Journal of Heuristics (2020) 26:585-618
https://doi.org/10.1007/s10732-020-09443-z

®

Check for
updates

Meta-heuristics for the one-dimensional cutting stock
problem with usable leftover

Santiago V. Ravelo'® - Claudio N. Meneses? - Maristela O. Santos>

Received: 7 May 2019 / Revised: 28 January 2020 / Accepted: 21 February 2020 / Published online: 3 March 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract

This work considers the one-dimensional cutting stock problem in which the non-used
material in the cutting patterns may be used in the future, if large enough. We show that
a multiobjective criteria to classify the solutions could be more accurate than previous
classifications attempts, also we give a heuristic algorithm and two meta-heuristic
approaches to the problem and we use them to solve practical and randomly generated
instances from the literature. The results obtained by the computational experiments
are quite good for all the tested instances.

Keywords Cutting problem - Combinatorial optimization - Multiobjective
optimization - Meta-heuristics

1 Introduction

Cutting stock problems consist of cutting a set of items from a stock of larger objects
with the objective of producing cut patterns in order to satisfy the items demands, while
minimizing the loss material, the cost of the objects to be cut or maximizing the profit
of the produced items. These problems arise from many applications in industrial
processes such as paper tubes, plastic films, metal and construction industries. For
example, in the wooden working industry the application of solutions that minimized

< Santiago V. Ravelo
santiago.ravelo@inf.ufrgs.br

Claudio N. Meneses
claudio.meneses @ufabc.edu.br

Maristela O. Santos
mari@icmc.usp.br
Institute of Informatics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil

Center of Mathematics, Computation and Cognition, Federal University of ABC, Sao Paulo,
Brazil

Institute of Mathematical Sciences and Computation, University of Sao Paulo, Sao Carlos, Brazil

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10732-020-09443-z&domain=pdf
http://orcid.org/0000-0001-7434-2642

586 S.V.Ravelo et al.

the wasted material in the cutting process represented for some companies 30% of
cost savings (Ogunranti and Oluleye 2016), such solutions not only save companies
costs but they also reduce greenhouse gas emission being an approach toward green
manufacturing (Wattanasiriseth and Krairit 2019). Another industry that may reduce
the costs and the negative environmental impact by applying solutions to minimize the
waste is the textile, where about 20% of fabric waste is produced by the leftovers after
the patterns for the clothes have been cut and such leftovers unusually are recycled
(Sajn 2019).

These problems are not only interesting by their practical applications, but also
by the theoretical challenge they represent since, generally, they are computationally
difficult to solve and belong to the NP-hard class. Cutting stock problems can be
classified in several ways (Wischer et al. 2007) and, in this paper, we consider one of
those classifications: the one-dimensional cutting stock problem with usable leftover.
In this extension of the problem, if the non-used material of the cutting patterns is large
enough, then it may be used in the future. Such feature introduces more difficulties
to the problem and has received attention in the literature, creating mathematical
models and several algorithms to get good solutions. The difficulties introduced by
this feature also affect the definition of what makes a good solution and, sometimes,
the proposed classifications lack in accuracy, for that reason the next section gives a
detailed explanation on these criteria.

To the best of our knowledge, the first formulation for the cutting stock problem
considering the existence of usable leftovers (retails) was given in Gradisar et al.
(1997). The objectives of that model were to minimize the total unsatisfied demands
and also, to minimize the total loss of material generated by the cutting patterns, where
if the leftover of a pattern was large enough then it was considered a retail and not a
loss of material. Besides the model, the authors developed a greedy heuristic to solve
the problem. The same model was considered in Gradisar et al. (1999); GradiSar and
Trkman (2005), where new restrictions on the maximum length of the retails were
added and heuristics approaches for the problems were given.

In Abuabara and Morabito (2009) the authors studied applications in the agricul-
tural light aircraft industry and proposed two new models by modifying the model
of Gradisar et al. (1997), where restrictions on the number of generated retails were
added and the objective was to minimize the total loss of material. In Cherri et al.
(2009) classifications on the quality of the solutions were given and several heuristics
were developed and tested, some of them based on greedy criteria while others were
residual heuristics. A comparative study of the previous formulations was presented in
Ravelo et al. (2010) and also new models were proposed trying to avoid the existence
of symmetrical solutions. The objectives of those models were to minimize the loss
of material and to minimize the number of generated retails, being one of those new
models very suitable for column generation methods.

Some of the results from Cherri et al. (2009) were improved by a new heuristic
proposal given in Cui and Yang (2010). In that article the authors created a two stages
heuristic, where the first part fulfills the majority of the items demands using linear
programming techniques while the second part fulfills the remaining demands by a
sequential heuristic. In Gradisar et al. (2011) a study of the problem and existing
solutions was done, also two algorithms were proposed for instances where the items

@ Springer

Meta-heuristics for the one-dimensional cutting stock... 587

were much smaller than the objects (at most % of the object size). In Cherri et al. (2014)
a survey was presented where the main contributions to the problem were discussed.
In Arenales et al. (2015) one of the models from Ravelo et al. (2010) was extended
and a new model was given, where linear relaxation and column generation techniques
were applied in order to solve it.

Since the majority of the algorithmic approaches found in the literature for this
problem are greedy heuristics or heuristics based on mathematical formulations, we
explore in this article the applicability of some meta-heuristics ideas to solve the
problem. We give a constructive heuristic which uses some of the previous ideas to
generate initial solutions that will be used by our main proposal: a GRASP based
meta-heuristic and an evolutive based algorithm.

This paper is organized as follows. Section 2 formally presents the problem and
discuss on the criteria of what would be a good solution classification. Section 3
describes our algorithmic approaches to solve the problem: a constructive heuristic, a
GRASP meta-heuristic and an evolutive algorithm. Section 4 presents computational
tests of our algorithms over several instances from the literature, also compares our
solutions with the best previous results we found. Finally, Sect. 5 gives the conclusions
and future directions.

2 Problem definition

The one-dimensional cutting stock problem with usable leftover (1D- CSPUL) was
previously defined in Cherri et al. (2009) as:

Definition 1 On the 1D- CSPUL a set of pieces (items) must be produced by cutting
large units (objects) of standard sizes (objects bought from suppliers) or non-standard
(objects that are leftover of previous cuts). The demand of the items and the availability
of the objects are given. Demands must be met by cutting the available objects such
that the leftovers are “small” (denoted by scrap) or “sufficiently large” (denoted by
retails) to return to stock, but in a reduced number.

The definition we use is very similar, but we change the objective of returning a
lower number of retails to stock by minimizing the final number of retails in stock. So
we work with the following definition:

Definition 2 On the 1D- CSPUL a set of items must be produced by cutting objects
bought from suppliers or objects that are retails of previous cuts. The demand of the
items and the availability of the objects are given. Demands must be met by cutting the
available objects such that the leftovers are “small” (denoted by scrap) or “sufficiently
large” (denoted by retails) to return to stock, in order to reduce the final number of
retails in stock.

Those definitions of the problem use the terms small and sufficiently large, which
need to be formally defined. In order to do that, one can rely on experience and previous
knowledge of the problem or we may use the parameters 8, 6 and 6 (defined in Cherri
et al. 2009):

@ Springer

588 S.V.Ravelo et al.

— B € (0, 1): is used to know when the leftover material of a standard object is
considered little scrap, for that the size of the leftover must be less than or equal
to BL, where L is the size of the object.

— 0 € (0, 1):is used to know when the leftover of a non-standard object is considered
little scrap, for that the size of the leftover must be less than or equal to 6 L, where
L is the size of the object.

— & € R%:is used to know when the leftover material of any object is considered
retail, for that the size of the leftover must be greater than or equal to §.

— If the leftover material is not a little scrap and neither a retail, then it is considered
a scrap of intermediate size.

Observe that, the 1D- CSPUL must minimize the loss of material and also has to
minimize the final number of retails in stock. Then, the problem has more than one
objective implying that it requires some classification of the solutions by their quality.
The following definition, proposed in Cherri et al. (2009), attempts to classify the
solutions:

Definition 3 The solutions of a 1D- CSPUL are defined as:

— Ideal solution when a small number of objects have little scraps and none of the
objects have scraps of intermediate size. In case there are retails, they must be
concentrated in a very small number of cut objects.

