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A B S T R A C T

Target set selection problems model influence processes through networks. Usually, these problems seek a
set of individuals to be initially influenced by some content and will help to propagate the content to other
individuals of the network. This work considers generalizations for the minimization and maximization versions
of these problems. We propose binary linear models and Lagrangian relaxations that, for general cases, offer
strictly better bounds than the linear relaxations. To efficiently solve our relaxations we design dynamic
programming algorithms and embedded them in subgradient methods to find the best possible bounds. We
also use the subgradient methods to construct feasible heuristic solutions and, to assess the effectiveness of
our approaches, we run computational experiments on instances generated from real-world datasets. The
experiments indicate that our heuristics obtain almost optimal solutions with good bounds in a very short
time and, in some cases, they guarantee optimality for the constructed solutions.
1. Introduction

Target Set Selection problem (TSS) arises from a diverse range of
areas including marketing, politics, social media and bioinformatics.
Such problems receive a network with influence relations between each
pair of individuals, allowing to model the spread of products, ideas,
news or contagious diseases. Aiming to represent a product acquisition
(the adoption of an idea, a news belief or a disease infection) by
an individual, it is said the individual is influenced (or activated)
and every activated individual becomes an influencer, contributing to
propagate the products (ideas, news or diseases), by influencing (or
activating) other individuals of the network.

A solution for the TSS is a set of individuals to be initially ac-
tivated, while the objective may change depending on the version.
The most common versions are: to minimize the size of the initial
set of individuals while guaranteeing to activate the whole network
or part of it (Min-TSS), and to maximize the part of the network that
will be activated while guaranteeing the size of the initially activated
individuals is not greater than a given upper bound (Max-TSS).

Regardless of the problem version, solving the TSS may help com-
panies to increase the sales of products with low marketing costs. Also,
solutions for those problems could mitigate the disinformation created
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by ‘‘fake news’’ by selecting individuals that will spread accurate news
and ‘‘good practices’’ for information consumption, with positive im-
pacts in politics, public opinion and population beliefs (Lazer et al.,
2018). Those solutions may even help to model the extension of con-
tagious disease development from a small group of initially infected
members in a community (Dreyer and Roberts, 2009).

The first formalizing the TSS as a combinatorial problem were
Kempe et al. (2003), where a polynomial-time approximation algo-
rithm and an NP-hardness proof were given for a probabilistic TSS
inspired in the work of Richardson and Domingos (2002). Since then,
many studies were done on the different variants of the TSS. NP-
hard proofs for the Min-TSS and the Max-TSS were given by several
authors (Centeno et al., 2011; Chen, 2009; Cicalese et al., 2015; Dreyer
and Roberts, 2009; Narayanan and Wu, 2020), followed by approxi-
mation and tractability results for different network structures such as
paths, cycles, trees among other graphs (Chiang et al., 2013; Nichter-
lein et al., 2013), mathematical formulations (Ackerman et al., 2010;
Baghbani et al., 2019; Fardad and Kearney, 2017), heuristic algo-
rithms (Cordasco et al., 2018) and enumerative algorithms as Branch
& Cut (Raghavan and Zhang, 2019). Also, there were studies com-
bining the minimization and maximization objectives, where exact
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algorithms were proposed (Ben-Zwi et al., 2011; Bliznets and Sagunov,
2019) or evolutionary metaheuristics were designed considering some
generalizations for practical applicability (Ravelo et al., 2020).

Despite the several results and approaches to the TSS and its vari-
ants, to the best of our knowledge, no proposals are using Lagrangian
relaxation techniques to obtain bounds or to construct solutions for
some exact nor heuristic method. Therefore, inspired by recent and
successful applications of the Lagrangian relaxation to solve other
problems (Gaudioso et al., 2017; Hernández-Leandro et al., 2019;
Bulbul and Kasimbeyli, 2021; Weiner et al., 2021; Wu et al., 2021), we
study the application of Lagrangian relaxations for different variants
of TSS. Furthermore, in this work, we propose binary linear pro-
grams for generalized versions of minimum and maximum TSS with
Lagrangian relaxations that, in general, provide better bounds than
those produced by the linear programming relaxation. We also design
pseudo-polynomial time algorithms based on dynamic programming
techniques to solve the Lagrangian relaxations and we use subgradient
methods to obtain the Lagrangian relaxations bounds and to construct
feasible heuristic solutions. We test our algorithms over instances cre-
ated from real-world datasets, comparing the quality of our solutions
with optimal values (when found), while our bounds are compared
with the ones obtained by linear relaxations. We also execute tests by
embedding our subgradient method in a Branch & Bound algorithm to
exactly solve the problem instances.

The rest of the paper is organized as follows. In Section 2 we give
some basic notations and formally define the problems we study and
in Section 3 we present new binary linear programming formulations
for the problems. In Section 4 we propose Lagrangian relaxations
for the mathematical formulations and show how exactly solve the
relaxations with dynamic programming techniques. We also prove that
the bounds obtained by our Lagrangian relaxation are better than those
calculated by a linear relaxation in general scenarios and, in Section 5
we propose a subgradient based method to obtain those bounds and
also to construct feasible heuristic solutions. In Section 6, we execute
experiments over instances constructed from real-world datasets to test
our subgradient method independently and as part of a Branch & Bound
algorithm. Finally, in Section 7, the conclusions and future directions
are given.

2. Definitions and notations

This paper considers some of the generalizations given by Ravelo
et al. (2020) for the minimization and maximization Target Set Selec-
tion problems. These problems receive as input a network of individuals
that, at any moment, can be in one of the two states, activated and
non-activated, but once an individual is activated, he/she remains in
that state (i.e., activated individuals never change to non-activated
state). Also, every individual has a rational activation influence value in
[0, 1] over each one of the other individuals in the network, so a non-
activated individual changes its state to activated iff the sum of the
influences of the activated individuals over him is at least one. More
precisely, we define the situation in which an individual will change
its activation state depending on the influences over him as:

Definition 1. Given a finite non-empty set 𝐼 of individuals, a rational
influence function 𝜓 ∶ 𝐼 × 𝐼 → [0, 1] over all pairs of individuals, a set
𝐴 ⊂ 𝐼 of all activated individuals in 𝐼 and a non-activated individual
𝑖 ∈ 𝐼 ⧵ 𝐴, we say that 𝑖 is influenced by 𝐴 iff ∑𝑗∈𝐴 𝜓(𝑗, 𝑖) ≥ 1.

If we activate all individuals influenced by a given set of activated
ones, then we may define the concept of influence propagation step:

Definition 2. Let 𝐼 be a finite non-empty set of individuals, 𝜓 ∶
𝐼 × 𝐼 → [0, 1] a rational influence function over all pairs of 𝐼 and a set

′

2

𝐴 ⊆ 𝐼 of all activated individuals in 𝐼 . If 𝐴 is the set of all individuals 𝐾
in 𝐼 influenced by 𝐴 and we activate all individuals in 𝐴′, then the
influence propagation step from 𝐴 is the set 𝜌(𝐴) = 𝐴′ ∪ 𝐴 with all
activated individuals of 𝐼 .

The influence propagation process from a set of initially activated
individuals consists of activating all non-activated individuals influ-
enced by the activated ones, repeating this process until no new in-
dividual can be activated. Formally:

Definition 3. Given a finite non-empty set 𝐼 of individuals, a rational
influence function 𝜓 ∶ 𝐼 × 𝐼 → [0, 1] over all pairs of 𝐼 and a set
𝐴 ⊆ 𝐼 with all initially activated individuals of 𝐼 . For any integer
𝑡 ≥ 1, we define recursively the influence propagation 𝑡 steps from
𝐴 as the set 𝜌𝑡(𝐴) = 𝜌(𝜌𝑡−1(𝐴)), resulting from activating all individuals
influenced by the active set of individuals 𝜌𝑡−1(𝐴), where 𝜌0(𝐴) = 𝐴
and 𝜌1(𝐴) = 𝜌(𝐴). Considering 𝑇 ≥ 0 is the first integer for which
𝜌𝑇 (𝐴) = 𝜌(𝜌𝑇 (𝐴)), we define the set 𝜌𝑇 (𝐴) ⊆ 𝐼 as the result of the
influence propagation process from 𝐴.

Usually, the objective of the Min-TSS is to find a set of initially acti-
vated individuals 𝐴 with minimum cardinality, that guarantees |

|

𝜌𝑇 (𝐴)|
|

is greater than or equal to a given number of individuals (Centeno et al.,
2011; Dreyer and Roberts, 2009). For the Max-TSS the objective is also
to find a set of initially activated individuals 𝐴, but in this version 𝜌𝑇 (𝐴)
must have maximum cardinality, while |𝐴| cannot be greater than a
iven number of individuals (Ackerman et al., 2010; Baghbani et al.,
019; Cicalese et al., 2015; Narayanan and Wu, 2020).

A generalization for both problems is the weighted TSS (Cicalese
t al., 2015; Raghavan and Zhang, 2019; Ravelo et al., 2020), where in
rder to initially activate the individuals, an effort is required (which
ay be different for different individuals). So, the objective of the
inimization version of the problem is updated to minimize the sum of

he efforts to activate the initial set 𝐴, while the maximization version
ust ensure that the sum of the efforts to activate the initial set 𝐴 is at
ost a given value.

In practical applications, not only different individuals require dif-
erent efforts to be activated, but they also give different rewards if
ctivated (Ravelo et al., 2020). For that reason, in this work, we gener-
lize the weighted TSS and consider that each individual, if activated,
ill give a reward value. Then, in the minimization version of the
roblem the sum of the individuals rewards in 𝜌𝑇 (𝐴) should be at least

some given value, while the objective of the maximization version is
updated to maximize the sum of the individuals rewards in 𝜌𝑇 (𝐴).

Formally, we define the generalized minimization version of the
in-TSS as:

roblem 1. Minimum weighted Effort–Reward Target Set Selection
roblem (Min-ER-TSS)
Input: A tuple ⟨𝐼, 𝜓, 𝛼, 𝛽, 𝐾⟩, where:

• 𝐼 , finite non-empty set of individuals,
• 𝜓 ∶ 𝐼 × 𝐼 → [0, 1], rational non-negative influence function over

each pair of individuals,
• 𝛼 ∶ 𝐼 → Z+, integer non-negative effort function over the

individuals,
• 𝛽 ∶ 𝐼 → Z+, integer non-negative reward function over the

individuals,
• 𝐾 ∈ Z+, integer non-negative value of the minimum reward

required.

Output: A set 𝐴 ⊆ 𝐼 of initially activated individuals that minimizes
he global activation effort (i.e., minimizes ∑

𝑖∈𝐴 𝛼(𝑖)) and guarantees
hat the sum of the individuals rewards in the result of the influence
ropagation process from 𝐴 is at least equals to 𝐾 (i.e., ∑𝑖∈𝜌𝑇 (𝐴) 𝛽(𝑖) ≥

).
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Being the generalized maximization version of the Max-TSS defined
as:

Problem 2. Maximum weighted Effort–Reward Target Set Selection
problem (Max-ER-TSS)

Input: A tuple ⟨𝐼, 𝜓, 𝛼, 𝛽, 𝐾⟩, where:

• 𝐼 , finite non-empty set of individuals,
• 𝜓 ∶ 𝐼 × 𝐼 → [0, 1], rational non-negative influence function over

each pair of individuals,
• 𝛼 ∶ 𝐼 → Z+, integer non-negative effort function over the

individuals,
• 𝛽 ∶ 𝐼 → Z+, integer non-negative reward function over the

individuals,
• 𝐾 ∈ Z+, integer non-negative value of the maximum effort

allowed.

Output: A set 𝐴 ⊆ 𝐼 of initially activated individuals that maximizes
the sum of the individuals rewards in the result of the influence prop-
agation process from 𝐴 (i.e., maximizes ∑

𝑖∈𝜌𝑇 (𝐴) 𝛽(𝑖)) and guarantees
the global activation effort is at most equals to 𝐾 (i.e., ∑𝑖∈𝐴 𝛼(𝑖) ≤ 𝐾).

Min-ER-TSS and Max-ER-TSS are NP-hard since they generalize
the Min-TSS and the Max-TSS, which are NP-hard versions of the
TSS (Dreyer and Roberts, 2009; Narayanan and Wu, 2020). Next section
presents new mathematical formulations for the Min-ER-TSS and the
Max-ER-TSS.

3. Mathematical formulations

In this section, we propose binary linear programs to formulate the
Min-ER-TSS and the Max-ER-TSS. Both problems inputs are the same
tuple ⟨𝐼, 𝜓, 𝛼, 𝛽, 𝐾⟩, just changing the meaning of the last parameter
(𝐾). The outputs are also very similar: a set of initially activated
individuals, where the Min-ER-TSS seeks to minimize the effort assuring
at least some reward, while the Max-ER-TSS aims to maximize the
reward guaranteeing not to exceed some effort. So, the problems are
very alike and, in our formulations, we use the same variables, some
identical constraints and analogous expressions for other constraints
and objective functions.

Before modeling the problems, we prove the following fact which
will allow us to define the variables of our formulations.

Fact 1. Given a finite non-empty set 𝐼 of individuals, a rational influence
function 𝜓 ∶ 𝐼 × 𝐼 → [0, 1] over each pair of individuals and a set 𝐴 ⊆ 𝐼 of
initially activated individuals. The computation of the influence propagation
process from 𝐴 is described by the following sequence:

𝐴 = 𝜌0(𝐴) ⊂ 𝜌1(𝐴) ⊂ 𝜌2(𝐴) ⊂⋯ ⊂ 𝜌𝑇 (𝐴) ⊆ 𝐼,

where 𝑇 is the first non-negative integer number for which 𝜌𝑇 (𝐴) = 𝜌(𝜌𝑇 (𝐴))
with 𝑇 < |𝐼|.

Proof. If 𝐴 = ∅, it follows from Definition 1 that no individual is
influenced by 𝐴. Thus, 𝜌(𝐴) = ∅ = 𝐴 and 𝐴 = 𝜌0(𝐴) = 𝜌𝑇 (𝐴) = ∅ ⊂ 𝐼
with 𝑇 = 0 < |𝐼|.

If 𝐴 ≠ ∅, it follows from Definitions 2 and 3 that 𝜌𝑡(𝐴) ⊆ 𝜌𝑡+1(𝐴) for
any integer 𝑡 ≥ 0 and since the influence propagation process from 𝐴 is
a subset of 𝐼 , we have that 𝜌𝑇 (𝐴) ⊆ 𝐼 . Hence, we proved:

𝐴 = 𝜌0(𝐴) ⊆ 𝜌1(𝐴) ⊆ 𝜌2(𝐴) ⊆⋯ ⊆ 𝜌𝑇 (𝐴) ⊆ 𝐼.

