S of � nodes of V do
7 if S is an (�, μ)-balance of G then
8 B ← S
9 break

10 end
11 end
12 if B = ∅ then
13 ERROR “G is not recursively (�, μ, L)-balanced”
14 end
15 C∗ ← ∅
16 T ← empty dictionary
17 for each constellation B′ whose stars are centered at some node in B do
18 C ′ ← ∅
19 if the set EB′ of the edges covered by B′ is a key in T then
20 C ′ ← B′ ∪ T

[
EB′

]

21 else
22 for each component H ⊆ G [V \ B] do
23 C∗

HB′ ← Algorithm 2 recursive call over the subproblem with HB′
24 C ′ ← C ′ ∪ C∗

HB′
25 end
26 T

[
EB′

] ← C ′
27 C ′ ← C ′ ∪ B′
28 end
29 if

∣
∣C ′∣∣ <

∣
∣C∗∣

∣ or C∗ = ∅ then
30 C∗ ← C ′
31 end
32 end
33 return C∗
34 end

Algorithm 2: Exact algorithm for CC (k- SCC) when the graph is recursively
(�, μ, L)-balanced.

The computational time required between lines 12 and 16 is O (1) and the loop

from line 17 – 32 is executed at most O
(
2|B|×Δ2

)
= O

(
2�×Δ2

)
= O (1) times,

which corresponds to the number of constellations with stars centered at nodes of B.
At each iteration of the loop, the number of edges in EB′ is limited by Δ × �, so
almost all instructions of the loop can be executed in O (1) time, with exception of
the recursive calls between lines 22 and 25. The recursive calls are executed when a
constellation B ′ covers edges not covered by a previous constellation and, since any
constellation whose stars are centered at nodes of B may cover at most Δ×� edges, it
follows that the total number of different sets of edges is limited by 2Δ×�, which is an
upper bound for the maximum number of times Algorithm 2 executes the instructions
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from line 22 – 25. Moreover, the following recursive function is an upper bound for
the overall computational time required by Algorithm 2:

F (|V |) = 2Δ×� ×
∑

H⊆G[V \B]
F (|HB′ |) + Θ

(
|V |�+1

)
.

Each component H at line 22 has at most |V |
μ

− � nodes, implying that HB′ has

at most |V |
μ

nodes. Also, F (a) + F (b) ≤ F (a + b) for any two values a, b ≥ 1,
allowing to consider the union of components whose nodes sum is less than or equal
to |V |

μ
, hence:

F (|V |) ≤ 2Δ×� × μ × F
( |V |

μ

)

+ Θ
(
|V |�+1

)
.

The proof is completed by using theMaster Theorem (Cormen et al. 2009) on F :

F (|V |) =

⎧
⎪⎪⎨

⎪⎪⎩

O
(
|V |Δ×�×logμ 2+1

)
, if 2Δ > μ

O
(
|V |Δ×�×logμ 2+1 × log |V |

)
, if 2Δ = μ

O
(|V |�+1) , if 2Δ < μ

��
The above theorem can be applied to different special classes of graph such as

trees. Every tree G = (V , E) has at least one centroid (Jordan 1869), which is a node
u ∈ V , satisfying that each component of G [V \ {u}] has at most |V |

2 nodes. Hence, if

|V | ≥ 6, then each component of G [V \ {u}] has at most 2×|V |
3 −1 nodes. Since each

connected subgraph of a tree is also a tree, it follows that any tree with is recursively(
1, 3

2 , 6
)
-balanced.

Corollary 1 For any instance I = 〈G, C〉 (I = 〈G, C, k〉) where G is a tree
with maximum degree equals to a constant Δ, CC (k- SCC) can be solved within
O

(|V |1.71×Δ+1) time complexity.

An extension of the concept of centroid can be used to obtain an analogous result
for cacti, allowing to obtain the following corollary.

Corollary 2 For any instance I = 〈G, C〉 (I = 〈G, C, k〉) where G is a cactus
with maximum degree equals to a constant Δ, CC (k- SCC) can be solved within
O

(|V |3.42×Δ+1) time complexity.

Proof Consider a cactus G = (V , E), a spanning tree T of G (Bollobás 1998) and a
centroid u of T . If each component of G [V \ {u}] has at most |V |

2 nodes, then, for any

node v ∈ V with v �= u, each component of G [V \ {u, v}] also has at most |V |
2 nodes.

Otherwise, there exist exactly one component H ⊆ G [V \ {u}] with more than |V |
2

nodes, and H contains at least two components H1, H2 ⊂ T |V \ {u}|. Moreover, the
nodes of H are exactly the nodes of the components H1, H2 ⊂ T [V \ {u}], otherwise,
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if H contains a node v /∈ VH1 ∪VH2 , then there exist two cycles inG with two common
nodes u and v, and G would not be a cactus. Furthermore, since there exist already a
path through u connecting H1 to H2, it follows that there exist only one edge 〈v1, v2〉
with v1 ∈ H1 and v2 ∈ H2. Hence, H [V \ {v1}] has two components, each one with
at most |V |

2 nodes.
Therefore, G = (V , E) has two nodes u, v ∈ V for whom each component

of G [V \ {u, v}] has at most |V |
2 nodes. If |V | ≥ 12, then each component of

G [V \ {u, v}] has at most 2×|V |
3 − 2 nodes, implying that every cactus with at least

twelve nodes is
(
2, 3

2

)
-balanced and, because every connected subgraph of a cactus

is also a cactus, it follows that all cacti are recursively
(
2, 3

2 , 12
)
-balanced. Thus, by

using Theorem 5 the proof is completed. ��

6 Final comments

This paper introduced CC and k- SCC, which are two exact graph covering problems
that belong to the complexity class N P-hard and whose solutions may help in network
design and network monitoring applications. Strong inapproximability results were
proved for both problems and approximation ratios were given for the worst feasible
solutions. Besides, for k- SCC, approximation algorithms were presented achieving
an approximation ratio very close to the inapproximability bound proved for the prob-
lem. Additionally, a polynomial time algorithm was discussed for a special class of
bounded degree graphs that includes common network layouts as trees and cacti.Many
questions remain open regarding CC, k- SCC and related problems. Does CC admits
a polynomial time approximation algorithm whose ratio is a logarithmic function on
the number of nodes? Is it possible to obtain tighter approximation ratios for k- SCC
in polynomial time? Are there more special cases that can be solved efficiently? What
is the problems complexity if instead of constellations there are considered other col-
lections of graphs? These and other questions will be approached in future works.
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