— Acceptable solution when a small number of objects present scraps of intermediate
size and a small number of objects present retails.

— Undesirable solution when several cut objects present scraps of intermediate size
or present several retails.

Definition 3 also uses imprecise terms as very small, small and several. Those
terms were formalized in Cherri et al. (2009) using two parameters: €; and €, where
0 < €1 < €3 < 1,s0considering n represents the number of object cuts in the solution:

— very small number of object cuts: up to [€17];
— small number of object cuts: up to [e2n];
— several object cuts: above [ez7].

By using that definition, the aim is to generate ideal solutions or at least acceptable
ones. Although Definition 3 gives an interesting classification of the solutions, it is not
suitable for general purpose. As we will show, there are instances with an acceptable
solution better than an ideal solution (even we can find instances with undesirable
solutions as goods as ideal solutions). In order to prove that, consider the following
Instance:

— objects number: 200, all objects are standard and have same length: 1000,
— items sizes: 99, 100 and 300, with demands: 67, 903 and 9, respectively,
- B =0.005,8=99,e; =0.03and e = 0.1.

Now we analyze three solutions: an ideal, an acceptable and an undesirable one.

@ Springer

Meta-heuristics for the one-dimensional cutting stock... 589

— Solution 1 (Ideal):
3% \ 300 | 300 | 300 | 100 ‘

sax | 100 | 100 [100 | 100 | 100 | 100 [100 | 100 | 100 | 100 |

10x | 100 | 100 | 100 | 100 | 100 [99 | 99 | 99 [90 | 99 |5]

2% | 100 | 100 | 100 | 100 | 99 | 99 | 99 | 99 | 90 | 105 \

1| 100 | 100 [99 | 99 | 99 [00 | 90 [90 [00 | 107 |

three cuts, each one with three items of size 300 and one item of size 100,
without loss or retails (3 x (3 x 300 + 100) = 3 x 1000)

84 cuts of ten items of size 100 each cut, without loss or retails (84 x (10 x
100) = 84 x 1000)

ten cuts with five items of size 100 and five items of size 99 each cut, it generates
ten little scraps of size 5 and a total loss of length 50 (10 x (5 x 100+5x99) =
10 x (1000 — 5))

two cuts with four items of size 100 and five items of size 99, it generates two
retails of size 105 (2 x (4 x 100 +5 x 99) = 2 x (1000 — 105))

one cut with two items of size 100 and seven items of size 99, it generates a
retail of size 107 (2 x 100 4+ 7 x 99 = 1000 — 107)

— Solution 2 (Acceptable):
3x | 300 | 300 | 300 | 100 |

7ax | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |

20x | 100 | 100 [100 | 100 | 100 | 100 [100 | 100 | 99 | 90 P

3% 99 | 99 | 99 | 90 | 99 | 99 | 99 | 99 | 09 | 109\

three cuts, each one with three items of size 300 and one item of size 100,
without loss or retails (3 x (3 x 300 + 100) = 3 x 1000)

74 cuts of ten items of size 100 each cut, without loss or retails (74 x (10 x
100) = 74 x 1000)

20 cuts with eigth items of size 100 and two items of size 99 each cut, it
generates 20 little scraps of size 2 and a total loss of length 40 (20 x (8 x
100 + 2 x 99) =20 x (1000 — 2))

three cuts, each one with nine items of size 99, it generates three retails of size
109 (3 x (9 x 99) = 3 x (1000 — 109))

@ Springer

590 S.V.Ravelo et al.

— Solution 3 (Undesirable):
3x ‘ 300 | 300 | 300 | 100 ‘

s5x | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |

11><‘100|100|100|100|99|99|99|99|99|99‘6‘

1x| 100 | 100 | 100 | 100 | 100 | 100 | 99 | 301 |

— three cuts, each one with three items of size 300 and one item of size 100,
without loss or retails (3 x (3 x 300 + 100) = 3 x 1000)

— 85 cuts of ten items of size 100 each cut, without loss or retails (85 x (10 x
100) = 85 x 1000)

— 11 cuts with four items of size 100 and six items of size 99 each cut, it generates
11 scraps of intermediate size of 6 and a total loss of length 66 (11 x (4 x
100+ 6 x 99) = 11 x (1000 — 6))

— one cut with six items of size 100 and one item of size 99, it generates one
retail of size 301 (6 x 100 + 99 = 1000 — 301)

Each one of the above solutions has 100 cuts and according to Definition 3 the
first solution is ideal, the second one is acceptable and the third one is undesirable.
Observe that the total loss of material of the second solution (40) is lower than the
total loss of the first one (50) having, both solutions, the same number of retails (3).
So, the second solution (an acceptable) is actually better than the first solution (an
ideal), while according to Definition 3 it is not better, but it is worse.

Also, the third solution, an undesirable one according to Definition 3, has only one
retail, less than the three retails of the first and second solutions. If we consider the
total length of the cuts made (100000), then the total loss difference (16) between the
third solution and the first one could be despicable. So, that undesirable solution is at
least as good as the ideal and the acceptable solutions of the example. Figure 1 shows
the Pareto-dominance relationship between those solutions.

Retails number

non-dominated

L] solutions

3T [J O
(40,3) (50,3)
2 4
14 [
(66, 1)
+ + + + + + + + + Total loss

0 10 20 30 40 50 60 70 80 90

Fig. 1 In the graphic the ideal solution is (50, 3), the acceptable one is (40, 3) and the undesirable is
(66, 1). Observe that the ideal solution is a dominated solution while the acceptable and the undesirable
are non-dominated

@ Springer

Meta-heuristics for the one-dimensional cutting stock... 591

Besides the above discussion, there are instances with no ideal nor acceptable
solutions (instances of Sect. 4.2 are two examples). Furthermore, the classification
given by Definition 3 is not suitable when we consider demands arrive in different
time periods, since a “good” solution may generate more retails at some period that
will be consumed in the following periods guaranteeing a small number of retails at
the final stock (multi-period instances of Sects. 4.4 and 4.5 are examples). For those
reasons, we decided to avoid the use of Definition 3 in the solutions classification
during the process and find a more adequate criteria.

Some other approaches may consider classifications criteria that represent their
particular scenarios:

— Limited stocking area This scenario appears in applications where the number
of produced retails is limited by a stocking space (e.g., in Abuabara and Morabito
2009 was studied the problem applied to the agricultural light aircraft industry,
where the retails number could not exceed a given threshold). In this case, the
objective is to minimize the loss of material while guaranteeing the number of
produced retails do not exceed a given upper bound.

— Bounded scrap disposer This scenario appears in applications where the capa-
bility of discarding the loss material of each cutting plan has limitations (e.g.
environmental regulations may require factories to not produce a large amount
of pollution resulting from the disposal process). In this case, the objective is to
minimize the number of produced retails while guaranteeing the length of the loss
material do not exceed a given upper bound.

— Minimum production cost This scenario appears in applications where there are
no bounds for the number of retails or loss of material, but there exist costs to stock
each produced retail and also to discard the scraps. In this case, the objective is to
minimize the overall production cost. This is one of the most common scenarios
since many industries try to minimize the production costs although, the material
waste and the retails stocking costs vary from one application to another, implying
that strategies to solve the problem may be adapted to attend the specific instance
settings.

Those scenarios are not equivalent, meaning that feasible or “good” solutions for
one scenario may not be neither feasible nor “good” for another. However, in all cases,
the final number of retails in stock and the total material loss are requested to be upper-
bounded or minimized. Notice that, one may reduce the material loss by avoiding to
cut many items from an object (producing more retails), or to minimize the number
of retails by considering more leftovers as material loss (producing more loss). Thus,
to minimize the total loss of material and to minimize the final number of retails at
the stock are conflicting objective functions implying that problem can be considered
as a multi-objective problem (Eschenauer et al. 1990) and, instead of searching for
one solution, the goal is to approximate the Pareto frontier: a maximal set containing
non-dominated solutions of an instance (i.e., solutions that are no worse in all the
objectives than any other solution).