If 𝜌𝑡(𝐴) = 𝜌𝑡+1(𝐴) for some 𝑡 < 𝑇 , then 𝜌𝑡(𝐴) = 𝜌𝑡+1(𝐴) = 𝜌(𝜌𝑡(𝐴))
and 𝑇 would not be the first integer such that 𝜌𝑇 (𝐴) = 𝜌(𝜌𝑇 (𝐴)),
contradicting Definition 3. Therefore, 𝜌𝑡(𝐴) ≠ 𝜌𝑡+1(𝐴) for all 0 ≤ 𝑡 < 𝑇
and

0 1 2 𝑇
3

𝐴 = 𝜌 (𝐴) ⊂ 𝜌 (𝐴) ⊂ 𝜌 (𝐴) ⊂⋯ ⊂ 𝜌 (𝐴) ⊆ 𝐼.
Since 𝜌𝑡(𝐴) ≠ 𝜌𝑡+1(𝐴) for each 0 ≤ 𝑡 < 𝑇 , follows that from 𝜌𝑡(𝐴)
to 𝜌𝑡+1(𝐴) at least one new individual must be activated, and since
|

|

|

𝜌0(𝐴)||
|

> 0 and there are at most |𝐼| individuals, we conclude that
𝑇 < |𝐼|. □

Consider the sequence 𝐴 = 𝜌0(𝐴) ⊂ 𝜌1(𝐴) ⊂ ⋯ ⊂ 𝜌𝑇 (𝐴) ⊆ 𝐼 to
compute the influence propagation process from 𝐴, as described before.
We say that the individual 𝑖 is active at step 𝑡 iff 1 ≤ 𝑡 ≤ 𝑇 + 1 and
𝑖 ∈ 𝜌𝑡−1(𝐴), or 𝑡 > 𝑇 +1 and 𝑖 ∈ 𝜌𝑇 (𝐴), defining the binary variables for
our formulations as follows:1

𝑥𝑡𝑖 =
{

1, if 𝑖 is active at step 𝑡
0, otherwise.

Given an instance ⟨𝐼, 𝜓, 𝛼, 𝛽, 𝐾⟩, by Fact 1 we do not need more
than |𝐼| steps to perform the computation of the influence propagation
process from any subset of 𝐼 . Then, considering that 𝑡 takes integer
values from 1 to |𝐼|, the number of variables results |𝐼|2. Now, we give
constraints to guarantee the feasibility of a solution over the influence
propagation process. The first type of those constraints ensures that if
an individual is active at some step, then he/she must remain active at
further steps (once activated remains activated):

𝑥𝑡−1𝑖 ≤ 𝑥𝑡𝑖, ∀𝑖 ∈ 𝐼, 2 ≤ 𝑡 ≤ |𝐼| . (1)

Notice that, for each individual 𝑖, the above constraints guarantee:

𝑥1𝑖 ≤ 𝑥2𝑖 ≤ 𝑥3𝑖 ≤ ⋯ ≤ 𝑥|𝐼|𝑖 .

Then, if an individual 𝑖 is active at some step 𝑡 (𝑥𝑡𝑖 = 1), 𝑖 will remain
activated for all steps 𝑟 ≥ 𝑡, since 𝑥𝑟𝑖 will be equals to 1. Another group
of constraints introduces the conditions to activate an individual. If the
individual 𝑖 is not initially activated (𝑥1𝑖 = 0), then, in order to be
activated at step 𝑡 > 1 (𝑥𝑡𝑖 = 1), 𝑖 must be influenced by the active
individuals in the step 𝑡 − 1, that is:
∑

𝑗∈𝐼⧵{𝑖}
𝜓(𝑗, 𝑖)𝑥𝑡−1𝑗 ≥ 1.

Thus, for any initially non-activated individual 𝑖 (𝑥1𝑖 = 0) the
following inequality must hold at any step 𝑡 ≥ 2:

∑

𝑗∈𝐼⧵{𝑖}
𝜓(𝑗, 𝑖)𝑥𝑡−1𝑗 ≥ 𝑥𝑡𝑖 ∀𝑖 ∈ 𝐼, 2 ≤ 𝑡 ≤ |𝐼|

≡ 𝑥1𝑖 +
∑

𝑗∈𝐼⧵{𝑖}
𝜓(𝑗, 𝑖)𝑥𝑡−1𝑗 ≥ 𝑥𝑡𝑖 ∀𝑖 ∈ 𝐼, 2 ≤ 𝑡 ≤ |𝐼| . (2)

Observe that, if individual 𝑖 is initially activated, then 𝑥1𝑖 = ⋯ =
𝑥|𝐼| = 1 and the last inequality holds true. Also, if individual 𝑖 is
influenced at step 𝑡 − 1 (∑𝑗∈𝐼⧵{𝑖} 𝜓(𝑗, 𝑖)𝑥

𝑡−1
𝑗 ≥ 1), then 𝑖 must be active

at step 𝑡 (𝑥𝑡𝑖 = 1). The following constraints ensure that condition:
∑

𝑗∈𝐼⧵{𝑖}
𝜓(𝑗, 𝑖)

(

𝑥𝑡𝑖 − 𝑥
𝑡−1
𝑗

)

> −1 ∀𝑖 ∈ 𝐼, 2 ≤ 𝑡 ≤ |𝐼| .

The strict inequality of the previous set of constraints implies that
the region of feasible solutions is not convex. So, in order to avoid strict
inequalities, we introduce a very small positive value 𝜖 (e.g., 𝜖 = 10−6):

∑

𝑗∈𝐼⧵{𝑖}
𝜓(𝑗, 𝑖)

(

𝑥𝑡𝑖 − 𝑥
𝑡−1
𝑗

)

≥ −1 + 𝜖 ∀𝑖 ∈ 𝐼, 2 ≤ 𝑡 ≤ |𝐼| . (3)

The computation of the influence propagation process is fully described
by the constraints above. The next expressions are related to the effort
and the reward values of a solution. For the effort of a solution, the only
significant values are associated with individuals initially activated,
i.e., individuals that are active at step 1. So, the effort of a solution
may be calculated as follows:
∑

𝑖∈𝐼
𝛼(𝑖)𝑥1𝑖 .

1 We add 1 to the step indexes of the variables in order to make clear the
further notation: indexes range from 1 to |𝐼| instead of from 0 to |𝐼| − 1.
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On the other hand, for the reward of a solution, the only significant
values are those associated with individuals active at the last step:
∑

𝑖∈𝐼
𝛽(𝑖)𝑥|𝐼|𝑖 .

Since the objective of the Min-ER-TSS is to minimize the effort of
ctivating individuals while ensuring the reward is at least the given
onstant 𝐾, the below formulation is valid for the problem:

odel 1. Binary linear program for instance ⟨𝐼, 𝜓, 𝛼, 𝛽, 𝐾⟩ of Min-ER-
SS:

min
∑

𝑖∈𝐼
𝛼(𝑖)𝑥1𝑖

.𝑡. ∶ Constraints (1), (2), 𝑎𝑛𝑑 (3)
∑

𝑖∈𝐼
𝛽(𝑖)𝑥|𝐼|𝑖 ≥ 𝐾 (4)

𝑥𝑡𝑖 ∈ {0, 1} ∀𝑖 ∈ 𝐼, 1 ≤ 𝑡 ≤ |𝐼| (5)

Our formulation for the Max-ER-TSS is very similar to the one
or the Min-ER-TSS, the differences are on the expressions with effort
nd reward values. One of those expressions is the objective function
here instead of minimizing the effort to activate the initial set as

he Min-ER-TSS does, the Max-ER-TSS must maximize the reward given
y the final set of activated individuals. The other expression where
he formulations diverge is the constraint which uses the instance
arameter 𝐾. While the Min-ER-TSS must guarantee a minimum reward
alue given by 𝐾, the Max-ER-TSS should ensure that the effort to
ctivate the initial set is not greater than the allowed value 𝐾.

odel 2. Binary linear program for instance ⟨𝐼, 𝜓, 𝛼, 𝛽, 𝐾⟩ of Max-ER-
SS:

max
∑

𝑖∈𝐼
𝛽(𝑖)𝑥|𝐼|𝑖

.𝑡. ∶ Constraints (1), (2), (3), 𝑎𝑛𝑑 (5).
∑

𝑖∈𝐼
𝛼(𝑖)𝑥1𝑖 ≤ 𝐾 (6)

In order to solve Min-ER-TSS and Max-ER-TSS by using the above
odels, one strategy is to propose relaxations whose solution values

re, respectively, lower and upper bounds of the optimal values. Such
ounds may be used in enumerative algorithms to reduce the solutions’
earch space or in heuristics to help in the construction of solutions.
n that direction, a practical and useful approach is the Lagrangian
elaxation.

. Lagrangian relaxations

In this section, we propose Lagrangian relaxations for the Min-ER-
SS and the Max-ER-TSS, providing dynamic programming algorithms
o solve them. We consider that, in both problems formulations, the
onstraints which make hard to find an optimal solution are those
nsuring the individuals active status at any step iff they were activated
t the initial step or they were influenced by the set of active individuals
n the previous step (constraints (2) and (3)).

Let 𝜆 and 𝜇 be non-negative real vectors associated with constraints
2) and (3), respectively. To relax the constraints (2), for each 𝑖 ∈ 𝐼
nd 𝑡 ∈ {2,… , |𝐼|}, we multiply

(

𝑥𝑡𝑖 − 𝑥
1
𝑖 −

∑

𝑗∈𝐼⧵{𝑖} 𝜓(𝑗, 𝑖)𝑥
𝑡−1
𝑗

)

by 𝜆𝑡𝑖,
adding the resulting expression to the objective function. Analogously,
constraints (3) are relaxed by adding 𝜇𝑡𝑖 ×

(

−1 + 𝜖 −
∑

𝑗∈𝐼⧵{𝑖} 𝜓(𝑗, 𝑖)
(

𝑥𝑡𝑖 − 𝑥
𝑡−1
𝑗

))

to the objective function. In this context, 𝜆 ≥ 0 and
≥ 0 are called Lagrange multiplier vectors and allow us to define

he Lagrangian relaxations given by Models 3 and 4.
4

o

odel 3. Lagrangian Relaxation for Model 1 of Min-ER-TSS with respect
o instance ⟨𝐼, 𝜓, 𝛼, 𝛽, 𝐾⟩ and multipliers 𝜆 and 𝜇:

min
∑

𝑖∈𝐼
𝛼(𝑖)𝑥1𝑖 +

|𝐼|
∑

𝑡=2

∑

𝑖∈𝐼
𝜆𝑡𝑖

(

𝑥𝑡𝑖 − 𝑥
1
𝑖 −

∑

𝑗∈𝐼⧵{𝑖}
𝜓(𝑗, 𝑖)𝑥𝑡−1𝑗

)

+
|𝐼|
∑

𝑡=2

∑

𝑖∈𝐼
𝜇𝑡𝑖

(

−1 + 𝜖 −
∑

𝑗∈𝐼⧵{𝑖}
𝜓(𝑗, 𝑖)

(

𝑥𝑡𝑖 − 𝑥
𝑡−1
𝑗

)

)

.𝑡. ∶ Constraints (1), (4), 𝑎𝑛𝑑 (5).

odel 4. Lagrangian Relaxation for Model 2 of Max-ER-TSS with respect
o instance ⟨𝐼, 𝜓, 𝛼, 𝛽, 𝐾⟩ and multipliers 𝜆 and 𝜇:

max
∑

𝑖∈𝐼
𝛽(𝑖)𝑥|𝐼|𝑖 +

|𝐼|
∑

𝑡=2

∑

𝑖∈𝐼
𝜆𝑡𝑖

(

−𝑥𝑡𝑖 + 𝑥
1
𝑖 +

∑

𝑗∈𝐼⧵{𝑖}
𝜓(𝑗, 𝑖)𝑥𝑡−1𝑗

)

+
|𝐼|
∑

𝑡=2

∑

𝑖∈𝐼
𝜇𝑡𝑖

(

1 − 𝜖 +
∑

𝑗∈𝐼⧵{𝑖}
𝜓(𝑗, 𝑖)

(

𝑥𝑡𝑖 − 𝑥
𝑡−1
𝑗

)

)

.𝑡. ∶ Constraints (1), (5), 𝑎𝑛𝑑 (6).

Since we aim to use the above Lagrangian relaxations to obtain
ounds and to construct feasible solutions, an important aspect to be
onsidered is the amount of time required to solve those relaxations.
herefore, the next subsection describes fast algorithms to solve them.

.1. Pseudo-polynomial time dynamic programming solutions

To solve our Lagrangian relaxation Models 3 and 4, we propose
ynamic programming algorithms whose main idea is to compute an
ptimal solution by solving a subproblem for each individual. To obtain
uch algorithms, we first prove in Proposition 1 the existence of an
ptimal solution for the Lagrangian relaxations that can be expressed
n terms of optimal solutions for the individuals subproblems. Then, in
roposition 2, we show how to begin the construction of the optimal
olutions for Models 3 and 4, and in Lemma 1 we give the complete
lgorithm. After that, the time complexity is discussed and given as a
heorem.

In order to simplify the notation, from now on suppose it is given an
nstance ⟨𝐼, 𝜓, 𝛼, 𝛽, 𝐾⟩ of Min-ER-TSS (Max-ER-TSS) with fixed Lagrange
ultiplier vectors 𝜆 and 𝜇. Also, assume, for each individual 𝑖 ∈ 𝐼 and

tep 𝑡 where 1 ≤ 𝑡 ≤ |𝐼|, the value 𝑐𝑡𝑖 (𝑑𝑡𝑖 ) denotes the objective function
onstant multiplying 𝑥𝑡𝑖 of Model 3 (4). So, we may write the objective
unction as:

in
∑

𝑖∈𝐼

|𝐼|
∑

𝑡=1
𝑐𝑡𝑖𝑥

𝑡
𝑖 =

∑

𝑖∈𝐼
𝐶𝑖𝑋𝑖 = 𝐶𝑋

(

max
∑

𝑖∈𝐼

|𝐼|
∑

𝑡=1
𝑑𝑡𝑖𝑥

𝑡
𝑖 =

∑

𝑖∈𝐼
𝐷𝑖𝑋𝑖 = 𝐷𝑋

)

,

here, for each 𝑖 ∈ 𝐼 , 𝐶𝑖 =
{

𝑐𝑡𝑖
}

|𝐼|
𝑡=1 (𝐷𝑖 =

{

𝑑𝑡𝑖
}

|𝐼|
𝑡=1) and 𝑋𝑖 =

{

𝑥𝑡𝑖
}

|𝐼|
𝑡=1,

eing 𝐶 =
{

𝐶𝑖
}

𝑖∈𝐼 (𝐷 =
{

𝐷𝑖
}

𝑖∈𝐼 ) and 𝑋 =
{

𝑋𝑖
}

𝑖∈𝐼 .
We define as first optimal sub-solution of individual 𝑖 ∈ 𝐼 in

odel 3 (4), any optimal solution of the following model:

odel 5. Sub-model of Model 3 (4) for individual 𝑖 ∈ 𝐼 :

min
|𝐼|
∑

𝑡=1
𝑐𝑡𝑖𝑥

𝑡
𝑖 = 𝐶𝑖𝑋𝑖

(

max
|𝐼|
∑

𝑡=1
𝑑𝑡𝑖𝑥

𝑡
𝑖 = 𝐷𝑖𝑋𝑖

)

.𝑡. ∶ Constraints (1) 𝑎𝑛𝑑 (5).