If we consider the problem as a multi-objective one, where the objectives are to
minimize the loss of material and to minimize the final number of retails in stock,
then, by adopting the dominance criterion, we obtain a classification rule suitable for

@ Springer

592 S.V.Ravelo et al.

the diverse group of scenarios mentioned before. In order to prove that, consider the
maximal set S of non-dominated solutions for a given instance (without considering
the particular settings of the scenarios) and X* an optimal solution of the instance
for one of the scenarios. Since S is maximal, it must contain X* or a solution that
dominates X* (i.e., a solution that is not worse in both objectives and strictly better
in at least one of the objectives). Therefore, S contains an optimal solution for the
instance in the scenario where X™* is optimal. Consequently, methods that attempt to
approximate the Pareto frontier can be used for different scenarios of the problem
without any adaptation, picking at the end of the process, the cutting plan that fits
better to the problem specifications.

In the following section we propose one heuristic and two meta-heuristics to solve
the 1D- CSPUL, considering the multi-objective approach of the problem.

3 Algorithms

In this section we propose and describe heuristics for the 1D- CSPUL. First we present
aconstructive heuristic based on the First Fit algorithm (FF). Our constructive heuristic
is used to generate the initial solutions for a GRASP based algorithm and an evolutive
based meta-heuristic, those algorithms will be introduced in the following subsections.

3.1 Constructive heuristic

The FF procedure creates a pattern cut for an object at a time, adding to the pattern
the first item while it is possible (i.e. the item demand is not satisfied and the object
size is greater or equal to the sum of the items sizes in the pattern). After that, the
procedure takes the second item, and so on, until the last item is reached. Since the FF
solution will depend on the items order, by applying simple permutations of the items,
we may produce different solutions. Such strategy will guarantee diversity for initial
solutions that will be used by our meta-heuristics. Figure 2 shows how a same instance
can generate diverse patterns by just considering different sorting of the items.

If the only algorithm to be used is the constructive heuristic, then it could be better
to previously sort the items in decreasing order by their lengths, so the greater items
will be selected first for the cut patterns since they are more difficult to combine.
Algorithm 1 describes our constructive heuristic.

Algorithm 1 initially creates an empty solution, at line 2, and adds patterns to the
solution in the main loop (line 3), until all item demands are satisfied or there are no
more objects in stock objects to be cut. At the beginning of each iteration, between
lines 4 and 10, the algorithm creates a pattern for each remaining type of object in the
stock and, if the created pattern has no leftover, then it is added to the solution removing
one object of the current type from stock and updating the unsatisfied demands. If,
at the current iteration, no pattern was added between lines 4 and 10, then begins a
process to create new patterns between lines 12 and 24. The idea is to remove an item
of the first type from the pattern and try to obtain a new pattern by completing the
previous one with the FF procedure without considering items of the removed type.

@ Springer

Meta-heuristics for the one-dimensional cutting stock... 593

@[w0) [o[

2X

w
X
~

3%

6 4 0x

—
X

]
X
|E|I

~
i~
[}
—
X
S~

—
X

e o

2%

© | 10 |

V]
X
ot

no
X
Iz> Iu> IJ>
Do
X
H I

2%

—_
X

w
X
|E|H

ot
ut
o
X

ot

—
X

w
X
|E|H

Fig. 2 Example of diverse cut patterns obtained by the FF procedure over different sorting of the items.
Given an object of size 10 cm, 3 items of size 4 cm, 2 of size 5 cm and 1 of size 6 cm: In case a, the solution
considering the items order is 6 cm first, 5 cm second and 4 c¢m third, producing a cut pattern with 1 item
of size 6 cm, 1 of size 4 cm and no leftover. In case b, the solution considering the items order is 4 cm first,
5 cm second and 6 cm third, producing a cut pattern with 2 items of size 4 cm and 2 cm of leftover. In case
¢, the solution considering the items order is 5 cm first, 4 cm second and 6 cm third, producing a cut pattern
with 2 items of size 5 cm and no leftover

If the resulting pattern is feasible and has no leftover then it is added to the solution
updating the remaining objects and demands, otherwise the process is repeated, but
removing an item of the second type from the pattern, and so on until all the items
originally in the pattern are removed.

In order to guarantee the algorithm halts, one or more patterns must be added to
the solution at each iteration. So, if at the current iteration no pattern was added to
the solution, then at line 27 the best pattern is selected to the solution (among all the
previously constructed patterns). In this context, the best pattern is the one with least
loss among the patterns whose leftover is a little scrap, if no pattern had little scrap
then the best pattern is the one with smallest retail and if there are no pattern with
retails, then the best pattern is the one with least leftover.

Notice that our constructive heuristic follows a greedy criteria to select patterns
into the solution. It prioritizes patterns with no leftover and only in cases that it is not
capable of constructing such patterns, selects patterns with leftovers avoiding at most
medium scraps with the hope of obtaining an ideal solution.

@ Springer

594 S.V.Ravelo et al.

Input : Stock and demands
Output: Sol: set of patterns to be produced in order to satisfy all demands
1 begin
2 Sol < {};
3 while stock is not empty and all demands are not satisfied do
4 for each object type k in stock do
5 px < FF pattern for k;
6 if py has not leftover then
7 Sol < Sol U {py};
8 Update remaining objects in stock and unsatisfied demands;
9 end
10 end
1 if no pattern were added to Sol then
12 for each pattern py do
13 (k. Pr) < (Pk. Pi):
14 v < firstitem type in py;
15 while py has items and py. has leftover do
16 Pk < DPr — {one item of type v};
17 Pr < Px completed with FF without items of type v;
18 if py loss is intermediate scrap or py loss is not intermediate scrap then py <« pattern with
least loss between py and py if py loss is intermediary scrap and py, loss is a retail then
P < P if v is the last item type in p; then v < first item type in py else v < next item
type in py if py is feasible and has not leftover then
19 Sol < Sol U {py};
20 Update remaining objects in stock and unsatisfied demands;
21 break;
22 end
23 end
24 end
25 if no pattern were added to Sol then
26 pi < feasible pattern with least loss;
27 if py loss is not a little scrap and there are feasible patterns with retails then pj < feasible
pattern with least retail Sol < Sol U {py};
28 Update remaining objects in stock and unsatisfied demands;
29 end
30 end
31 end
32 return Sol;
33 end

Algorithm 1: Constructive Heuristic

The following subsections give two meta-heuristics that use our constructive heuris-
tic to generate initial solutions.

3.2 GRASP based algorithm

First we give a meta-heuristic based on the idea of GRASP algorithms. The general
form of a GRASP algorithm is described by Algorithm 2.

Since the 1D- CSPUL is a multiobjective problem, we adapted the general form
of the GRASP algorithm to consider not a solution but a collection of solutions to
represent the Pareto frontier of our problem. Algorithm 3 describes our adaptation.

Notice that Algorithm 3 begins with an empty pool of solutions at line 2 and
new solutions are included to the pool between lines 3 and 14, where the main loop
of the algorithm is executed. The main loop executes while some stop conditions are
unsatisfied. Commonly, for these algorithms, stop conditions depend on the maximum
number of iterations and, in our case, we applied two stop conditions: maximum

@ Springer

Meta-heuristics for the one-dimensional cutting stock... 595

1 begin

2 while stop conditions are unsatisfied do

3 Sol <« solution randomly calculated by a greedy criteria;
4 Sol < local search on Sol;

5 if Sol* was not defined or Sol is better than Sol* then

6 | Sol* « Sol

7 end

8 end

9 return Sol*

10 end

Algorithm 2: General form of a GRASP algorithm

Input : Stock and demands.