Since every 𝑥𝑡𝑖 is 0 or 1 and all inequality constraints of Model 5 can
e written as 𝑥1𝑖 ≤ 𝑥2𝑖 ≤ ⋯ ≤ 𝑥𝑡𝑖, an optimal solution can be obtained by
inding the step 𝑡∗ that minimizes ∑|𝐼|

𝑡=𝑡∗ 𝑐
𝑡
𝑖 (maximizes ∑|𝐼|

𝑡=𝑡∗ 𝑑
𝑡
𝑖 ). Such 𝑡∗

an be found in  (|𝐼|), by beginning with a solution that activates the
ndividual at step 1 and iterates over each step 𝑡 analyzing if a better
olution can be achieved by not activating the individual until the step
+ 1. Algorithm 1 describes this idea.

Given a first optimal sub-solution 𝑋∗
𝑖 of individual 𝑖 ∈ 𝐼 , a second

∗∗
ptimal sub-solution of 𝑖 is an optimal solution 𝑋𝑖 for Model 5 with
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Input : 𝑐𝑡𝑖 : multipliers of the variables in the objective function, 𝐼 : set of individuals, 𝑖:
individual to compute sub-solutions.

Output : 𝑋∗
𝑖 , 𝑋

∗∗
𝑖 , first and second optimal sub-solutions of 𝑖.

1 begin
2 𝑐 ←

∑
|𝐼|
𝑡=1 𝑐

𝑡
𝑖 , 𝑐

∗ ← 𝑐, 𝑐∗∗ ← +∞, 𝑡∗ ← 1, 𝑡∗∗ ← 0

3 for 𝑡 = 1 to |𝐼| do
4 𝑐 ← 𝑐 − 𝑐𝑡𝑖
5 if 𝑐 < 𝑐∗∗ then
6 𝑡∗∗ ← 𝑡 + 1, 𝑐∗∗ ← 𝑐
7 end
8 if 𝑐 < 𝑐∗ then
9 𝑡∗∗ ← 𝑡∗ , 𝑐∗∗ ← 𝑐∗ , 𝑡∗ ← 𝑡 + 1, 𝑐∗ ← 𝑐
10 end
11 end
12 𝑋∗

𝑖 ← vector with zeros from position 1 to 𝑡∗ − 1 and ones from position 𝑡∗ to |𝐼|
13 𝑋∗∗

𝑖 ← vector with zeros from position 1 to 𝑡∗∗ − 1 and ones from position 𝑡∗∗ to |𝐼|
14 return 𝑋∗

𝑖 , 𝑋
∗∗
𝑖

15 end

Algorithm 1: Algorithm to compute first and second optimal sub-
solutions of individual 𝑖. The algorithm considers the minimization
case. For the maximization case, substitute the input 𝑐𝑡𝑖 by 𝑑𝑡𝑖 ,
the +∞ attribution to 𝑐∗∗ in Line 2 by −∞ and the signs of the
comparisons in lines 5 and 8.

he extra constraint that 𝑋∗∗
𝑖 ≠ 𝑋∗

𝑖 . This sub-solution is also computed
n  (|𝐼|) by Algorithm 1.

The following proposition shows that there exists an optimal solu-
ion of Model 3 (4) conformed by first or second optimal sub-solutions
f the individuals computed by Algorithm 1.

roposition 1. There exists an optimal solution 𝑋 =
{

𝑋𝑖
}

𝑖∈𝐼 of
odel 3 (4) such that, for each 𝑖 ∈ 𝐼 , if 𝑋∗

𝑖 and 𝑋
∗∗
𝑖 are the outputs

f Algorithm 1, then 𝑋𝑖 = 𝑋∗
𝑖 or 𝑋𝑖 = 𝑋∗∗

𝑖 .

roof. Given an optimal solution 𝑋 for Model 3 (4) if 𝑋𝑖 = 𝑋∗
𝑖 or

𝑖 = 𝑋∗∗
𝑖 for every individual 𝑖 ∈ 𝐼 then the proposition is trivially

rue. Otherwise, let 𝐼 ′ ⊆ 𝐼 be the subset containing every individual 𝑖
or whom 𝑋𝑖 ≠ 𝑋∗

𝑖 and 𝑋𝑖 ≠ 𝑋∗∗
𝑖 , where 𝑋∗

𝑖 and 𝑋∗∗
𝑖 are the outputs

f Algorithm 1.
For every 𝑖 ∈ 𝐼 , if 𝑥|𝐼|𝑖 = 0 (𝑥1𝑖 = 1) for one of 𝑋∗

𝑖 or 𝑋∗∗
𝑖 , then such

ub-solution is composed only by zeros (ones) and, since 𝑋∗
𝑖 ≠ 𝑋∗∗

𝑖 , it
ollows that 𝑥|𝐼|𝑖 = 1 (𝑥1𝑖 = 0) for the other sub-solution. Thus, for each
∈ 𝐼 ′, at least one of 𝑋∗

𝑖 and 𝑋∗∗
𝑖 satisfies that 𝑥|𝐼|𝑖 = 1 (𝑥1𝑖 = 0). Denote

y 𝑋′
𝑖 a sub-solution in

{

𝑋∗
𝑖 , 𝑋

∗∗
𝑖
}

that satisfies 𝑥|𝐼|𝑖 = 1 (𝑥1𝑖 = 0) and, for
ach 𝑖 ∈ 𝐼 ′, replace the values of 𝑋𝑖 by 𝑋′

𝑖 in the solution 𝑋, obtaining
new solution 𝑋′, i.e., 𝑋′ =

(

𝑋 ⧵
{

𝑋𝑖
}

𝑖∈𝐼 ′
)

∪
{

𝑋′
𝑖
}

𝑖∈𝐼 ′ . Hence, for every
ndividual 𝑖 ∈ 𝐼 , 𝑋′ satisfies that 𝑋𝑖 = 𝑋∗

𝑖 or 𝑋𝑖 = 𝑋∗∗
𝑖 .

Since, 𝑋∗
𝑖 and 𝑋∗∗

𝑖 are solutions of Model 5, they satisfy the con-
traints 𝑥𝑡−1𝑖 ≤ 𝑥𝑡𝑖 for each 𝑖 ∈ 𝐼 ′ and 2 ≤ 𝑡 ≤ |𝐼|. Thus, 𝑋′

𝑖 also satisfies
uch constraints implying that 𝑋′ satisfies 𝑥𝑡−1𝑖 ≤ 𝑥𝑡𝑖 for all individuals in
′ and every step. For the individuals of 𝐼 ⧵𝐼 ′, the constraints 𝑥𝑡−1𝑖 ≤ 𝑥𝑡𝑖
re also satisfied by 𝑋′, since they were already satisfied by 𝑋 and no
ariable associated with them changed from 𝑋 to 𝑋′.

Also, for each 𝑖 ∈ 𝐼 ′, the selection of 𝑋′
𝑖 guarantees that 𝑥|𝐼|𝑖 = 1

𝑥1𝑖 = 0) in 𝑋′. So, for each 𝑖 ∈ 𝐼 ′, the value of 𝑥|𝐼|𝑖 (𝑥1𝑖 ) in 𝑋′ is greater
lesser) than or equal to the previous value in 𝑋 and, for 𝑖 ∈ 𝐼 ⧵ 𝐼 ′, the
alue of 𝑥|𝐼|𝑖 (𝑥1𝑖 ) is the same in both solutions 𝑋′ and 𝑋. Therefore,
he value of the expression ∑

𝑗∈𝐼 𝛽(𝑗)𝑥
|𝐼|
𝑗 (∑𝑗∈𝐼 𝛼(𝑗)𝑥

1
𝑗 ) for 𝑋′ is greater

lesser) than or equal to its value for 𝑋, implying that 𝑋′ satisfies
𝑗∈𝐼 𝛽(𝑗)𝑥

|𝐼|
𝑗 ≥ 𝐾

(

∑

𝑗∈𝐼 𝛼(𝑗)𝑥
1
𝑗 ≤ 𝐾

)

. Moreover, since 𝑋′ satisfies all
onstraints of the Lagrangian relaxation, 𝑋′ is a feasible solution for
odel 3 (4).

The computation of 𝑋∗
𝑖 and 𝑋∗∗

𝑖 guarantees that 𝐶𝑖𝑋∗
𝑖 ≤ 𝐶𝑖𝑋∗∗

𝑖 ≤
𝑖𝑋𝑖

(

𝐷𝑖𝑋∗
𝑖 ≥ 𝐷𝑖𝑋∗∗

𝑖 ≥ 𝐷𝑖𝑋𝑖
)

. Consequently, 𝐶𝑖𝑋′
𝑖 ≤ 𝐶𝑖𝑋𝑖 (𝐷𝑖𝑋′

𝑖 ≥
𝑖𝑋𝑖), implying that 𝐶𝑋′ ≤ 𝐶𝑋 (𝐷𝑋′ ≥ 𝐷𝑋) and, since 𝑋 is an optimal

olution for Model 3 (4), 𝑋′ must be an optimal solution for the same
odel. □

The following proposition gives us the first step in the construction
f an optimal solution for the problem as described by Proposition 1.
5

roposition 2. Given the set
{⟨

𝑋∗
𝑖 , 𝑋

∗∗
𝑖
⟩}

𝑖∈𝐼 of first and second optimal
ub-solutions calculated by Algorithm 1 for each individual 𝑖 ∈ 𝐼 , there
xists a solution 𝑋 =

{

𝑋𝑖
}

𝑖∈𝐼 that minimizes ∑

𝑖∈𝐼 𝐶𝑖𝑋𝑖 (maximizes
𝑖∈𝐼 𝐷𝑖𝑋𝑖) and satisfies:

1. 𝑋𝑖 ∈
{

𝑋∗
𝑖 , 𝑋

∗∗
𝑖
}

for each 𝑖 ∈ 𝐼 , and
2. ∑

𝑖∈𝐼 𝛽(𝑖)𝑥
|𝐼|
𝑖 ≥ 𝐾

(
∑

𝑖∈𝐼 𝛼(𝑖)𝑥
1
𝑖 ≤ 𝐾

)

, and
3. for every 𝑖 ∈ 𝐼 , if 𝑋∗

𝑖 satisfies 𝑥
|𝐼|
𝑖 = 1 (𝑥1𝑖 = 0), then 𝑋𝑖 = 𝑋∗

𝑖 .

roof. Proposition 1 guarantees the existence of an optimal solution
satisfying the first two items. If 𝑋 also satisfies the last item, then

rivially the proposition is proved. Otherwise, there exists an individual
∈ 𝐼 , such that 𝑥|𝐼|𝑖 = 1 (𝑥1𝑖 = 0) for 𝑋∗

𝑖 and 𝑋𝑖 = 𝑋∗∗
𝑖 . By replacing

n 𝑋 the values of 𝑋∗∗
𝑖 by the values of 𝑋∗

𝑖 , the objective value will
ot be worse since 𝐶𝑖𝑋∗

𝑖 ≤ 𝐶𝑖𝑋∗∗
𝑖 (𝐷𝑖𝑋∗

𝑖 ≥ 𝐷𝑖𝑋∗∗
𝑖 ) and 𝑋 will still

e a feasible solution, because 𝑥|𝐼|𝑖 = 1 (𝑥1𝑖 = 0), so the value of
𝑖∈𝐼 𝛽(𝑖)𝑥

|𝐼|
𝑖

(
∑

𝑖∈𝐼 𝛼(𝑖)𝑥
1
𝑖
)

will not decrease (increase) and will continue
o be greater (lesser) than or equal to 𝐾. Thus, the new solution 𝑋
s an optimal solution for the problem. Therefore, we may repeat that
rocess, at most |𝐼| times, until we get an optimal solution 𝑋 satisfying
he three properties of the proposition. □

By Proposition 2, after computing
{⟨

𝑋∗
𝑖 , 𝑋

∗∗
𝑖
⟩}

𝑖∈𝐼 , we select to 𝑋
ll 𝑋∗

𝑖 for which 𝑥|𝐼|𝑖 = 1 (𝑥1𝑖 = 0) and we denote by 𝐼 ′ ⊆ 𝐼 , the set
f individuals for whom 𝑋∗

𝑖 has 𝑥|𝐼|𝑖 = 0 (𝑥1𝑖 = 1). To finalize the
onstruction of an optimal solution 𝑋, we can solve the subproblem
ver 𝐼 ′ and, considering the minimization version, since 𝑥|𝐼|𝑖 = 1 for
ach 𝑖 ∈ 𝐼 ⧵ 𝐼 ′, the constraint ∑𝑖∈𝐼 𝛽(𝑖)𝑥

|𝐼|
𝑖 ≥ 𝐾 is equivalent to

𝑖∈𝐼
𝛽(𝑖) +

∑

𝑖∈𝐼 ′
𝛽(𝑖)

(

𝑥|𝐼|𝑖 − 1
)

≥ 𝐾 ≡
∑

𝑖∈𝐼 ′
𝛽(𝑖)

(

1 − 𝑥|𝐼|𝑖
)

≤
∑

𝑖∈𝐼
𝛽(𝑖) −𝐾.

Thus, the task is reduced to find a set
{

𝑋𝑖|𝑖 ∈ 𝐼 ′
}

such that ∑

𝑖∈𝐼 ′

𝑖𝑋𝑖 is minimized (∑𝑖∈𝐼 ′ 𝐷𝑖𝑋𝑖 is maximized) and

1. 𝑋𝑖 ∈
{

𝑋∗
𝑖 , 𝑋

∗∗
𝑖
}

for each 𝑖 ∈ 𝐼 ′, and
2. ∑

𝑖∈𝐼 ′ 𝛽(𝑖)
(

1 − 𝑥|𝐼|𝑖
)

≤
∑

𝑖∈𝐼 𝛽(𝑖) −𝐾
(
∑

𝑖∈𝐼 ′ 𝛼(𝑖)𝑥
1
𝑖 ≤ 𝐾

)

.

In order to solve the problem above, we unequivocally identify each
ndividual of 𝐼 ′ by an integer in

[

1, |
|

𝐼 ′|
|

]

, and we define the dynamic
rogramming table 𝑃 with |𝐼 ′| rows. Each row 1 ≤ 𝑗 ≤ |𝐼 ′| can be
ndexed by any integer 𝓁 in

[

0,
∑

𝑖∈𝐼 𝛽(𝑖) −𝐾
]

([0, 𝐾]), where

• If 𝓁 =
∑

𝑖∈𝐼 ′ ,𝑖≤𝑗 𝛽(𝑖)
(

1 − 𝑥|𝐼|𝑖
) (

𝓁 =
∑

𝑖∈𝐼 ′ ,𝑖≤𝑗 𝛼(𝑖)𝑥
1
𝑖

)

for some
sets

{

𝑋𝑖|𝑖 ≤ 𝑗
}

where 𝑖 ∈ 𝐼 ′ and each 𝑋𝑖 is one of 𝑋∗
𝑖 or

𝑋∗∗
𝑖 , then 𝑃 [𝑗,𝓁] contains one of those sets that also minimizes

∑

𝑖∈𝐼 ′ ,𝑖≤𝑗 𝐶𝑖𝑋𝑖 (maximizes ∑

𝑖∈𝐼 ′ ,𝑖≤𝑗 𝐷𝑖𝑋𝑖).
• Otherwise, 𝑃 [𝑗,𝓁] contains the empty set.

From the definition of 𝑃 , a set with better objective value in row
𝐼 ′| will give an optimal solution to the problem. Below, we describe
ow to populate the table 𝑃 .

For row 𝑗 = 1, at any position 𝓁, 𝑃 [1,𝓁] may contain the empty set
r a single element set:

{

𝑋∗
1
}

or
{

𝑋∗∗
1
}

. More precisely, since 𝑥|𝐼|1 = 1
𝑥11 = 0) in 𝑋∗∗

1 , the value of 𝑃 [1, 0] is equal to
{

𝑋∗∗
1
}

and, since 𝑥|𝐼|1 = 0
𝑥11 = 1) in 𝑋∗

1 , the value of 𝑃 [1, 𝛽(1)] is equal to
{

𝑋∗
1
}

(𝑃 [1, 𝛼(1)] =
𝑋∗

1
}

), being 𝑃 [1,𝓁] the empty set for every other position 𝓁:

[1,𝓁] =

⎧

⎪

⎨

⎪

⎩

𝑋∗∗
1 , if 𝓁 = 0

𝑋∗
1 , if 𝓁 = 𝛽(1) (𝓁 = 𝛼(1))

∅, otherwise.

At any further row 1 < 𝑗 ≤ |𝐼 ′|, the value of 𝑃 [𝑗,𝓁] depends
n the values of the previous row 𝑗 − 1. If 𝓁 < 𝛽(𝑗) (𝓁 < 𝛼(𝑗)),
hen 𝑥|𝐼|𝑗 (𝑥1𝑗 ) must be 1 (0), since it would be impossible to satisfy
=

∑

𝑖∈𝐼 ′ ,𝑖≤𝑗 𝛽(𝑖)
(

1 − 𝑥|𝐼|𝑖
) (

𝓁 =
∑

𝑖∈𝐼 ′ ,𝑖≤𝑗 𝛼(𝑖)𝑥
1
𝑖

)

. Hence, for 𝓁 < 𝛽(𝑗)
𝓁 < 𝛼(𝑗)) where 𝑃 [𝑗 − 1,𝓁] ≠ ∅:

[𝑗,𝓁] = 𝑃 [𝑗 − 1,𝓁] ∪ {𝑋∗∗}.
𝑗
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If 𝑃 [𝑗 − 1,𝓁] = ∅, then 𝑃 [𝑗,𝓁] = ∅ since there are no solutions
atisfying 𝓁 =

∑

𝑖∈𝐼 ′ ,𝑖≤𝑗 𝛽(𝑖)
(

1 − 𝑥|𝐼|𝑖
) (

𝓁 =
∑

𝑖∈𝐼 ′ ,𝑖≤𝑗 𝛼(𝑖)𝑥
1
𝑖

)

.
For 𝓁 ≥ 𝛽(𝑗) (𝓁 ≥ 𝛼(𝑗)), suppose 𝑋 =

{

𝑋𝑖|𝑖 ≤ 𝑗
}

is a solution
hat satisfies 𝓁 =

∑

𝑖∈𝐼 ′ ,𝑖≤𝑗 𝛽(𝑖)
(

1 − 𝑥|𝐼|𝑖
) (

𝓁 =
∑

𝑖∈𝐼 ′ ,𝑖≤𝑗 𝛼(𝑖)𝑥
1
𝑖

)

and
inimizes ∑

𝑖∈𝐼 ′ ,𝑖≤𝑗 𝐶𝑖𝑋𝑖 (maximizes ∑

𝑖∈𝐼 ′ ,𝑖≤𝑗 𝐷𝑖𝑋𝑖). Then, there are
wo possible scenarios:

• 𝑋∗
𝑗 ∈ 𝑋, implying that 𝑋 ⧵

{

𝑋∗
𝑗

}

is an optimal solution that satis-

fies 𝓁−𝛽(𝑗) = ∑

𝑖∈𝐼 ′ ,𝑖<𝑗 𝛽(𝑖)
(

1 − 𝑥|𝐼|𝑖
) (

𝓁 − 𝛼(𝑗) =
∑

𝑖∈𝐼 ′ ,𝑖<𝑗 𝛼(𝑖)𝑥
1
𝑖

)

,

i.e., 𝑃 [𝑗−1,𝓁−𝛽(𝑗)] = 𝑋⧵
{

𝑋∗
𝑗

} (

𝑃 [𝑗 − 1,𝓁 − 𝛼(𝑗)] = 𝑋 ⧵
{

𝑋∗
𝑗

})

.

• Otherwise, 𝑋∗∗
𝑗 ∈ 𝑋, implying that 𝑋 ⧵

{

𝑋∗∗
𝑗

}

is an optimal solu-

tion that satisfies 𝓁 =
∑

𝑖∈𝐼 ′ ,𝑖<𝑗 𝛽(𝑖)
(

1 − 𝑥|𝐼|𝑖
)

(

𝓁 =
∑

𝑖∈𝐼 ′ ,𝑖<𝑗 𝛼(𝑖)𝑥
1
𝑖

)

, i.e., 𝑃 [𝑗 − 1,𝓁] = 𝑋 ⧵
{

𝑋∗∗
𝑗

}

.

Therefore, 𝑃 [𝑗,𝓁] is the best solution between 𝑃 [𝑗 − 1,𝓁] ∪
{

𝑋∗∗
𝑗

}

and 𝑃 [𝑗 − 1,𝓁 − 𝛽(𝑗)] ∪
{

𝑋∗
𝑗

} (

𝑃 [𝑗 − 1,𝓁 − 𝛼(𝑗)] ∪
{

𝑋∗
𝑗

})

. Moreover,
if 𝑃 [𝑗 − 1,𝓁] = ∅ and 𝑃 [𝑗 − 1,𝓁 − 𝛽(𝑗)] = ∅ (𝑃 [𝑗 − 1,𝓁 − 𝛼(𝑗)] = ∅),
then 𝑃 [𝑗,𝓁] = ∅ because the best solutions cannot be constructed by a
previous empty set.

From the above discussion, we conclude the following lemma to
compute the dynamic table 𝑃 .

Lemma 1. Considering 𝛾 = 𝛽 (𝛾 = 𝛼), the dynamic table 𝑃 can be
computed at each row 1 ≤ 𝑗 ≤ |𝐼 ′| and column 0 ≤ 𝓁 ≤

∑

𝑖∈𝐼 𝛽(𝑖) − 𝐾
(0 ≤ 𝓁 ≤ 𝐾) as follows:

• If 𝑗 = 1, then 𝑃 [𝑗,𝓁] =
⎧

⎪

⎨

⎪

⎩

𝑋∗∗
1 , if 𝓁 = 0

𝑋∗
1 , if 𝓁 = 𝛾(1)

∅, otherwise.

• Else, if 𝓁 < 𝛾(𝑗), then 𝑃 [𝑗,𝓁] =
{

𝑃 [𝑗 − 1,𝓁] ∪𝑋∗∗
1 , if 𝑃 [𝑗 − 1,𝓁] ≠ ∅

∅, otherwise.
• Else, if 𝑃 [𝑗 − 1,𝓁] ≠ ∅ and 𝑃 [𝑗 − 1,𝓁 − 𝛾(𝑗)] = ∅ or the objective
function value of 𝑃 [𝑗 − 1,𝓁] ∪

{

𝑋∗∗
𝑗

}

is better than the objective

function value of 𝑃 [𝑗 − 1,𝓁 − 𝛾(𝑗)] ∪
{

𝑋∗
𝑗

}

, then 𝑃 [𝑗,𝓁] = 𝑃 [𝑗 −
1,𝓁] ∪𝑋∗∗

1 .
• Else, if 𝑃 [𝑗 − 1,𝓁 − 𝛾(𝑗)] ≠ ∅, then 𝑃 [𝑗,𝓁] = 𝑃 [𝑗 − 1,𝓁 − 𝛾(𝑗)] ∪𝑋∗

1 .
• Else 𝑃 [𝑗,𝓁] = ∅.

To solve Model 3 (4), we can compute the optimal sub-solutions
for each individual in time (|𝐼|), resulting in (|𝐼|2) overall time
complexity. The time required to select the sub-solutions that satisfy
the last property of Proposition 2 is (|𝐼|). Then, an algorithm based on
Lemma 1 can compute each row of the dynamic table with (

∑

𝑖∈𝐼 𝛽(𝑖)−
𝐾) ((𝐾)) elementary operations and since there are |𝐼 ′| ≤ |𝐼| rows, the
computation of table 𝑇 will take 

(

|𝐼| ×
(
∑

𝑖∈𝐼 𝛽(𝑖) −𝐾
))

( (|𝐼| ×𝐾))
time. Finally, we select the best solution in the last row of the table
in time 

(
∑

𝑖∈𝐼 𝛽(𝑖) −𝐾
)

( (𝐾)) which is an optimal solution for the
problem. This discussion leads us to the following theorem, which
states the existence of a pseudo-polynomial time algorithm for Model 3
(4).

Theorem 1. Model 3 (4) can be exactly solved in 
(

|𝐼|2 + |𝐼| ×𝑀
)

time,
where 𝑀 =

∑

𝑖∈𝐼 𝛽(𝑖) −𝐾 (𝑀 = 𝐾).

4.2. Quality of the relaxations

Besides the computational efficiency, another important property
of relaxations is related to the quality of the bounds provided by its
solutions. In that direction, we show that there exist multipliers 𝜆 and
𝜇 for whom the bounds of our Lagrangian relaxation are strictly better
than the bounds of a linear relaxation of Models 1 and 2.
6

Fisher (1981) gave sufficient conditions for a Lagrangian relaxation
be better than a linear relaxation. Those conditions imply that a La-
grangian relaxation offers strictly better bounds than a linear relaxation
if there are no integer optimal solutions for the Lagrangian relaxation
when the integrality constraints are dropped. Thus, to prove the exis-
tence of Lagrange multipliers 𝜆 and 𝜇, for whom the bounds given by
Model 3 (4) are strictly greater (lesser) than the bounds obtained by
a linear relaxation of Model 1 (2), we show that, for those 𝜆 and 𝜇,
no optimal solution of the linear relaxation of Model 3 (4) satisfies the
integrality constraints.

If the linear relaxation of Model 3 (4) has an optimal solution
that satisfies the integrality constraints, then that solution objective
value is equals to the value of solution 𝑋 calculated by the dynamic
programming algorithm described in the previous subsection. Thus, 𝑋
is an optimal solution of the linear relaxation and satisfies Proposi-
tion 1. Hence, given the set of first and second optimal sub-solutions
{⟨

𝑋∗
𝑖 , 𝑋

∗∗
𝑖
⟩}

𝑖∈𝐼 calculated by Algorithm 1, we formulate the problem
described in Proposition 1, whose solution is 𝑋. In that formulation,
we consider, for each individual 𝑖 ∈ 𝐼 , the binary variable 𝑦𝑖, that takes
value 1 if 𝑋∗

𝑖 is part of the solution 𝑋 and value 0 if 𝑋∗∗
𝑖 is part of the

solution 𝑋:

Model 6.

min
∑

𝑖∈𝐼
𝐶𝑖

(

𝑋∗
𝑖 𝑦𝑖 +𝑋

∗∗
𝑖 (1 − 𝑦𝑖)

)

(

max
∑

𝑖∈𝐼
𝐷𝑖

(

𝑋∗
𝑖 𝑦𝑖 +𝑋

∗∗
𝑖 (1 − 𝑦𝑖)

)

)

𝑠.𝑡. ∶
∑

𝑖∈𝐼
𝛽(𝑖)

(

𝑥∗|𝐼|𝑖 𝑦𝑖 + 𝑥
∗∗|𝐼|
𝑖 (1 − 𝑦𝑖)

)

≥ 𝐾

(

∑

𝑖∈𝐼
𝛼(𝑖)

(

𝑥∗1𝑖 𝑦𝑖 + 𝑥
∗∗1
𝑖 (1 − 𝑦𝑖)

)

≤ 𝐾

)

𝑦𝑖 ∈ {0, 1} ∀𝑖 ∈ 𝐼.

Any solution 𝑌 =
{

𝑦𝑖
}

𝑖∈𝐼 of the linear relaxation of the above model
will produce a feasible solution 𝑋𝑌 =

{

𝑋∗
𝑖 𝑦𝑖 +𝑋

∗∗
𝑖 (1 − 𝑦𝑖)|𝑖 ∈ 𝐼

}

of
the linear relaxation of Model 3 (4). Constraints of type 𝑥𝑡𝑖 ≤ 𝑥𝑡+1𝑖 are
satisfied because 𝑥∗𝑡𝑖 ≤ 𝑥∗𝑡+1𝑖 and 𝑥∗∗𝑡𝑖 ≤ 𝑥∗∗𝑡+1𝑖 , thus 𝑥∗𝑡𝑖 𝑦𝑖 + 𝑥

∗∗𝑡
𝑖 (1 − 𝑦𝑖) ≤

𝑥∗𝑡+1𝑖 𝑦𝑖+𝑥∗∗𝑡+1𝑖 (1−𝑦𝑖) for any 𝑦𝑖 ∈ [0, 1]. The constraint ∑𝑖∈𝐼 𝛽(𝑖)𝑥
|𝐼|
𝑖 ≥ 𝐾

∑

𝑖∈𝐼 𝛼(𝑖)𝑥
1
𝑖 ≤ 𝐾

)

was already satisfied by Model 6. Furthermore, the
bjective value associated with 𝑌 in Model 6 is equal to the objective
alue associated with 𝑋𝑌 in Model 3 (4). Therefore, the value of
n optimal solution of the linear relaxation of Model 3 (4) is lesser
greater) than or equal to the value of an optimal solution of the linear
elaxation of Model 6.

If we define 𝑐𝑖 = 𝐶𝑖(𝑋∗
𝑖 −𝑋

∗∗
𝑖 ) (𝑑𝑖 = 𝐷𝑖(𝑋∗

𝑖 −𝑋
∗∗
𝑖 )), 𝑏𝑖 = 𝛽(𝑖)(𝑥∗1𝑖 −𝑥∗∗1𝑖 )

(𝑎𝑖 = 𝛼(𝑖)(𝑥∗1𝑖 −𝑥∗∗1𝑖 )) and 𝐾𝐵 = 𝐾−
∑

𝑖∈𝐼 𝛽(𝑖)𝑥
∗∗
𝑖 (𝐾𝐴 = 𝐾−

∑

𝑖∈𝐼 𝛼(𝑖)𝑥
∗∗
𝑖 )

for each individual 𝑖 ∈ 𝐼 , then Model 6 may be rewritten as:

min
∑

𝑖∈𝐼
𝑐𝑖𝑦𝑖

(

max
∑

𝑖∈𝐼
𝑑𝑖𝑦𝑖

)

𝑠.𝑡. ∶
∑

𝑖∈𝐼
𝑏𝑖𝑦𝑖 ≥ 𝐾𝐵

(

∑

𝑖∈𝐼
𝑎𝑖𝑦𝑖 ≤ 𝐾𝐴

)

𝑦𝑖 ∈ {0, 1} ∀𝑖 ∈ 𝐼.