Output: Pool: set of non-dominated solutions to approximate the Pareto frontier
1 begin

2 Pool < {};

3 while stop conditions are unsatisfied do

4 Sol < constructive heuristic over a random permutation of items;

5 while internal stop conditions are unsatisfied do

6 if Pool is not full or Sol is better than any solution of Pool then

7 if Pool is full then

8 | Pool < Pool — {worst solution of Pool};

9 end

10 Pool < Pool U {Sol};

1 end

12 Sol < next neighbor of Sol;

13 end

14 end

15 return Pool — {all dominated solutions of Pool};
16 end

Algorithm 3: GRASP based algorithm

number of iterations and maximum number of iterations without updating the pool,
so whenever one of them is satisfied the algorithm halts.

Each iteration of the main loop begins at line 4 with a call to the constructive
heuristic (Algorithm 1) over a random permutation of the items. As said before, a
random permutation of the items will guarantee a different solution of the constructive
heuristic each time, which may allow a better exploration of the solution space by our
algorithm. Then, the algorithm enters in a local search loop, between lines 5 and 13.
The local search loop has also stop conditions and we used similar conditions as the
considered for the main loop: maximum number of iterations and maximum number
of iterations without updating the pool.

At each iteration of the local search loop, between lines 6 and 11, we analyze if
the current solution may be added to the pool, in order to do that we check if the pool
has space or is full. If the pool has space, then we just add the solution. Otherwise,
if the current solution is better than some solution of the pool, then we remove the
worst solution from the pool before adding the current one. Observe that we need a
definition to determine when a solution is better than another.

Definition 4 Given an instance of 1D- CSPUL, a pool of feasible solutions for that
instance and two feasible solutions sol; and sol; (not necessarily in the pool) for the

instance, we say that sol; is better than sol; if and only if:

@ Springer

596 S.V.Ravelo et al.

— sol; dominates! solj, or
— solj does not dominates sol; and:

— the number of solutions in the pool dominating sol; is lower than the number
of solutions dominating sol j»Or
— there are the same number of solutions in the pool dominating sol; and sol;,
and:
e sol; is better than sol; according to definition 3, or
e sol; is not better than sol; according to definition 3 and sol; dominates
more solutions of the pool than sol;.

Definition 4 depends on the dominance criterion and only when that comparison is
not enough to determine if a solution is better than another one, we use the classification
given by definition 3. So, in Algorithm 3, we use definition 4 between lines 6 and 11
to decide if the pool must be updated with the current solution and also to find the
worst solution of the pool. After that analysis we update the current solution to its next
neighbour at line 12. We defined four different movements from a solution to reach a
new one and the decision of what movement to make is taken dynamically avoiding to
repeat the same movement consecutively. Algorithm 4 shows this movement selection.

Input : current solution So/ and remaining items in stock.
Output: Neighbor of solution Sol.
1 begin
2 if Sol has patterns with intermediate scraps and the last selected movement was not move to create better
patterns then
3 \ return Move to create better patterns from Sol;
4 end
5 if The number of retails of Sol is greater than desirable value and the last selected movement was not move to
eliminate retails then
6 \ return Move to eliminate retails from Sol;
7 end
8 if The number of little scraps of Sol is greater than desirable value and the last selected movement was not
move to eliminate little scraps then
9 ‘ return Move to eliminate little scraps from Sol;
10 end
1 return Move to diversify from Sol;
12 end

Algorithm 4: Next neighbor movement selection

Now we explain each one of the four possible movements:

— Move to create better patterns: Algorithm 4 selects this movement between lines
2 and 4 only if it was not the last selected movement and if the current solution has
patterns with intermediate scraps. The idea is to avoid patterns producing large
loss of material, that are not retails. Algorithm 5 gives us this movement.

Initially, at lines 2 and 3 in the Algorithm 5, we eliminate all the patterns with
intermediate scrap from the solution, returning the objects to stock and leaving

I We use the standard domination criterion, in which a solution dominates another one if it is not worse in
any of the objective functions and also it is better in at least one of the objectives.

@ Springer

Meta-heuristics for the one-dimensional cutting stock... 597

1

Input : current solution So/ and remaining items in stock.
Output: Sol,: neighbor of solution Sol.
begin
Soly < Sol — {all patterns of Sol with intermediate scrap};
Update the unsatisfied demands and return the removed objects to stock ;
do
p < pattern with all the unsatisfied demands;
v < first item type of p;
while p is unfeasible for all objects in stock do
p < p — {one item of type v};
if v is the last item type in p then v < first item type in p else v < next item type in p
end
if p leftover is intermediate scrap for all objects in stock and p has more than one item then
‘ p < remove smallest item from p;
end
k < smallest object in stock that makes p feasible and, if possible, guarantees p has not intermediate
scrap;
Soly < Soly U {pi};
Update remaining objects in stock and unsatisfied demands;

while stock is not empty and all demands are not satisfied;
return Soly;

end

Algorithm 5: Move to create better patterns

some items with unsatisfied demands. Then, at line 5 we create an unique pattern
with all the items of the removed patterns. Observe that such unique pattern may
be unfeasible since it could be larger than any object from stock.

If the pattern is unfeasible (larger than all objects from stock) we drop an item of
the first type and if it is still unfeasible, we drop an item of the second type and so
on until the pattern becomes feasible or we reach the last type. If we dropped an
item of the last type and the pattern remains unfeasible, then we repeat the process
from the first type of item. Notice that, eventually the pattern will became feasible,
since at each step we drop an item and the items are smaller than the objects from
stock. This process takes place between lines 6 and 10.

When we obtain a feasible pattern, if the leftover is intermediate scrap for any
object in stock and it has at least two items, then we drop the smallest item from
the pattern. Finally, we select the smallest object from stock larger than the pattern
(guaranteeing its feasibility) and, if possible, that also gives us a leftover that is
not an intermediate scrap. Then, we add the pattern and object to the solution
by updating the remaining objects and unsatisfied demands. The hole process is
repeated between lines 4 and 17 until all demands are satisfied or there are no
objects in stock.

Move to eliminate retails If Algorithm 4 does not select the movement to create
better patterns, then it may decide to apply this movement between lines 5 and
7. This movement is applied if it was not the last selected movement and if the
number of retails produced by the current solution is greater than a desirable value,
which is a fraction of the number of cut patterns producing little scraps. The idea
is to avoid patterns producing retails. Algorithm 6 shows this movement.

First, at line 2 in the Algorithm 6, we remove from the solution all patterns pro-
ducing leftover (little or intermediate scraps, or even retails). That operation will

@ Springer

598 S.V.Ravelo et al.

Input : current solution So/ and remaining items in stock.
Output: Sol,: neighbor of solution Sol.
1 begin
2 Soly < Sol — {all patterns of Sol with leftover greater than zero};
3 Update the unsatisfied demands and return the removed objects to stock ;
4 do
5 for each object type j in stock do
6 ‘ pj < solution of knapsack problem over the unsatisfied demands, item lengths and object type j;
7 end
8 Pk < pattern with least leftover over all the obtained patterns p;
9 Soly < Soly U {pr};
10 Update remaining objects in stock and unsatisfied demands;
1 while stock is not empty and all demands are not satisfied;
12 return Sol;;
13 end

Algorithm 6: Move to eliminate retails

return some objects to stock and also some items will have unsatisfied demands.
Then, for each object type j in stock, we solve the following knapsack problem
between lines 5 and 7:

n
max E SiXi

n
s.t E S,‘X,‘de

i=1

Xi <bj,x; >0, x;€Z, 1 <i<n)

where: d; is the length of the objects of type j in stock, n is the number of items,
s; is the length of item i, and l;i is the unsatisfied demand of item .

Then, at line 8, we select among all the objects the one whose knapsack solution
gives us the pattern with least leftover. We add that pattern to the solution at line 9,
updating the unsatisfied demands and objects in stock at line 10. This hole process
isrepeated from line 4 to 11, until the demands are satisfied or the stock gets empty.

— Move to eliminate little scraps This movementis selected by Algorithm 4 between

lines 8 and 10, if it was not the last selected movement, also if the algorithm did
not select one of the previous movements and if the number of cut patterns with
little scrap of the current solution is greater than a desirable value (a proportion
of the number of retails).
The idea is to produce a solution with less loss of material and probably with more
retails. Algorithm 7 shows us this movement. Notice that this algorithm is very
similar to Algorithm 6 (move to eliminate retails), the only difference is between
lines 9 and 11 in which if the selected pattern produces loss of material and has at
least two items, then we remove the first item of the pattern in order to produce a
retail.