The above problem is the binary Knapsack problem (Martin, 1999)
and, in general, there are no optimal solutions of the linear relaxation
where all variables take integer values. Thus, for general cases, the
value of an optimal solution 𝑌 of the linear relaxation is strictly lesser
(greater) than the value of 𝑋. Hence, the value of 𝑋𝑌 is also lesser
(greater) than or equal to the value of 𝑋 and 𝑋 cannot be an optimal

solution of the linear relaxation of Model 3 (4). Therefore, for general
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instances and all non-negative real values of Lagrange multipliers 𝜆 and
, there are no optimal solutions of the linear relaxation of Model 3 (4)
hat satisfy the integrality constraints. Moreover, for general instances,
ur Lagrangian relaxation is guaranteed to provide a value strictly
reater (lesser) than the optimum value of the linear relaxation of
odel 1 (2). So, we have the following theorem.

heorem 2. For general Min-ER-TSS (Max-ER-TSS) instances, there
xist non-negative real Lagrange multipliers 𝜆 and 𝜇 for which the optimal
olution value of Model 3 (4) is strictly greater (lesser) than the optimal
olution value of the linear relaxation of Model 1 (2).

In the next section, we describe a subgradient method to find
he values of 𝜆 and 𝜇, that guarantee better bounds than the linear
elaxation.

. Subgradient method

Subgradient methods have been largely used to find Lagrange mul-
ipliers for which the bounds are as good as possible. Zhao et al.
1999) describe general subgradient methods, proving their correctness
nd efficiency. We adapted the subgradient method to not only obtain
he bounds but also to compute a feasible heuristic solution for the
roblem. Algorithm 2 shows the subgradient method we use, being the
agrangian coefficient matrix 𝑄 ∈ R2|𝐼|2×|𝐼|2 and independent terms
ector 𝑟 ∈ R2|𝐼|2 defined over the relaxed constraints:

𝑥1𝑖 +
∑

𝑗∈𝐼⧵{𝑖}
𝜓(𝑗, 𝑖)𝑥𝑡−1𝑗 − 𝑥𝑡𝑖 ≥ 0 ∀𝑖 ∈ 𝐼, 2 ≤ 𝑡 ≤ |𝐼| (7)

∑

∈𝐼⧵{𝑖}
𝜓(𝑗, 𝑖)

(

𝑥𝑡𝑖 − 𝑥
𝑡−1
𝑗

)

≥ −1 + 𝜖 ∀𝑖 ∈ 𝐼, 2 ≤ 𝑡 ≤ |𝐼| , (8)

here, the first |𝐼|2 lines of 𝑄 correspond to the coefficients of the
ariables of inequalities (7) and the last |𝐼|2 lines to the coefficients
f the variables of inequalities (8). Similarly, the first |𝐼|2 values of 𝑟
orrespond to the independent terms of inequalities (7), while the last
𝐼|2 elements are the independent terms of inequalities (8).

Algorithm 2 describes a standard subgradient optimization method
see Zhao et al., 1999) with the inclusion of initially generated com-
inatorial bounds and greedy feasible solutions (lines 6 and 7), and
heuristic procedure to obtain feasible solutions (line 25) from the

agrangian relaxation ones.
For the initial combinatorial lower (upper) bound we calculate

wo values: 𝑚, the minimum number of active individuals required to
ctivate at least one new individual and 𝑚𝑘, the minimum (maximum)
umber of individuals whose reward (effort) sum is greater (lesser)
han or equal to 𝐾. If 𝑚𝑘 < 𝑚, then any feasible solution of Min-ER-
SS (Max-ER-TSS) must (can) activate at least (most) 𝑚𝑘 individuals in
rder to satisfy an activation reward (effort) greater (lesser) than or
qual to 𝐾. In such case, an initial combinatorial lower (upper) bound
s the effort (reward) sum of the 𝑚𝑘 individuals with lesser (greater)
ffort (reward) values. If 𝑚𝑘 ≥ 𝑚, then by activating 𝑚 individuals,
he activation process may begin and in some cases could reach the
omplete network. Thus, when 𝑚𝑘 ≥ 𝑚, an initial combinatorial lower
upper) bound is the effort sum of the 𝑚 individuals with lesser effort
alues (the reward sum of the complete network).

The initial feasible solution of Algorithm 2 is greedily constructed.
or the Min-ER-TSS, the construction begins with an empty set of
nitially activated individuals. Then, until the reward of the activated
ndividuals is lesser than 𝐾, we select to the initially activated set
he non-activated individual 𝑖 with greater 𝛽(𝑖)

𝛼(𝑖) value and apply the
ctivation process. For the Max-ER-TSS, the idea is similar, but the
ondition to stop is when no new individual can be added to the set
7

Input : ⟨𝐼, 𝜓, 𝛼, 𝛽, 𝐾⟩, instance of Min-ER-TSS and stop conditions’ parameters 𝜉1 , 𝜉2 and 𝜉3 .
Output : 𝑋𝑙, 𝑙𝑏,𝑋𝑢, 𝑢𝑏, solution and value of the Lagrangian relaxation with best lower bound

found and feasible heuristic solution with its associated value.
1 begin
2 𝑄← Lagrangian coefficient matrix for 𝐼, 𝜓
3 𝑟← Lagrangian independent terms vector for 𝐼, 𝜓
4 𝜆, 𝜇 ← Initial Lagrange multipliers vector
5 𝑠 ← Initial step size
6 𝑋𝑙, 𝑙𝑏← Initial combinatorial lower bound and solution associated
7 𝑋𝑢, 𝑢𝑏← Initial feasible combinatorial solution and its value
8 𝑔 ← +∞
9 Start counter for iterations without change
10 while 𝑠 > 𝜉1 and ||𝑔||2 > 𝜉2 and 𝑢𝑏 − 𝑙𝑏 > 𝜉3 do
11 𝑋′ , 𝑣′ ← Optimal solution and objective value of Model 3 with Lagrange multipliers 𝜆

and 𝜇
12 if 𝑣′ > 𝑙𝑏 then
13 𝑋𝑙, 𝑙𝑏← 𝑋′ , 𝑣′
14 else
15 Increment counter for iterations without change
16 if counter for iterations without change reached a limit then
17 𝑠 ← 𝜃 × 𝑠
18 Restart counter for iterations without change and redefine its limit
19 end
20 end
21 𝑔 ← 𝑄 ×𝑋′ − 𝑟
22 if ||𝑔||2 > 0 then

23 𝜆, 𝜇 ← (𝜆, 𝜇) + 𝑠×(𝑢𝑏−𝑣′)
||𝑔||2

× 𝑔

24 end
25 𝑋′ , 𝑣′ ← Compute new feasible combinatorial solution from 𝑋′ , 𝑣′

26 if 𝑣′ < 𝑢𝑏 then
27 𝑋𝑢, 𝑢𝑏← 𝑋′ , 𝑣′
28 end
29 end
30 return 𝑋𝑙, 𝑙𝑏,𝑋𝑢, 𝑢𝑏
31 end

Algorithm 2: Subgradient method for Model 3. 𝜉1, 𝜉2 and 𝜉3 are
the stop conditions parameters of the algorithm, and they should
be ‘‘small enough’’ to guarantee a ‘‘good enough’’ precision for the
solutions. The parameter 𝜃 is used to update the step size multi-
plier (usually to decrease the value when the steps are too large).
For the maximization case, instead of computing a combinatorial
lower bound at Line 6, compute a feasible combinatorial solution,
while in Line 7 compute a combinatorial upper bound 𝑢𝑏 and in
Line 11 solve the Lagrangian relaxation given by Model 4. To
finalize the algorithm adaptation for the maximization case, swap
the comparisons of lines 12 and 26 and the updates of lines 13
and 27.

f initially activated individuals without getting an effort sum greater
han 𝐾.

At each iteration of the subgradient method, after computing the
agrangian bounds by using the pseudo-polynomial time dynamic pro-
ramming algorithm discussed in previous sections (line 11), a new
euristic solution is constructed (line 25) following the same idea of
he greedy algorithm used to generate the initial feasible solution. The
ifference is that initially activated individuals of the last solution of
he Lagrangian relaxation have priority to be included in the initially
ctivated set of the new heuristic solution.

In the next section, we present tests of the described subgradient
ethod over instances constructed from real-world scenarios.

. Computational experiments

To test our proposals, we generated instances based on real-world
atasets provided by Batagelj and Mrvar (2006). We solved each in-
tance with our subgradient method and compared the bounds obtained
ith the bounds given by the linear relaxation solutions of Models 1
nd 2. For each execution of the subgradient method we fixed the
arameters as follows: 𝜉1 = 𝜉2 = 10−4, 𝜉3 = 9 × 10−1, 𝜃 = 0.5, initial
= 𝜇 = null vector, 𝑠 = 2, initial limit of iterations without improving

he bound equals to min{30, |𝐼|}, and the limit of iterations without
mproving the bound redefinition was set equal to 2

3 of its previous
value.

We also implemented a Branch & Bound algorithm where, at each
explored node, the algorithm calls our subgradient method to calculate
bounds and also to construct a heuristic solution trying to improve the
best solution found. The decision of which node to explore is given
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Table 1
Selected datasets from Batagelj and Mrvar (2006). Columns Symmetrical, |𝐼| and Relations indicate, respectively, if the
relations are symmetrical, the number of individuals and the number of entries in the relation matrices.
Number Name: Datasets Symmetrical |𝐼| Relations

1 Knoke Bureaucracies: KNOKI No 10 100
2 Knoke Bureaucracies: KNOKM No 10 100
3 Roethlisberger & Dickson Bank: RDGAM Yes 14 196
4 Roethlisberger & Dickson Bank: RDPOS Yes 14 196
5 Roethlisberger & Dickson Bank: RDHLP No 14 196
6 Kapferer Mine: KAPFMU Yes 15 225
7 Kapferer Mine: KAPFMM Yes 15 225
8 Thurman Office: THURA No 15 225
9 Thurman Office: THURM Yes 15 225
10–24 Newcomb Fraternity: NEWC1 … NEWC15 No 17 289
25 Davis Southern Club Women: DAVIS Yes 18 252
26–28 Sampson Monastery: SAMPLK1 … SAMPLK3 No 18 324
29 Sampson Monastery: SAMPES No 18 324
30 Sampson Monastery: SAMPIN No 18 324
31–51 Krackhardt Office css: KRACKAD1 … KRACKAD21 No 21 441
52–72 Krackhardt Office css: KRACKFR1 … KRACKFR21 Yes 21 441
73 Zachary Karate Club: ZACHE Yes 34 1156
74 Zachary Karate Club: ZACHC Yes 34 1156
75 Bernard & Killworth Technical: BKTECC No 34 1156
76–77 Kapferer Tailor Shop: KAPFTI1, KAPFTI2 No 39 1521
78–79 Kapferer Tailor Shop: KAPFTS1, KAPFTS2 Yes 39 1521
80 Bernard & Killworth Office: BKOFFC No 40 1600
81 Bernard & Killworth Ham Radio: BKHAMC No 44 1936
82 Bernard & Killworth Fraternity: BKFRAC No 58 3364
by a variable with the greater number of constraints unsatisfied by
the Lagrangian relaxation and the first explored value (zero or one)
depends on the value of such variable on the best solution found until
that moment by the Branch & Bound (an attempt of following the path
described by the best solution found). We tested all instances with our
Branch & Bound comparing at each branching the bounds given by the
subgradient method and the linear relaxation.

Since Branch & Bound are enumerative algorithms and an exact
solution may take an enormous amount of time to be found, we set a
time limit for the executions equals to one hour. We also solved the
instances with the Gurobi solver (Gurobi Optimization, 2020), after
formulating them with Models 1 and 2. To compare the performance
of the proposed Lagrangian relaxation with respect to linear relaxations
embedded in enumerative methods, we also set one hour as the time
limit for the Gurobi solver execution, disabling the solver heuristics and
cuts generation.

The rest of this section describes the computational environment
for the experiments, the selected datasets and the instance construction
process, finishing with the tests results and their analysis.

6.1. Computing environment

The computational resources used in the experiments were: Pro-
cessor Intel® Corep™ i5-7400M (CPU @ 3.0 GHz and 8 GB of RAM);

perational system Microsoft Windows 10 Pro 64 bits; Programming
anguage Python 3.7. The CPU times were obtained by using the
ime() function from Python’s time module.

6.2. Test instances

The datasets were obtained from UCINET IV DATASETS (Batagelj
and Mrvar, 2006). All selected datasets are described by Table 1.

The datasets informed in Table 1 report relations between indi-
viduals of the same community observed in real-world studies. Those
relations represent the number of times each pair of individuals inter-
acted in a task of interest, the ranking that each individual gives to
the others and the existence of reliability or friendship between the
individuals. Hence, to construct the instances from the databases we
8

compute, for each individual 𝑖 ∈ 𝐼 , a value 𝑅𝑖 as the sum of the relation
values of the other individuals over 𝑖 (i.e., 𝑅𝑖 =

∑

𝑗∈𝐼⧵{𝑖} 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑗, 𝑖)).
Then, for each pair of individuals 𝑖, 𝑗, we define 𝜓(𝑗, 𝑖) = 2 × 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑗,𝑖)

𝑅𝑖
,

guaranteeing that an individual 𝑖 will be activated iff the activated
relation sum over 𝑖 is at least 𝑅𝑖

2 , which simulates the majority threshold
activation (Ackerman et al., 2010).

In order to mimic more realistic scenarios, we consider that if
an individual 𝑖 ∈ 𝐼 requires a ‘‘small’’ number of already activated
individuals to be activated, then 𝑖 should require a small effort to
be initially activated. That situation may be modeled by counting
for each individual 𝑖 ∈ 𝐼 , the number of individuals with influence
value over 𝑖 greater than or equal to some threshold (e.g., 1

|𝐼| ). Thus,
for each individual 𝑖 ∈ 𝐼 , we define the effort as 𝛼(𝑖) = 1 + |𝐼| −
|

|

|

|

{

𝑗 | 𝑗 ∈ 𝐼 ⧵ {𝑖} and 𝜓(𝑗, 𝑖) ≥ 1
|𝐼|

}

|

|

|

|

.

We also assume that individuals with greater influence over the
others, usually provide greater rewards. Therefore, for each individual
𝑖 ∈ 𝐼 , we define the reward as 𝛽(𝑖) = 1 +

[

∑

𝑗∈𝐼⧵{𝑖} 𝜓(𝑖, 𝑗)
]

.

Finally, for the Min-ER-TSS we set 𝐾 =
[∑

𝑖∈𝐼 𝛽(𝑖)
2

]

, to guarantee
that every solution has at least half of the total reward. For Max-ER-
TSS we set 𝐾 =

[

2 ×
∑

𝑖∈𝐼 𝛼(𝑖)
|𝐼|

]

, such a formula was defined to avoid

‘‘easy’’ instances where optimal values are very close to those obtained
by the linear relaxation. Table 2 gives the number of variables and
constraints of the formulations for each dataset.

6.3. Results and analysis

To analyze the quality of the bounds, for each instance we solved
the linear relaxation using the Gurobi solver and we also computed the
bound given by our subgradient method approach. The results of these
tests are illustrated by Fig. 1 for the Min-ER-TSS and by Fig. 2 for the
Max-ER-TSS.

From Fig. 1 it is evident the superiority of the lower bounds found
by our subgradient method in comparison with the bounds obtained
by the linear relaxation of Model 1, while the computational times re-
quired by both approaches were very low and similar for the majority of

the experiments. For Min-ER-TSS we observe that the linear relaxation
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Fig. 1. Bounds and execution times of our subgradient approach and the linear relaxation of Model 1 for Min-ER-TSS on each dataset. Figure generated from Table A.3 of Appendix,
the best known values were taken from Tables A.7 and A.8.

Fig. 2. Bounds and execution times of our subgradient approach and the linear relaxation of Model 2 for Max-ER-TSS on each dataset. Figure generated from Table A.4 of
Appendix, the best known values were taken from Tables A.9 and A.10.
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Table 2
Number of variables and constraints of Models 1 and 2 for each dataset.
Number Datasets Variables Constraints

1–2 KNOK and KNOKM 100 271
3–5 RDGAM, RDPOS and RDHLP 196 547
6–9 KAPFMU, KAPFMM, THURA and THURM 225 631
10–24 NEWC1 … NEWC15 289 817
25–30 DAVIS, SAMPLK1 … SAMPLK3, SAMPES and SAMPIN 324 919
31–72 KRACKAD1 … KRACKAD21 and KRACKFR1 … KRACKFR21 441 1261
73–75 ZACHE, ZACHC and BKTECC 1156 3367
76–79 KAPFTI1, KAPFTI2, KAPFTS1 and KAPFTS2 1521 4447
80 BKOFFC 1600 4681
81 BKHAMC 1936 5677
82 BKFRAC 3364 9919
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lower bounds were worse than the subgradient bounds for 95.1% of the
tested instances, where the average linear relaxation bound as percent
of the subgradient bound was 2.2%. Only in 4.9% of the tested Min-ER-
SS instances, the linear relaxation obtained better bounds than those
iven by our subgradient method, and even in those cases the bounds of
he subgradient were greater than 50% of the linear relaxation bound,
eing 71.6% the average subgradient bound as percent of the linear
elaxation bound (for these 4.9% instances). However, since the linear
elaxation of Model 1 resulted in the value of zero for 90.2% of the
ests, it may imply that our formulation for the Min-ER-TSS is not

strong enough and that better formulations should be considered for
this version of the problem.

Analyzing the results reported by Fig. 2 for Max-ER-TSS, we note
that both strategies obtained the same bounds in 45.1% of the tested
instances, being the bounds of the linear relaxation better than those
from the subgradient method in 30.5% of the cases, while the subgra-
dient bounds were better than the linear relaxation bounds in 24.4% of
the tests. Notice that for the 30.5% of the tests where the subgradient
was worse, the average value of the subgradient bounds as percent of
the linear relaxation bound was 128.7%, while for the 24.4% where
the subgradient was better, the average value of the linear relaxation
bound as percent of the subgradient bound was 696.1%, implying that
the quality of the subgradient bounds was (in general) superior to that
of the linear relaxation bounds. Such a conclusion is enforced when
we analyze all tested instances, where the average subgradient bound
as percent of the linear relaxation bound was 88.7%. Therefore, even
when the linear relaxation obtained better bounds for more instances,
the average values of the subgradient bounds were much tighter than
those of the linear relaxation bounds. Analogously to the Min-ER-TSS,
the computational times of both approaches were very low and similar
for the majority of the experiments.

A better comprehension of the subgradient bounds quality can be
achieved if compared with the optimal values for each instance. From
Fig. 1 we observe that, for Min-ER-TSS, the subgradient bounds were
equal to the optimal values for 2.4% of the tests, above 80% of the
optimal values for 26.8% of the tests, and at least 50% of the optimal
values for 62.2% of the tests. Although the subgradient bounds were
better than the linear relaxation bounds for Min-ER-TSS and tight
enough for most of these instances, there was a subset representing
4.8% of the tests where the subgradient bounds were very low, less
than 20% of the optimal value. For Max-ER-TSS, Fig. 1 shows that the
subgradient bounds were equal to the optimal values in 24.4% of the
tests, below 140% of the optimal values in 52.2% of the tests, and at
most 200% of the optimal values for 73.2% of the tests. Despite the
subgradient was capable of obtaining more tighter bounds for Max-
ER-TSS, the subset of instances with very inaccurate bounds (above
five times the optimal values) was larger than the one for Min-ER-TSS,
representing 9.8% of the tested instances.

For a deeper comparison of the sharpness of the bounds, we exe-
cuted a Branch & Bound algorithm, where at every node the subgradi-
10

ent method was executed and the linear relaxation was solved. Fig. 3
illustrates, for each instance, the average values of the linear relaxation
bound as a percent of our subgradient method bound on every node,
and the average execution time of the linear relaxation as a percent of
the subgradient execution time.

Fig. 3 shows that, for the Min-ER-TSS, the lower bounds provided
y the subgradient method during the Branch & Bound execution were
uch sharper than the lower bounds obtained by the linear relaxation

f Model 1. That observation is based on the fact that, for almost all
ests (over 90%), the lower bound of the linear relaxation was under

20% of the lower bound of the subgradient method. Besides that,
he superiority of our subgradient method for the Min-ER-TSS on the
ested datasets is also given by the computational efficiency, since for
lmost all instances the linear relaxation execution took over 200% the
ime required by our subgradient method. An analogous analysis can
e done for Max-ER-TSS, where for more than a half of the instances
over 67%) the linear relaxation upper bound was ten times worse than
he subgradient upper bound, being also superior the computational
fficiency of the subgradient approach achieving (for some instances)
time lesser than 1% of the linear relaxation time.

The subgradient method is also designed to construct heuristic
olutions for the problems. So, we analyze the quality of the obtained
olutions for each tested dataset, executing also the Branch & Bound
ith our subgradient method embedded to exactly solve the instances.
igs. 4 and 5 illustrate, for each instance of Min-ER-TSS and Max-ER-
SS, respectively, our heuristic solution value and the solution value
btained by the proposed Branch & Bound algorithm and the Gurobi
olver.

From Fig. 4 we observe that for 51.2% of Min-ER-TSS instances
ur subgradient method obtained heuristic solutions whose values were
ptimal, for another 34.1% of the tests the gap2 was less than 20%,
nd only for 2.4% of the tested instances the gap was greater than
0%. For Max-ER-TSS the results in Fig. 5 are very similar, in 53.7%
f the instances the subgradient method obtained optimal solutions, in
1.7% of the tests the gap was less than 20%, and only for 2.4% of the
nstances the presented gap was greater than 50%.

To evaluate the performance of a Branch & Bound based on the
agrangian relaxation and an exact solver based on linear relaxation,
e may analyze the results of the implemented Branch & Bound and

he Gurobi solver in Figs. 4 and 5. For both problems, we notice that
oth approaches were able to solve to optimality almost all instances,
ut the average time required by the Gurobi solver was 193.2 s while
or the implemented Branch & Bound this value was slightly greater
208.8 s). Although the average computational time of the Gurobi
olver was smaller, the implemented Branch & Bound usually explored
uch fewer nodes of the enumeration tree, being the average number

f explored nodes by the Branch & Bound equal to 523.8 while for the

2 The gap expression is |𝑣−𝐵𝐾𝑉 |×100
𝐵𝐾𝑉

, where 𝑣 is the value of the subgradient
and 𝐵𝐾𝑉 the best known value
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Fig. 3. Average values of the linear relaxation bounds as a percent of the bounds provided by the subgradient method during the Branch & Bound execution for each dataset and
average linear execution times as a percent of the average execution times given by the subgradient method. Figure generated from Tables A.5 and A.6 of Appendix.

Fig. 4. Execution results of our subgradient approach, Branch & Bound and the Gurobi solver over each instance of the Min-ER-TSS. The first graphic shows the solution values
found by each approach. The second graphic shows the execution time of each approach in minutes. Figure generated from Tables A.7 and A.8 of Appendix.
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Fig. 5. Execution results of our subgradient approach, Branch & Bound and the Gurobi solver over each instance of the Max-ER-TSS. The first graphic shows the solution values
found by each approach. The second graphic shows the execution time of each approach in minutes. Figure generated from Tables A.9 and A.10 of Appendix.
Gurobi solver this value was 25 876.8. Therefore, to propose robust
and competitive exact algorithms that use our Lagrangian relaxation,
some strategies should be introduced that consider preprocessing, to re-
use computations in previous subgradient calls, to reduce the number
of nodes where the subgradient method is executed, among others.
Despite the implemented Branch & Bound must be improved to be
considered a proposal for solving these problems, we notice that this
method obtained better gaps and solutions than the Gurobi solver
(without the heuristics and cut generations) in 4.9% of the experiments,
while the Gurobi solver only obtained a better gap in 0.6% of the
experiments (one instance: 82 - BKFRAC for Max-ER-TSS).

In general, our subgradient method is not only very fast but also
provided nice bounds and heuristic solutions for many of the tested
instances, being an interesting approach for Min-ER-TSS and Max-
ER-TSS. Besides, this method can be easily embedded within other
techniques as metaheuristics or enumerative algorithms.

7. Final comments and future directions

This paper considered the Min-ER-TSS and the Max-ER-TSS which
are 𝑁𝑃 -hard problems that generalize already studied versions of
the TSS and allow to model a larger diversity of real-world scenar-
ios. For each problem, we gave a binary linear model and proposed
Lagrangian relaxations to compute their bounds. We also designed
efficient algorithms based on dynamic programming techniques to
solve the Lagrangian relaxations and proved that, for general cases, the
Lagrangian relaxation bounds are strictly better than the bounds given
by a linear relaxation of our binary formulations. Besides, we designed
a subgradient method to find Lagrangian bounds with a good enough
precision, which had embedded a greedy heuristic to compute feasible
solutions.

To test our approaches, we generated instances from real-world
datasets and compared with the linear relaxation of the Gurobi solver
(Gurobi Optimization, 2020). We also implemented a Branch & Bound
algorithm that at each node used the proposed subgradient method to
decide if the node would be explored or not.
12
The computational experiments show that for both problems our
subgradient method obtained competitive bounds when compared with
those given by the linear relaxation, and for some instances the bounds
were equal to the optimal value. Also, the heuristic solutions of the
subgradient method were optimal for many instances (over 50% of the
tests), with optimality guarantees for some of them. Besides that, the
subgradient method was very fast with execution times less than one
second for a majority of the tests. Moreover, the Branch & Bound with
the subgradient method embedded explored very few nodes to reach
the optimal value, if compared with an exact solver that used the linear
relaxation. However, before proposing an exact algorithm based on our
Lagrangian relaxation some improvements to the implemented Branch
& Bound must be considered.

Future works will consider combining our subgradient method with
some metaheuristics to improve the results and to test on larger in-
stances, similar strategies were successfully applied for other prob-
lems such as the multi-activity shift scheduling problem (Hernández-
Leandro et al., 2019), the maximum edge disjoint path problem (Weiner
et al., 2021), and the aircraft maintenance routing problem (Bulbul
and Kasimbeyli, 2021). Another possible direction would be to for-
mally study the quality of the mathematical models and to analyze
the existence of stronger formulations. Also, the applicability of these
techniques should be studied for related problems in viral marketing as
influence maximization with deactivation in social networks (Tanınmış
et al., 2019), and seeding of new products (Negahban and Smith, 2018).
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Appendix. Experiments results

This appendix contains tables with the values obtained in the experiments, used to generate the figures that supported the results analysis of
the computational tests.

Table A.3
Results of the subgradient method bounds in comparison with the linear relaxation for the Min-ER-TSS. The execution times
are given in seconds. The best bounds for each instance are highlighted with bold text.
Dataset Subgradient Linear relaxation Dataset Subgradient Linear relaxation

Bound Time Bound Time Bound Time Bound Time

1 3.0 <0.1 3.6 0.2 42 4.0 0.7 0.0 0.4
2 2.0 <0.1 0.0 0.1 43 6.0 0.7 0.0 0.4
3 10.0 0.1 0.0 0.2 44 1.0 0.7 0.0 0.4
4 5.0 0.1 0.0 0.2 45 5.0 0.7 0.0 0.4
5 4.0 0.1 0.0 0.2 46 6.0 0.6 0.1 0.4
6 6.0 0.2 0.0 0.2 47 6.0 0.7 0.0 0.3
7 5.0 0.2 0.0 0.2 48 5.0 0.7 0.0 0.5
8 23.0 4.4 22.8 0.3 49 5.0 0.7 0.0 0.4
9 5.0 0.2 0.0 0.2 50 5.0 0.7 0.0 0.4
10 15.0 0.3 0.0 0.3 51 9.0 0.7 0.0 0.4
11 15.0 0.3 0.0 0.4 52 6.0 0.6 0.0 0.3
12 15.0 0.3 0.0 0.3 53 7.0 0.6 0.0 0.4
13 15.0 0.3 0.0 0.3 54 7.0 0.6 13.8 0.3
14 14.0 0.3 0.0 0.3 55 7.0 0.6 0.0 0.4
15 13.0 0.3 0.0 0.3 56 5.0 0.7 0.0 0.4
16 14.0 0.3 0.0 0.3 57 7.0 0.6 0.0 0.3
17 14.0 0.3 0.0 0.3 58 6.0 0.7 0.0 0.4
18 14.0 0.3 0.0 0.3 59 7.0 0.6 8.9 0.4
19 13.0 0.3 0.0 0.3 60 7.0 0.6 9.5 0.3
20 13.0 0.3 0.0 0.4 61 7.0 0.6 0.0 0.3
21 13.0 0.3 0.0 0.4 62 6.0 0.7 0.0 0.4
22 13.0 0.3 0.0 0.3 63 7.0 0.6 0.2 0.4
23 13.0 0.3 0.0 0.3 64 7.0 0.7 0.0 0.4
24 13.0 0.3 0.0 0.4 65 4.0 0.7 0.0 0.3
25 11.0 0.4 0.0 0.4 66 7.0 0.6 0.0 0.3
26 6.0 0.4 0.0 0.3 67 7.0 0.7 0.0 0.3
27 6.0 0.4 0.0 0.3 68 4.0 0.6 0.0 0.4
28 5.0 0.4 0.0 0.3 69 7.0 0.6 0.0 0.3
29 6.0 0.4 0.0 0.3 70 6.0 0.7 0.0 0.4
30 4.0 0.4 0.0 0.3 71 7.0 0.6 4.3 0.3
31 11.0 0.6 0.0 0.4 72 7.0 0.7 0.0 0.3
32 5.0 0.7 0.0 0.4 73 11.0 3.7 0.0 1.2
33 9.0 0.7 0.0 0.4 74 11.0 3.6 0.0 1.2
34 8.0 0.7 0.0 0.4 75 26.0 3.5 0.0 2.1
35 11.0 0.7 0.0 0.4 76 12.0 5.3 0.0 1.8
36 7.0 0.7 0.0 0.4 77 12.0 5.3 0.0 2.0
37 9.0 0.7 0.0 0.4 78 10.0 5.3 0.0 1.5
38 10.0 0.7 0.0 0.4 79 8.0 5.4 0.0 1.8
39 11.0 0.7 0.0 0.5 80 60.0 5.7 0.0 3.5
40 11.0 0.7 0.0 0.4 81 7.0 7.6 0.0 3.2
41 6.0 0.6 0.0 0.4 82 30.0 16.5 0.0 11.3
13
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Table A.4
Results of the subgradient method bounds in comparison with the linear relaxation for the Max-ER-TSS. The execution times
are given in seconds. The best bounds for each instance are highlighted with bold text.
Dataset Subgradient Linear relaxation Dataset Subgradient Linear relaxation