— Move to diversify In case none of the above movements were selected by Algo-
rithm 4, then we apply a movement to diversify. This movement tries to generate

@ Springer

Meta-heuristics for the one-dimensional cutting stock... 599

Input : current solution So/ and remaining items in stock.
Output: Sol,: neighbor of solution Sol.
1 begin
2 Soly < Sol — {all patterns of Sol with leftover greater than zero};
3 Update the unsatisfied demands and return the removed objects to stock;
4 do
5 for each object type j in stock do
6 ‘ pj < solution of knapsack problem over the unsatisfied demands, item lengths and object type i;
7 end
8 Pk < pattern with least leftover over all the obtained patterns p;
9 if no pattern without loss or with retail was added to Sol, and py has at least two items and a leftover
that is not a retail then
10 ‘ Pk < pi — {one item of first type in py}
11 end
12 Soly < Soly U {pr};
13 Update remaining objects in stock and unsatisfied demands;
14 while stock is not empty and all demands are not satisfied;
15 return Sol,;
16 end

Algorithm 7: Move to eliminate little scraps

a new solution by removing all the patterns with leftovers from the current one
and solving with the constructive heuristic the generated sub-problem with the
non-used objects and the unsatisfied demands. Algorithm 8 give us this idea.

Input : current solution Sol and remaining items in stock.
Output: neighbor of solution Sol.
1 begin
2 Sol, < Sol — {all patterns of Sol with leftover greater than zero};
3 Update the unsatisfied demands and return the removed objects to stock;
4 Sols < constructive heuristic solution for sub-problem with objects in stock and unsatisfied demands;
5 return Sol, U Soly;
6

Algorithm 8: Move to diversify

Observe that our GRASP based algorithm (Algorithm 3) maintains a set with the
best solutions found, instead of only one best solution. At the end of the algorithm, at
line 15, we remove from that set all the dominated solutions, returning a collection of
non-dominated solutions that approximates the Pareto frontier. Since, in multiobjective
problems an optimal solution may not exist, it could be interesting to provide some
good solutions and from them to decide which is the best strategy to follow.

Next subsection will present our second meta-heuristic, which is based on evolutive
algorithms.

3.3 Evolutive based algorithm
As the GRASP based algorithm, our evolutive based algorithm solves the multiobjec-

tive problem given as answer a set of non-dominated solutions. This algorithm uses
the idea of the general evolutive algorithms, described by Algorithm 9.

@ Springer

600 S.V.Ravelo et al.

1 begin

2 Pool < randomly generated initial population of solutions;

3 Calculate fitness value of each solution s € Pool;

4 while stop conditions are unsatisfied do

5 Parents < subset of Pool with the best fitness values;

6 New_Pool < new solutions obtained through crossover and mutation operations over the elements of

Parents;
7 Calculate fitness value of each solution s € New_Pool;
8 Pool < best |Pool| solutions from Pool U New_Pool;
9 end
10 return Pool;

11 end

Algorithm 9: General form of an evolutive algorithm

Notice that the general evolutive algorithms associate a fitness function to each
solution in order to select the parents for the new solutions (at lines 3 and 7 of Algo-
rithm 9). In our case, we do not have a fitness function, instead of that we keep a
small population and we apply the crossover operator to all pairs of solutions in the
population. After that, we apply a mutation operator to the new solutions and we select
the best solutions to the new population. If no new solution is considered to be part
of the new population, then we apply a second mutation operator and select one more
time the best solutions to create the new population. Algorithm 10 shows this idea.

Input : Stock and demands.
Output: Set of non-dominated solutions to approximate the Pareto frontier
1 begin
2 Pool < set of solutions generated with the constructive heuristic over random permutations of the items;
3 while stop conditions are unsatisfied do
4 New_Sols < {};
5 for each pair of solutions sy, so € Pool do
6 512 < crossover (combination) of solutions s1 and s3;
7 5|, < mutation of s12;
8 New_Sols < New_Sols U {siz};
9

end
10 Pool < best | Pool| solutions from Pool U New_Sols;
1 if no solution from New_Sols was added in Pool at this iteration then
12 for each solution s € Pool do
13 s/ < second mutation of s;
14 New_Sols < New_Sols U {s'};
15 end
16 Pool < best | Pool| solutions from Pool U New_Sols;
17 end
18 end
19 return Pool — {dominated solutions of Pool};
20 end

Algorithm 10: Evolutive based algorithm

At the beginning of Algorithm 10 we populate our pool of solutions using the
constructive heuristic over different random permutations of the items (line 2). After
that the algorithm enters into its main loop between lines 3 and 18, until stop conditions
are unsatisfied. The stop conditions we used were maximum number of iterations or
not updating the pool at current iteration.

@ Springer

Meta-heuristics for the one-dimensional cutting stock... 601

As said before, we maintain a small population and apply the crossover over all the
pairs of solutions in the population. That operation occurs between lines 4 and 9. The
crossover between two solutions is given by Algorithm 11. Observe that it begins at
line 2 with an empty new solution. Then, between lines 5 and 8, the algorithm takes,
simultaneously, patterns from each solution to the new one, with one condition: the
pattern to be taken must be a possible pattern (cannot make unfeasible the constructed
solution) and also must not have leftover. The constructed solution is feasible if and
only if it does not use more objects of any type than the available in stock and it does
not cut more items of any type than its required demand. The algorithm stops when
all the patterns of the parent solutions are analyzed, returning the new solution.

Input : parent solutions s and s, stock and demands.
Output: s1,: partial solution constructed from s; and s
1 begin
2 si2 < {h
3 p1 < first pattern of s ;
4 pa < first pattern of s7;
5 do
6 if py is not empty and py has no leftover and (s1p U {p1}) is feasible then s1o < s1o U{p1} if pp is not
empty and py has no leftover and (s13 U {p3}) is feasible then s13 < s12 U{py} p < next pattern of s
or empty if 51 has no more patterns;
7 p2 < next pattern of sp or empty if s has no more patterns;
8 while p| or py are not empty;
9 return sq;;
10 end

Algorithm 11: Crossover operator

Observe that the new solution may be partial (incomplete), since there could be
some items with unsatisfied demands. So, at line 7 of Algorithm 10, we apply to the
solution a mutation operator. That operator, given by Algorithm 12, solves the sub-
problem with the unsatisfied item demands and the unused objects applying the same
knapsack problem used by the GRASP based algorithm. Then, from the knapsack
solution, we select the patterns that minimize the leftover, trying to avoid those with
leftover of intermediate size.

After obtaining all the new solutions, Algorithm 10 selects at line 10 the best solu-
tions to the next population. If there are no new solutions added to the next population,
then between lines 11 and 17, it is applied a second mutation operator to all the solu-
tions in the population trying to obtain new solutions. The best solutions from the
actual population and the mutated solutions are selected to the next population.

The second mutation operator follows the idea of assigning to each pattern a rank
value, based on the number of large items they produce (where the minimum length
of a large item is calculated as a fraction of the length of the smallest standard object,
used 0.25). It creates a mutated partial solution, only with the patterns that have no
leftover and positive rank. The objective is to have a greater number of free small
items, that are easier to combine. Then, the first mutation operator is applied to the
new partial solution. Algorithm 13 shows this idea.

@ Springer

602 S.V.Ravelo et al.

Input : partial solution Sol, unsatisfied demands and remaining items in stock.
Output: Sol: complete solution.