Bound Time Bound Time Bound Time Bound Time

1 34.0 <0.1 26.3 0.1 42 103.0 <0.001 103.0 0.4
2 46.0 <0.001 46.0 0.1 43 100.0 <0.001 100.0 0.4
3 63.0 0.1 63.0 0.2 44 103.0 0.7 103.0 0.4
4 49.0 0.2 46.2 0.2 45 99.0 <0.1 99.0 0.4
5 49.0 0.2 46.7 0.2 46 99.0 <0.1 99.0 0.3
6 62.0 0.2 62.0 0.2 47 87.0 <0.1 87.0 0.4
7 69.0 <0.1 69.0 0.2 48 103.0 <0.1 103.0 0.5
8 32.0 0.3 9.6 0.2 49 106.0 0.7 106.0 0.4
9 69.0 0.2 69.0 0.3 50 98.0 0.7 98.0 0.4
10 14.0 0.3 85.0 0.4 51 104.0 0.7 104.0 0.4
11 14.0 0.3 85.0 0.3 52 87.0 0.7 85.0 0.4
12 13.0 0.4 85.0 0.3 53 57.0 0.7 51.0 0.4
13 14.0 0.3 86.0 0.4 54 32.0 0.7 16.6 0.3
14 14.0 0.3 86.0 0.4 55 65.0 0.7 54.1 0.4
15 21.0 0.3 84.0 0.3 56 88.0 0.7 87.9 0.4
16 14.0 0.4 85.0 0.3 57 65.0 0.7 58.9 0.5
17 14.0 0.3 86.0 0.3 58 89.0 0.7 87.8 0.3
18 13.0 0.3 85.0 0.3 59 31.0 0.7 16.9 0.3
19 20.0 0.3 84.0 0.4 60 33.0 0.7 19.2 0.3
20 21.0 0.3 84.0 0.3 61 79.0 0.7 76.0 0.4
21 20.0 0.3 84.0 0.3 62 96.0 0.7 96.0 0.5
22 20.0 0.3 84.0 0.3 63 58.0 0.7 46.6 0.3
23 20.0 0.3 84.0 0.3 64 82.0 <0.001 82.0 0.4
24 22.0 0.3 87.0 0.3 65 74.0 0.7 67.6 0.7
25 13.0 0.4 88.0 0.4 66 59.0 0.7 52.0 0.4
26 92.0 <0.001 92.0 0.2 67 64.0 0.7 51.2 0.5
27 89.0 <0.1 89.0 0.3 68 58.0 0.7 51.9 0.5
28 91.0 0.4 91.0 0.4 69 63.0 0.7 58.9 0.4
29 86.0 <0.001 86.0 0.4 70 92.0 0.7 90.8 0.4
30 74.0 0.4 74.0 0.3 71 41.0 0.7 28.8 0.4
31 22.0 0.7 103.0 0.4 72 75.0 0.7 71.0 0.4
32 106.0 <0.1 106.0 0.4 73 173.0 3.8 173.0 1.1
33 104.0 0.7 104.0 0.4 74 161.0 3.8 161.0 1.1
34 105.0 0.7 105.0 0.4 75 11.0 <0.001 171.0 1.8
35 102.0 0.7 102.0 0.4 76 165.0 5.7 160.9 1.4
36 102.0 <0.1 102.0 0.3 77 182.0 5.6 181.9 1.7
37 105.0 0.7 105.0 0.4 78 188.0 5.5 188.0 1.6
38 104.0 0.7 104.0 0.4 79 197.0 5.5 197.0 1.6
39 106.0 0.8 106.0 0.4 80 12.0 5.7 198.0 2.8
40 107.0 <0.1 107.0 0.4 81 211.0 7.7 210.1 2.1
41 101.0 <0.1 101.0 0.3 82 24.0 16.7 288.0 7.9
14
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Table A.5
Comparison between subgradient and linear relaxation bounds in B&B executions for the Min-ER-TSS. The column L.R. %
S. gives the average values of the linear relaxation bound as a percent of the subgradient method bound at each node of
the B&B enumeration tree. The columns Time S. and Time L.R. are, respectively, the average time in seconds of the
subgradient method and the linear relaxation calls at each node of the B&B execution.
Dataset L.R. % S. Time S. Time L.R. Dataset L.R. % S. Time S. Time L.R.

1 97.8 <0.1 0.1 42 0.0 0.1 0.3
2 0.6 <0.1 0.2 43 2.6 0.1 0.3
3 0.0 0.1 0.2 44 59.6 0.1 0.3
4 5.3 <0.1 0.2 45 0.0 0.1 0.3
5 5.2 <0.1 0.2 46 4.9 0.1 0.3
6 2.7 <0.1 0.2 47 0.0 0.2 0.3
7 0.0 <0.1 0.2 48 0.0 0.2 0.5
8 417.8 <0.1 0.2 49 0.0 0.2 0.4
9 1.4 0.1 0.2 50 0.0 0.2 0.4
10 0.0 0.1 0.2 51 0.0 0.1 0.4
11 0.0 <0.1 0.2 52 1.8 0.2 0.4
12 0.0 <0.1 0.2 53 3.1 0.2 0.4
13 0.0 0.1 0.2 54 190.5 0.1 0.3
14 0.0 0.1 0.2 55 1.5 0.1 0.3
15 0.0 <0.1 0.2 56 0.0 0.1 0.3
16 0.0 0.1 0.2 57 3.2 0.1 0.3
17 0.0 <0.1 0.2 58 2.1 0.1 0.3
18 0.0 0.1 0.2 59 94.5 0.1 0.3
19 0.0 <0.1 0.2 60 127.7 0.2 0.2
20 0.0 0.1 0.2 61 4.5 0.1 0.3
21 0.0 <0.1 0.2 62 1.3 0.1 0.3
22 0.0 0.1 0.2 63 1.8 0.1 0.3
23 0.0 <0.1 0.2 64 11.1 0.1 0.3
24 0.0 <0.1 0.2 65 4.5 0.1 0.3
25 1.2 0.1 0.3 66 4.2 0.1 0.3
26 0.0 0.1 0.3 67 1.4 0.1 0.3
27 9.1 0.1 0.3 68 3.0 0.1 0.3
28 4.8 0.1 0.2 69 4.0 0.1 0.2
29 0.0 0.1 0.3 70 3.0 0.1 0.3
30 7.0 0.1 0.2 71 65.6 0.8 0.2
31 0.0 0.1 0.3 72 4.9 0.1 0.3
32 0.0 0.1 0.3 73 0.0 0.6 1.2
33 0.0 0.1 0.3 74 0.0 0.6 1.3
34 0.0 0.1 0.3 75 0.0 0.3 0.9
35 0.0 0.1 0.3 76 1.5 0.8 1.2
36 0.0 0.1 0.3 77 1.4 0.8 1.2
37 0.0 0.1 0.3 78 0.0 0.5 1.0
38 0.0 0.1 0.3 79 0.0 0.6 1.0
39 0.0 0.1 0.3 80 0.0 0.4 1.1
40 0.0 0.1 0.3 81 0.7 0.6 1.2
41 0.0 0.1 0.3 82 0.0 0.7 1.9
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Table A.6
Comparison between subgradient and linear relaxation bounds in B&B executions for the Max-ER-TSS. The column L.R. %
S. gives the average values of the linear relaxation bound as a percent of the subgradient method bound at each node of
the B&B enumeration tree. The columns Time S. and Time L.R. are, respectively, the average time in seconds of the
subgradient method and the linear relaxation calls at each node of the B&B execution.
Dataset L.R. % S. Time S. Time L.R. Dataset L.R. % S. Time S. Time L.R.

1 107.9 <0.1 0.2 42 100.0 <0.1 0.4
2 100.0 <0.001 0.2 43 100.0 <0.1 0.4
3 211.3 <0.1 0.2 44 1834.6 0.4 0.4
4 807.9 <0.1 0.2 45 100.0 0.1 0.3
5 467.5 <0.1 0.2 46 100.0 <0.1 0.3
6 98.9 <0.1 0.2 47 100.0 <0.001 0.3
7 100.0 <0.1 0.2 48 100.0 0.1 0.4
8 67.1 0.1 0.3 49 3191.3 0.4 0.4
9 1270.3 0.1 0.2 50 2034.9 0.4 0.3
10 1084.2 0.2 0.3 51 2065.3 0.4 0.4
11 1106.5 0.2 0.3 52 1357.5 0.3 0.3
12 1087.0 0.2 0.3 53 776.7 0.3 0.3
13 1122.1 0.2 0.3 54 108.5 0.3 0.3
14 1370.7 0.2 0.3 55 696.6 0.3 0.3
15 1597.7 0.2 0.3 56 1453.1 0.4 0.3
16 1329.8 0.2 0.3 57 950.3 0.3 0.3
17 1350.6 0.2 0.3 58 1635.8 0.4 0.3
18 1342.0 0.2 0.3 59 120.6 0.3 0.3
19 1685.2 0.2 0.3 60 118.5 0.3 0.3
20 1709.8 0.2 0.3 61 682.0 0.3 0.3
21 1835.8 0.2 0.3 62 1961.6 0.3 0.3
22 1835.8 0.2 0.3 63 533.0 0.3 0.3
23 1673.3 0.2 0.3 64 100.0 <0.1 0.3
24 1730.3 0.2 0.3 65 1008.6 0.4 0.3
25 1746.6 0.3 0.3 66 944.9 0.3 0.3
26 100.0 <0.001 0.3 67 625.8 0.3 0.3
27 100.0 0.1 0.3 68 621.9 0.3 0.3
28 100.0 0.2 0.3 69 910.6 0.3 0.3
29 100.0 <0.001 0.3 70 1634.1 0.3 0.3
30 1671.2 0.2 0.3 71 157.3 0.3 0.3
31 2414.5 0.4 0.4 72 1314.3 0.3 0.3
32 100.0 <0.1 0.4 73 3669.9 1.7 0.9
33 1431.6 0.4 0.4 74 2363.4 2.0 0.9
34 1936.9 0.5 0.4 75 1554.5 <0.1 1.9
35 2146.5 0.4 0.4 76 3693.6 2.9 1.2
36 100.0 <0.1 0.4 77 4010.7 3.0 1.3
37 2129.8 0.4 0.4 78 4890.3 3.0 1.4
38 3752.1 0.3 0.4 79 4693.3 3.1 1.5
39 1509.7 0.4 0.4 80 1650.0 5.6 2.7
40 100.0 <0.1 0.4 81 2932.2 5.7 2.1
41 100.0 <0.1 0.3 82 4048.0 14.2 7.4
16
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Table A.7
Subgradient method, B&B using subgradient method and Gurobi solver comparison for the Min-ER-TSS. The column Sol.
gives the best solution value found by the approach. The column GAP gives the GAP between the solution value and the best
bound found by the approach. The column Time gives the approach execution time in seconds. The column Expl. gives
the number of nodes explored by the enumerative approaches.

Dataset Subgradient B & B Gurobi

Sol. GAP Time Sol. GAP Time Expl. Sol. GAP Time Expl.

1 6a 50.0 0.0 6a 0.0 0.4 28 6a 0.0 0.1 5
2 4a 50.0 0.0 4a 0.0 0.4 33 4a 0.0 0.3 99
3 10a 0.0 0.1 10a 0.0 0.1 1 10a 0.0 0.6 1 394
4 11a 54.5 0.1 11a 0.0 2.7 85 11a 0.0 0.4 180
5 5a 20.0 0.1 5a 0.0 0.5 17 5a 0.0 0.4 19
6 12a 50.0 0.2 12a 0.0 2.8 75 12a 0.0 0.5 901
7 11a 54.5 0.2 11a 0.0 2.1 49 11a 0.0 1.0 5 377
8 26a 12.5 4.4 26a 0.0 41.3 1427 26a 0.0 0.4 213
9 12 58.3 0.2 11a 0.0 6.3 156 11a 0.0 0.7 2 949
10 18 16.6 0.3 16a 0.0 39.9 963 16a 0.0 41.2 87 866
11 19 21.1 0.3 17a 0.0 66.4 1760 17a 0.0 61.2 125 085
12 18 16.6 0.3 17a 0.0 52.9 1310 17a 0.0 45.9 74 156
13 19 21.1 0.3 16a 0.0 26.3 627 16a 0.0 28.3 48 359
14 18 22.2 0.3 17a 0.0 44.6 1066 17a 0.0 66.6 91 359
15 19 31.6 0.3 17a 0.0 60.5 1488 17a 0.0 32.3 58 811
16 19 26.3 0.3 17a 0.0 43.6 1041 17a 0.0 56.0 104 899
17 19 26.3 0.3 17a 0.0 39.6 899 17a 0.0 64.6 116 626
18 21 33.3 0.3 17a 0.0 46.9 1128 17a 0.0 80.8 119 055
19 21 38.1 0.3 17a 0.0 71.6 1738 17a 0.0 68.0 108 463
20 18 27.8 0.3 16a 0.0 33.1 719 16a 0.0 61.8 91 712
21 20 35.0 0.3 17a 0.0 53.2 1280 17a 0.0 66.1 130 069
22 19 31.6 0.3 16a 0.0 48.2 1212 16a 0.0 50.8 79 409
23 21 38.1 0.3 17a 0.0 48.2 1129 17a 0.0 76.7 115 327
24 19 31.6 0.3 18a 0.0 56.8 1314 18a 0.0 39.3 57 824
25 18 38.9 0.4 14a 0.0 45.2 930 14a 0.0 32.5 44 485
26 9 33.3 0.4 8a 0.0 3.0 39 8a 0.0 0.5 264
27 8 25.0 0.4 7a 0.0 4.2 57 7a 0.0 0.5 23
28 6a 16.7 0.4 6a 0.0 1.6 19 6a 0.0 0.6 46
29 7a 14.3 0.4 7a 0.0 2.7 31 7a 0.0 0.5 13
30 14a 71.4 0.4 14a 0.0 5.6 135 14a 0.0 0.6 707
31 24 54.2 0.6 14a 0.0 86.2 893 14a 0.0 51.5 58 360
32 11a 54.5 0.7 11a 0.0 12.7 101 11a 0.0 0.6 38
33 17a 47.1 0.7 17a 0.0 184.3 2008 17a 0.0 16.0 29 244
34 18 55.6 0.7 17a 0.0 88.3 837 17a 0.0 23.6 36 503
35 20a 45.0 0.6 20a 0.0 62.9 648 20a 0.0 9.4 19 557
36 14a 50.0 0.7 14a 0.0 3.8 31 14a 0.0 0.5 11
37 20 55.0 0.7 16a 0.0 51.6 518 16a 0.0 3.8 8 205
38 19 47.4 0.7 15a 0.0 60.5 599 15a 0.0 1.1 2 340
39 21 47.6 0.7 20a 0.0 148.6 1639 20a 0.0 13.6 21 189
40 13 15.4 0.7 11a 0.0 8.9 119 11a 0.0 5.5 5 705
41 12a 50.0 0.6 12a 0.0 8.9 87 12a 0.0 0.7 959
42 6a 33.3 0.7 6a 0.0 8.3 77 6a 0.0 1.2 1 350
43 9a 33.3 0.7 9a 0.0 3.9 33 9a 0.0 0.5 7
44 18 94.4 0.7 15a 0.0 105.0 1012 15a 0.0 0.7 611
45 11a 54.5 0.7 11a 0.0 5.3 49 11a 0.0 1.6 4 529
46 11a 45.5 0.6 11a 0.0 5.2 41 11a 0.0 0.6 8
47 9a 33.3 0.7 9a 0.0 5.4 41 9a 0.0 0.4 6
48 11a 54.5 0.7 11a 0.0 40.2 428 11a 0.0 4.9 5 202
49 17a 70.6 0.7 17a 0.0 57.6 621 17a 0.0 0.9 1 996
50 17 70.6 0.7 16a 0.0 24.2 233 16a 0.0 1.4 2 565
51 26 65.4 0.7 24a 0.0 276.5 3232 24a 0.0 20.9 31 686