1 begin

2 do

3 for each object type j in stock do

4 ‘ pj < solution of knapsack problem over the unsatisfied demands, item lengths and object type j;
5 end

6 Pk < pattern with least leftover over all the obtained patterns p;;

7 if py has at least two items and a leftover that is intermediate scrap then
8 ‘ Pk < pk — {one item of first type in py}

9 end
10 Sol < Sol U{py};

1 Update remaining objects in stock and unsatisfied demands;
12 while stock is not empty and all demands are not satisfied;

13 return Sol;

14 end

Algorithm 12: First mutation operator

Input : current Sol and remaining items in stock.
Output: mutated solution.
begin

1
2 Soly, < Sol;

3 for each pattern p € Sol do

4 rankp < number of large items produced by p;

5 if p has leftover or rank, = 0 then

6 Solym < Solm — {p};

7 Update unsatisfied demands and objects in stock;

8 end

9 end

10 Soly, <« first mutation operator over Sol;,, the unsatisfied demands and the remaining objects in stock;
1 return Sol, ;

12 end

Algorithm 13: Second mutation operator

4 Computational experiments

In this section we present tests with instances used by Cherri et al. (2009, 2013); Cui
and Yang (2010); Tomat and GradiSar (2017). Some of the instances used in Cherri
et al. (2009); Cui and Yang (2010) were taken from GradiSar and Trkman (2005)
(the numerical instances), other were taken from Abuabara and Morabito (2009) (the
practical instances), and the rest were randomly generated by Cherri et al. (2009). The
instances from Cherri et al. (2013); Tomat and GradiSar (2017) where also randomly
generated but they consider demands in different time periods of a time horizon (the
multi-period instances). We compare our solutions with the solutions from Cherri
et al. (2009), following the criterion of a good solution given by definition 3, being,
the values used in Cherri et al. (2009): €; = 0.03, €, = 0.1, 8 = 0.005, 6 = 0.05 and
6 = min s;, where s; is the length of the item i. For both of our meta-heuristics, the
seeds used were the integers from 1 to 10, the maximum number of iterations was set
to 100 and the maximum number of iterations without updating the pool was set to
10, being the pool maximum size also 10.

Our implementations were executed with Cygwin 2.10.0-1 on a processor Intel(R)
Core(TM) i15-7400 CPU @ 3.00GHz and 8GB of RAM, under Windows 10 Home
Single Language operating system.

@ Springer

Meta-heuristics for the one-dimensional cutting stock... 603

Table 1 Items’ lengths and

demands of instance 1 Item 1 2 3 4 5
Length (cm) 235 200 347 471 274
Demand 4 51 42 16 37

The following subsections discuss the instances and show the obtained results.
The results are given in tables in which are used O.Cut to denote the number of cut
objects, T . Len to denote the total length of the cut objects, T . Loss to denote the total
length of the leftovers, T . Ret to denote the total length of the retails generated by the
solution, LScrap to denote the number of cuts with little scrap, MScrap to denote
the number of cuts with leftovers of intermediate size, NRet to denote the number
of cuts with retails, and Sol to denote the classification of the solution according to
definition 3, where ID is ideal, AC is acceptable, and UND is undesirable. To refer
our algorithms we use the terms C. H . to the constructive heuristic, GRAS P.B to the
GRASP based algorithm, and Evol.B to the evolutive based algorithm.

4.1 Numerical instances

These instances were originally given by GradiSar and Trkman (2005). Since the
best known results for them were given by Cherri et al. (2009), we compare our
approaches with their best algorithms, which are: RGRy;1, RGR;2 and RGR3.
In the comparison, we selected some of the non-dominated solutions found by our
meta-heuristics over each seed.

Instance 1 has 20 types of different objects with lengths between 2200 cm and
6000cm. The stock contains exactly one object of each type. Table 1 gives us the
items’ lengths and demands.

Table 2 shows a resume of the results obtained by our approaches and those from
Cherri et al. (2009) over the first numerical instance. From that table, one can see
that our GRASP and Evolutive based algorithms give solutions with more cuts than
the obtained by RGRr1, RGR12 and RGR[,3, being shorter the total length of the
cuts given by our algorithms. This means that our algorithms preferred to cut shorter
objects first, saving the larger objects (easier to use in cut patterns) for future cuts.
Also, our GRASP algorithm was capable of producing two Pareto optimal solutions,
being one of them very different from the solutions given by the other algorithms since
it does not produce any retail to return to stock, but a very small loss of material (12 cm
of loss compared to the 43400 cm of cuts).

Instance 2 has 20 types of different objects with lengths between 2100cm and
5000cm. The stock contains exactly one object of each type. Table 3 gives us the
items’ lengths and demands.

Table 4 shows a resume of the results obtained over the second numerical instance.
Observe that our GRASP and Evolutive based algorithms give, each one, a set of
different solutions in which we can find none or just one retail to stock, or with no
loss of material or very small loss. For this instance, some of the solutions found by

@ Springer

604 S.V.Ravelo et al.

Table 2 Solutions for instance 1

RGRy(1,2) RGR3 C.H. GRASPB Evol.B
O.Cut 10 10 13 11 11 11
T.Len 45245 46507 45800 43400 44000 44800
T.Loss 0 0 34 12 0 0
T.Ret 1857 3119 2378 0 612 1412
LScrap 0 0 6 1 0 0
MScrap 0 0 0 0 0 0
NRet 1 2 2 0 1 1
Sol ID* AC AC ID* ID* ID*

The * indicates that the solution is a Pareto-optimal
The best values are highlighted in bold

Table 3 Items’ lengths and

demands of instance 2 Item 1 2 3 4 5
Length (cm) 549 433 207 308 583
Demand 39 27 43 30 2

Table 4 Solutions for instance 2

RGR;1 RGR;2 RGR;3 CH. GRASPB Evol.B

O.Cut 15 16 14 16 15 16 16 15 15

T.Len 57554 58159 56395 55944 55212 58832 56856 57036 58100

T.Loss 6 3 7 93 31 13 18 7 0

T.Ret 2367 2972 1207 670 0 3638 1657 1848 2919

LScrap 4 4 5 12 7 5 6 5 0

MScrap 0 0 0 0 0 0 0 0 0

NRet 2 3 2 2 0 2 1 2 7

Sol AC UND AC AC AC AC AC AC UND

The best values are highlighted in bold

our approaches were dominated by the ones of RGRy 1, RGR;2 and RGRL3, even
s0, both of our meta-heuristics were capable of finding new non-dominated solutions.

Instance 3 has 90 types of different objects with lengths between 3000 cm and
9000cm. The stock contains exactly one object of each type. Table 5 gives us the
items’ lengths and demands, being a total of 15 different items.

Table 6 shows a resume of the results obtained over the third numerical instance.
Notice that for this instance two of the algorithms from Cherri et al. (2009) reached
the same solution, while our approaches were capable of finding similar solutions to
the ones given by Cherri et al. (2009) and also another good non-dominated solutions.
Analyzing the number of cuts, we observe that, once more, our algorithms had more
cuts but less length of the cut material than RGRy 1, RGRy2 and RG Ry 3. That show
us the preference our approaches give to cut first little objects saving the larger objects
to future cut patterns, which could be a nice strategy since, generally, larger objects
are easier to use in the cuts.

@ Springer

Meta-heuristics for the one-dimensional cutting stock... 605

Table5 Items’ lengths and demands of instance 3

Item 1 2 3 4 5 6 7 8
Length (cm) 569 718 520 540 492 547 632 430
Demand 34 26 25 12 30 2 6 36
Item 9 10 11 12 13 14 15
Length (cm) 750 387 804 389 835 684 687
Demand 7 20 3 32 18 39 10

Table 6 Solution for instance 3

RGRp(1,2) RGR[3 C.H. GRASPB Evol.B

O.Cut 22 22 27 28 26 39 27

T.Len 172114 170989 169060 169544 169052 169700 169060

T.Loss 0 0 14 0 6 0 14

T.Ret 3098 1943 0 498 0 654 0

LScrap 0 0 2 2 2

MScrap 0 0 0 0 0

NRet 1 1 0 0 0

Sol ID ID ID ID D D ID

The best values are highlighted in bold

Table 7 Items’ lengths and

demands of instance 4 Item 1 2 3 4 5
Length (cm) 250 273 285 525 1380
Demand 2 2 4 4 4

4.2 Practical instances

These instances were originally given by Abuabara and Morabito (2009) and the only
heuristic results for them were given by Cherri et al. (2009), so we compare our
approaches with their algorithms. Since, for these instances the number of objects to
be cut is very small, the values of €1 and €, are not appropriate, that is the reason we
will not classify them by definition 3.

Instance 4 has only one type of object with length 3000 cm and availability of 10
in stock. Table 7 gives us the items’ lengths and demands.

Table 8 shows a resume of the results obtained over the first practical instance
(instance 4). Observe that two of the algorithms proposed by Cherri et al. (2009)
found the same solution and none of the solutions from Cherri et al. (2009) are Pareto
optimal, while both of our meta-heuristics found Pareto optimal solutions, even more,
for that instance our evolutive based algorithm was able to find the complete Pareto
frontier.

Instance 5 has only one type of object with length 6000 cm and availability of 10
in stock. Table 9 gives us the items lengths and demands.

@ Springer

606

S.V.Ravelo et al.

Table 8 Solution for instance 4

RGRy(1,2) RGR3 C.H. GRASPB Evol.B

O.Cut 5 5 5 5 4 4 4 4

T.Len 15000 15000 15000 15000 12000 12000 12000 12000

T.Loss 0 4 45 0 4 240 0 240

T.Ret 5194 5190 5149 5194 2190 1954 2194 1954

LScrap 0 1 0 0 1 0 0 0

MScrap 0 0 1 0 0 1 0 1

NRet 3 3 4 5 2 1 2 1

Sol - - - - - * * *

The * indicates that the solution is a Pareto-optimal

The best values are highlighted in bold

Table9 Items’ lengths and

demands of instance 5 Item 1 2 3 4
Length (cm) 370 905 910 930
Demand 5 5 5 5

Table 10 Solution for instance 5. The * indicates that the solution is a Pareto-optimal

RGRp(1,2,3) C.H. GRASPB Evol.B

O.Cut 3 3 3 3 3 3

T.Len 18000 18000 18000 18000 18000 18000

T.Loss 150 0 0 250 0 250

T.Ret 2275 2425 2425 2175 2425 2175

LScrap 0 0 0 0 0 0

MScrap 1 0 0 2 0 2

NRet 2 3 3 1 3 1

Sol _ ® * # ® *

The best values are highlighted in bold

Table 10 shows a resume of the results obtained over the second practical instance
(instance 5). For this instance the three algorithms from Cherri et al. (2009) gave
the same answer which was not a Pareto optimal solution, while all of our algorithms
found Pareto optimal solutions and our both meta-heuristics gave two different optimal
solutions to describe the Pareto frontier.

4.3 Randomly generated instances

These instances were first given by Cherri et al. (2009) and tested with their heuristics
approaches. Also, in Cui and Yang (2010) these instances were tested and the results
from Cherri et al. (2009) improved. We compare our results for these instances with
both approaches, the algorithms from Cherri et al. (2009) (RGRp1, RGR2 and
RG Ry 3) and the heuristic from Cui and Yang (2010) (RSH P).

@ Springer

Meta-heuristics for the one-dimensional cutting stock... 607

Table 11 Random instances description

Class Obj. type Itm. type Items Class Obj. type Itm. type Items
1 5 10 Small 9 7 20 Small
2 5 10 Average 10 7 20 Average
3 5 20 Small 11 7 40 Small
4 5 20 Average 12 7 40 Average
5 5 40 Small 13 9 10 Small
6 5 40 Average 14 9 10 Average
7 7 10 Small 15 9 20 Small
8 7 10 Average 16 9 20 Average

These instances were divided in 16 classes with 20 instances each class. The
instances were generated by Cherri et al. (2009) considering some parameters for
each class. One of those parameters was the number of different types of object in
stock, which canbe 5, 7 or 9, where they always had 2 types of standard objects of sizes
1000 and 1200, being the rest of the types non-standard with random lengths lower
than 1000. Another parameter was the number of different types of items to produce,
where there could be 10, 20 or 40 different types of items. Finally, a parameter was
considered to bound the sizes of the different items, where they could be of small size
(up to 0.2 times the average of standard object sizes: 1100) or they could be average
size (up to 0.8 times the average of standard object sizes: 1100). Table 11 describes,
for each class, how these parameters were given.

Since the comparison with other approaches is made over average values and our
meta-heuristics give a set of undominated solutions, our average value considers only
one of the solutions of each set. Notice that, in general, an average value over set of
Pareto optimal will give a very bad solution value for each objective function, for that
reason we need a criterion to select one of the non-dominated solutions we found for
the average comparison. Then, for each instance and each seed, we only considered
to the average computation the solution of the pool with less loss of material. Another
possible criteria to consider for the average value could be: the solution with least
retails or the solution with best classification by definition 3, or even the solution that
found more dominated solutions during the algorithm execution.

Table 12 compares our solutions with the ones obtained by Cherri et al. (2009).
As seen on the previous instances our approaches cut more objects but with less total
length, implying the preference of our algorithms for cutting smaller objects, saving
the larger for future cuts. Such preference allowed all of our algorithms to cut much
more non-standard objects (retails from previous cuts) than RGR; 1, RGRy2 and
RG R 3 (see NonStand row of Table 12). So, even when the algorithms from Cherri
et al. (2009) produce less retails, at the end of the process the total number of retails
in stock given by our approaches is lower than the achieved by Cherri et al. (2009).
Then, since our evolutive based algorithm produces less loss of material than RGRy 1,
RGR;2 and RG Ry 3, in general their solutions are dominated by ours, while neither
our constructive heuristic or our GRASP based algorithm are dominated by any other

@ Springer

608 S.V.Ravelo et al.

Table 12 Comparison with the results from Cherri et al. (2009)

RGR; 1 RGR.2 RGR.3 CH. GRASP.B Evol.B
0.Cut 106.9 106.9 106.9 127.7 125 119.7
Stand 102.6 1025 102.6 100.8 103.7 107.3
NonStand 43 44 45 26.9 21.3 124
TLen 111957.6 1119235 111979.4 1123427 112979.7 113319
TLoss 115 11.8 12.5 168.6 15.5 0
TRet 587.4 552.8 601.9 815.3 1605 1960.2
LScrap 32 32 3.6 32 2.8 0
MScrap 0.1 0.1 0.1 5 0.6 0
NRet 2.6 2.6 2.8 2.9 6.2 8
Final Ret 26.4 26.3 26.4 41 13 23.7
Sol ID ID ID AC AC AC
Time (s) 22.55 22.74 81.85 < 0.001 0.21 1.14

The best values are highlighted in bold

Table 13 Comparison with the results from Cherri et al. (2009) and Cui and Yang (2010)

RGR,1 RGR;2 RGR.3 RSHP CH GRASPB Evol.B
Stand 102.6 102.5 102.6 101.5 100.8 103.7 107.3
NonStand 4.3 4.4 4.5 236 26.9 213 124
T.Len 111957.6 1119235 1119794 111672 1123427 112979.7 113319
T.Loss 115 11.8 12,5 9.8 168.6 15.5 0
T.Ret 5874 552.8 601.9 3032 815.3 1605 1960.2
NRet 2.6 2.6 2.8 12 29 6.2 8
Av.RetLen 2259 2126 215 2527 281.1 258.9 245
Final Ret 26.4 26.3 26.4 5.7 4.1 13 23.7
Time (s) 22.55 22.74 81.85 1.56 <0.001 021 1.14

The best values are highlighted in bold

solution of Table 12. This proves once more that solutions classified as ideals by
definition 3 are not necessarily better, but could be worse, than solutions classified as
acceptables. Beside that, our algorithms seem to be very efficient, as it can be seen at
row Time (s) of Table 12.