aUsed to identify optimal values.
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Table A.8
Subgradient method, B&B using subgradient method and Gurobi solver comparison for the Min-ER-TSS. The column Sol.
gives the best solution value found by the approach. The column GAP gives the GAP between the solution value and the best
bound found by the approach. The column Time gives the approach execution time in seconds. The column Expl. gives
the number of nodes explored by the enumerative approaches.

Dataset Subgradient B & B Gurobi

Sol. GAP Time Sol. GAP Time Expl. Sol. GAP Time Expl.

52 8a 25.0 0.6 8a 0.0 6.4 55 8a 0.0 0.9 2 114
53 9a 22.2 0.6 9a 0.0 8.9 71 9a 0.0 0.5 14
54 32 78.1 0.6 25a 0.0 134.8 1447 25a 0.0 0.4 3
55 29 75.9 0.6 16a 0.0 35.6 326 16a 0.0 0.5 396
56 18 72.2 0.7 15a 0.0 30.4 279 15a 0.0 0.6 462
57 8a 12.5 0.6 8a 0.0 4.3 35 8a 0.0 0.5 23
58 17 64.7 0.7 16a 0.0 36.9 323 16a 0.0 1.2 4 377
59 17a 58.8 0.6 17a 0.0 21.1 191 17a 0.0 0.4 1
60 24a 70.8 0.6 24a 0.0 152.7 1625 24a 0.0 0.4 1
61 16a 56.2 0.6 16a 0.0 22.3 205 16a 0.0 0.7 445
62 16a 62.5 0.7 16a 0.0 31.1 304 16a 0.0 1.3 4 097
63 22a 68.2 0.6 22a 0.0 39.9 376 22a 0.0 0.6 882
64 9a 22.2 0.7 9a 0.0 4.8 45 9a 0.0 0.4 19
65 8a 50.0 0.7 8a 0.0 8.4 75 8a 0.0 0.5 312
66 16 56.3 0.6 15a 0.0 18.9 173 15a 0.0 0.6 476
67 9a 22.2 0.7 9a 0.0 7.1 63 9a 0.0 0.5 28
68 12a 66.7 0.6 12a 0.0 12.0 123 12a 0.0 0.5 114
69 16a 56.3 0.6 16a 0.0 23.6 226 16a 0.0 0.5 26
70 15a 60.0 0.7 15a 0.0 46.6 416 15a 0.0 1.0 2 225
71 10a 30.0 0.6 10a 0.0 9.0 79 10a 0.0 0.4 3
72 8a 12.5 0.7 8a 0.0 5.1 41 8a 0.0 0.5 402
73 26 57.7 3.7 25a 0.0 452.5 903 25a 0.0 116.8 81 188
74 25a 56.0 3.6 25a 0.0 635.7 1335 25a 0.0 47.4 37 360
75 50 48.0 3.5 44 40.9 3600.0 3599 – – 3600.0 123 889
76 15a 20.0 5.3 15a 0.0 111.2 149 15a 0.0 22.1 5 722
77 14a 16.7 5.3 14a 0.0 129.6 171 14a 0.0 44.7 6 681
78 68 85.3 5.3 56 82.1 3600.0 1234 122 99.2 3600.0 306 980
79 75 89.3 5.4 60 86.7 3600.0 1355 – – 3600.0 190 541
80 76 21.1 5.7 66 9.1 3600.0 1573 – – 3600.0 50 545
81 54 87.0 7.6 53 86.8 3600.0 741 – – 3600.0 85 080
82 101 70.3 16.5 82 63.4 3600.0 5394 – – 3600.0 7 224

aUsed to identify optimal values.
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Table A.9
Subgradient method, B&B using subgradient method and Gurobi solver comparison for the Max-ER-TSS. The column Sol.
gives the best solution value found by the approach. The column GAP gives the GAP between the solution value and the best
bound found by the approach. The column Time gives the approach execution time in seconds. The column Expl. gives
the number of nodes explored by the enumerative approaches.

Dataset Subgradient B & B Gurobi

Sol. GAP Time Sol. GAP Time Expl. Sol. GAP Time Expl.

1 21a 61.9 <0.1 21a 0.0 0.5 79 21a 0.0 0.1 9
2 46a 0.0 <0.001 46a 0.0 <0.1 1 46a 0.0 0.2 0
3 24 162.5 0.1 37a 0.0 2.9 199 37a 0.0 0.9 4 529
4 23 113.0 0.2 44a 0.0 3.7 199 44a 0.0 0.4 213
5 44 11.4 0.2 45a 0.0 2.4 137 45a 0.0 0.5 38
6 60a 3.3 0.2 60a 0.0 4.8 229 60a 0.0 0.7 2 141
7 69a 0.0 <0.1 69a 0.0 <0.1 1 69a 0.0 0.3 0
8 8a 300.0 0.3 8a 0.0 6.6 305 8a 0.0 0.4 12
9 18 283.3 0.2 57a 0.0 5.3 231 57a 0.0 0.7 1 708
10 10 40.0 0.3 12a 0.0 3.2 89 12a 0.0 3 11 121
11 10 40.0 0.3 12a 0.0 3.1 85 12a 0.0 2.8 7 271
12 11 18.2 0.4 12a 0.0 3.2 89 12a 0.0 4.2 11 592
13 10 40.0 0.3 12a 0.0 3.1 85 12a 0.0 3.5 11 107
14 12a 16.7 0.3 12a 0.0 3.7 105 12a 0.0 2.2 4 392
15 11 90.9 0.3 13a 0.0 9.0 269 13a 0.0 3.9 13 907
16 10 40.0 0.4 12a 0.0 5.2 147 12a 0.0 1.8 9 706
17 12a 16.7 0.3 12a 0.0 5.2 147 12a 0.0 3.4 14 493
18 11 18.2 0.3 12a 0.0 5.2 147 12a 0.0 2.2 5 672
19 10 100.0 0.3 12a 0.0 8.9 269 12a 0.0 3.2 10 871
20 10 110.0 0.3 12a 0.0 8.8 269 12a 0.0 2.3 8 639
21 11 81.8 0.3 12a 0.0 8.7 259 12a 0.0 1.9 10 374
22 11 81.8 0.3 12a 0.0 8.9 271 12a 0.0 3.2 19 859
23 12a 66.7 0.3 12a 0.0 8.7 259 12a 0.0 1.3 5 961
24 12 83.3 0.3 13a 0.0 8.8 257 13a 0.0 0.8 788
25 12 8.3 0.4 13a 0.0 0.3 4 13a 0.0 1.9 7 805
26 92a 0.0 <0.001 92a 0.0 <0.001 1 92a 0.0 0.5 221
27 89a 0.0 <0.1 89a 0.0 <0.1 1 89a 0.0 0.5 11
28 58 56.9 0.4 91a 0.0 0.2 3 91a 0.0 0.4 11
29 86a 0.0 <0.1 86a 0.0 <0.1 1 86a 0.0 0.5 109
30 43a 72.1 0.4 43a 0.0 11.8 295 43a 0.0 0.5 153
31 13 69.2 0.7 16a 0.0 8.2 109 16a 0.0 2.6 9 613
32 106a 0.0 <0.1 106a 0.0 <0.1 1 106a 0.0 0.7 83
33 15 593.3 0.7 21a 0.0 15.2 217 21a 0.0 3.2 10 894
34 20a 425.0 0.7 20a 0.0 15.7 207 20a 0.0 8.8 10 473
35 14 628.6 0.7 15a 0.0 33.5 503 15a 0.0 2.3 17 206
36 102a 0.0 <0.1 102a 0.0 <0.1 1 102a 0.0 0.6 30
37 15 600.0 0.7 21a 0.0 11.4 137 21a 0.0 1.5 2 454
38 14 642.9 0.7 15a 0.0 25.0 373 15a 0.0 1.4 2 573
39 15 606.7 0.8 35a 0.0 18.7 263 35a 0.0 7.4 12 101
40 107a 0.0 <0.1 107a 0.0 <0.1 1 107a 0.0 3.8 10 365
41 101a 0.0 <0.1 101a 0.0 <0.1 1 101a 0.0 0.6 31
42 103a 0.0 <0.001 103a 0.0 <0.1 1 103a 0.0 0.5 0
43 100a 0.0 <0.001 100a 0.0 <0.1 1 100a 0.0 0.5 1
44 23a 347.8 0.7 23a 0.0 75.9 1313 23a 0.0 0.7 75
45 99a 0.0 <0.1 99a 0.0 <0.1 1 99a 0.0 0.5 0
46 99a 0.0 <0.1 99a 0.0 <0.1 1 99a 0.0 0.6 1
47 87a 0.0 <0.1 87a 0.0 <0.1 1 87a 0.0 0.5 7
48 103a 0.0 <0.1 103a 0.0 <0.1 1 103a 0.0 0.7 386
49 18a 488.9 0.7 18a 0.0 24.9 385 18a 0.0 0.9 847
50 21a 366.7 0.7 21a 0.0 26.3 417 21a 0.0 0.8 591
51 14 642.9 0.7 16a 0.0 38.9 583 16a 0.0 4.8 11 130

aUsed to identify optimal values.
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Table A.10
Subgradient method, B&B using subgradient method and Gurobi solver comparison for the Max-ER-TSS. The column Sol.
gives the best solution value found by the approach. The column GAP gives the GAP between the solution value and the best
bound found by the approach. The column Time gives the approach execution time in seconds. The column Expl. gives
the number of nodes explored by the enumerative approaches.

Dataset Subgradient B & B Gurobi

Sol. GAP Time Sol. GAP Time Expl. Sol. GAP Time Expl.

52 83a 4.8 0.7 83a 0.0 25.3 419 83a 0.0 2.4 6 067
53 44a 29.5 0.7 44a 0.0 21.7 337 44a 0.0 0.6 92
54 9 255.5 0.7 11a 0.0 29.4 447 11a 0.0 0.5 28
55 22 195.5 0.7 33a 0.0 27.2 451 33a 0.0 0.7 515
56 40 120.0 0.7 47a 0.0 25.5 409 47a 0.0 0.9 616
57 47a 38.3 0.7 47a 0.0 22.3 371 47a 0.0 0.6 107
58 28a 217.9 0.7 28a 0.0 26.4 405 28a 0.0 1.1 1 905
59 13a 138.5 0.7 13a 0.0 26.6 411 13a 0.0 0.6 3
60 10 230.0 0.7 12a 0.0 28.6 457 12a 0.0 0.5 1
61 74a 6.8 0.7 74a 0.0 21.0 379 74a 0.0 0.8 730
62 46a 108.5 0.7 46a 0.0 20.5 331 46a 0.0 0.8 591
63 26 123.1 0.7 28a 0.0 27.4 441 28a 0.0 0.6 676
64 82a 0.0 <0.001 82a 0.0 <0.1 1 82a 0.0 0.5 0
65 62a 19.4 0.7 62a 0.0 19.4 309 62a 0.0 0.7 281
66 42a 40.5 0.7 42a 0.0 28.4 451 42a 0.0 0.9 2 916
67 37 73.0 0.7 44a 0.0 20.6 389 44a 0.0 0.7 190
68 39a 48.7 0.7 39a 0.0 26.3 435 39a 0.0 0.7 545
69 35a 80.0 0.7 35a 0.0 19.7 351 35a 0.0 0.6 21
70 54a 70.4 0.7 54a 0.0 23.4 373 54a 0.0 0.9 1 293
71 28a 46.4 0.7 28a 0.0 25.7 425 28a 0.0 0.6 32
72 69 8.7 0.7 70a 0.0 22.3 369 70a 0.0 0.8 563
73 73a 137.0 3.8 73a 0.0 278.1 1049 73a 0.0 28.6 15 248
74 27a 496.3 3.8 27a 0.0 271.3 1009 27a 0.0 9.1 5 707
75 11a 0.0 <0.001 11a 0.0 <0.1 1 11a 0.0 26.5 6 099
76 155a 6.5 5.7 155a 0.0 552.0 1341 155a 0.0 14.9 5 408
77 99 83.8 5.6 169a 0.0 531.6 1369 169a 0.0 19.5 5 988
78 22 754.5 5.5 30a 0.0 626.9 1515 23 717.4 3600.0 821 375
79 22 795.5 5.5 23a 0.0 512.0 1235 20 885.0 3600.0 465 819
80 10 20.0 5.7 12a 0.0 37.7 45 12a 0.0 44.6 8 583
81 28 653.6 7.7 44a 0.0 1221.4 2025 44a 0.0 529.4 16 381
82 14 71.4 16.7 20a 20.0 3600.0 2471 20a 0.0 807.4 17 034

aUsed to identify optimal values.
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