Table 13 compares our solutions with the ones obtained by Cherri et al. (2009) and
Cui and Yang (2010). Analyzing the objective values one can see that the lower loss of
material is given by our evolutive based algorithm with an average value of 0 (no loss
of material) and even without loosing material this meta-heuristic was able to reduce
the number of retails in stock. The next approach with less material loss is the RSH P
given by Cui and Yang (2010), which is also the second one with less retails in stock at
the end of the process. The RGRy 1, RGRr2, RGR3 and GRASP based algorithm
had slightly greater loss of material than R H S P, while the loss of material from the
constructive heuristic was significantly greater. On the other hand, the constructive

@ Springer

Meta-heuristics for the one-dimensional cutting stock... 609

Retails number

30 T
non-dominated
ORGRL (1,2,3) [] solutions
25 $
Evol.B
20 +
15 +
GRASP.B
O
10 +
[]
1 C.H.
5 RSHP ®
Total loss
0 15 30 45 60 75 90 105 120 135 150 165
RGR1 (11.5, 26.4) C.H. (168.6, 4.1) RSHP (9.2, 5.7)
RGRL2 (11.8, 26.3) GRASP.B (15.5, 13)
RGRp3 (12.5, 26.4) Evol.B (0, 23.7)

Fig. 3 The values associated to RGRy 1, RGRy 2 and RG R} 3 are dominated by the ones associated to
Evol.B and RSH P, the value of GRASP.B is only dominated by the one of RSH P, while the values of
C.H., RSH P and Evol. BA are non-dominated

heuristic had the smallest number of retails at the end in the stock, while RGRy 1,
RGR2 and RGR 3 were the worst algorithms to achieve this objective, however
these algorithms were designed to reduce the number of produced retails instead of the
retails at the final stock (see definition 1) and, for that objective, they achieved good
results loosing only for RSH P. We also analyze the average size of the produced
retails and RGRy 1, RGRy2 and RG R, 3 produced the shorter retails, which could
be bad for future cuts, while the constructive heuristic gave us largest average sized
retails.

In order to visualize the Pareto dominance of the different heuristics over the random
generated instances, one can see the Fig. 3. Despite the solutions of our proposals do
not dominate the solutions of RH S P, given by Cui and Yang (2010), we observe that
the average loss of material of our evolutive based algorithm was 0, which is more
desirable than the loss of material produced by RH S P and since our evolutive based
algorithm also reduces the number of retails in stock, one can suppose that over a time
horizon with different demands, this meta-heuristic will maintain a small number of
retails in stock. So, the solutions achieved by our evolutive based algorithm could
be more interesting for applications with expensive materials such as photographic
paper, where the cost of the waste may be more significant than the cost of the stock.
Another applications where our evolutive based algorithm could be better than the
RHS P, because it is more important to reduce the waste than the stock, are those
with high difficulty on discarding the losses, since the non-used material may cause

@ Springer

610 S.V.Ravelo et al.

environmental pollution or may be hard to recycle, an example occurs at the process
of cutting construction materials like stone labs Tam et al. (2006).

4.4 Multi-period instances from Cherri et al. (2013)

The instances given by Cherri et al. (2013) were divided in two sets. Each set contains
twenty 12-period sequences (i.e. 20 simulations, each one with 12 different orders).
For each sequence, the first period starts with the stock containing only standard
objects (without retails) and, at further periods, the non-standard objects are the retails
generated in previous periods which were not used in the solutions. The standard
objects for all the tests are of two lengths 1000 and 1100 with unlimited availability in
the stock in all the periods. The demands consist on generate items from 50 different
lengths in the interval [10.5, 262.5] (small items) for the set 1 and in the interval
[10.5, 420] (mixed items) for the set 2. For each set, the first ten items from the 50
types are considered the regular items, whose average value determine the minimum
retail length. At each period, the orders are compound by selecting regular items
demands in the interval [200, 500] and also by selecting between 10 and 30 of the
other items with demands in the interval [1, 10].

Since in a multi-period simulation the number of non-standard objects at some
period are the non used retails of previous periods, we must select one of the non-
dominated solutions given by our meta-heuristics at each period, to uniquely determine
the stock of the next period. The authors of Cherri et al. (2013) gave more relevance
to reduce the number of retails in the stock than to minimize the loss of material, for
that reason, at each period, each meta-heuristic selected the solution with less retail
at the stock, then updated the stock and tested the next period. Figures 4 and 5 show
for sets 1 and 2, respectively, the average value for the cumulative loss of material
produced by our algorithms along the periods and the average number of retails in
stock per period. From those figures we observe that the lowest loss of material for
both sets per period was given by the GRASP.B, followed by the Evol.B. Also,
the GRASP.B algorithm managed to not generate retails for instances of set 1 and
the generated retails per period for instances of set 2 was almost zero. The Evol.B
algorithm was the second with lowest retails generation, whose number was almost
constant for both sets at each period. On the other hand, the C.H . presented the worst
solutions, generating more loss of material and more retails at each period.

In Cherri et al. (2013) the authors proposed the RGR{ heuristic which modifies
their previous heuristic RGRy (RGRy2 in Cherri et al. (2009)) and compared the
results obtained with the heuristic RGR of Poldi and Arenales (2009). From their
analysis there was not clear which heuristic produced the best results, so we compare
the three heuristics with our own solutions.

Table 14 compares the average results for each set. The parameters we considered
were the total length of the loss material (T . Loss) and its percentage over the total
length of the object cuts (T . Loss %), the number of retails at the stock after the final
period (Final Ret) and a parameter to indicate if the solution is dominated or not
(Dominated). For the set 1 the undominated solutions were given by GRASP.B
and RGRY, were RGR? only dominated the solutions from RGR; and C.H. while

@ Springer

Meta-heuristics for the one-dimensional cutting stock... 611

- = C.H. —-..=— GRASP.B — Evol.B
Cumulative loss length Number of retails
15,000 30
12,500 25 AN T
10,000 20+ ~</ por”
7,500 15
5,000 10
2,500 5
0 12345678 9101112 0 123456 789101112
Periods Periods

Fig.4 Average values for cumulative loss of material and total number of retails per period for set 1 from
Cherri et al. (2013)

- = C.H. -..= GRASP.B — Evol.B
Cumulative loss length Number of retails
27000 i 48
22500 40 BPas
18000 32 /,/"/—“
13500 24+ NN
9000 16
4500 8
ol S S SN S T SO SO SO S {m
0 12345678 9101112 0 12345678 9101112
Periods Periods

Fig.5 Average values for cumulative loss of material and total number of retails per period for set 2 from
Cherri et al. (2013)

GRASP.B dominated the solutions from RGR, C.H. and Evol.B. Even more, the
percentage of loss material produced by GRASP.B and RGRf were very close,
while our GRAS P.B managed to produce zero retails. Analyzing the results for the
set 2, we observe that the solutions given by the GRAS P.B were much better in both
objectives than the solutions produced by the rest of the algorithms. In general we
may conclude that, for these instances, our GRAS P.B algorithm obtained the best
solutions, reducing significantly the number of retails at the final stock.

4.5 Multi-period instances from Tomat and Gradisar (2017)

In Tomat and Gradisar (2017), the authors tested four sequences of instances, each
sequence consisting of 30-period orders. All the periods began with two types of
standard objects: 100 objects of size 1000 and 100 objects of size 1100. The first period
of each sequence only had standard objects at the stock and, at each further period,
the non-standard objects were the non used retails generated in previous periods. The
demands were randomly generated for each period with at most 20 different items.
From sequence 1 to 4 the ratio between the average object length and items length
was decreasing, implying that sequence 4 had greater items and the solutions should
be worst (more retails and loss of material). Table 15 shows the interval in which the

@ Springer

612 S.V.Ravelo et al.

Table 14 Comparison with the solutions of Cherri et al. (2013)

Set 1 RGR RGRy, RGRZ C.H. GRASP.B Evol.B
T.Loss 5572 428 378 12658 4154 8364
T.Loss % 0.09 0.01 0.01 0.22 0.07 0.13
Final Ret 1.0 2.4 1.1 26.7 0 0.8
Dominated Yes Yes No Yes No Yes

Set 2 RGR RGRy, RGRZ C.H. GRASP.B Evol.B
T.Loss 43256 30684 30902 25462.8 16295.1 19472.5
T.Loss % 0.5 0.36 0.36 0.35 0.23 0.27
Final Ret 0.8 6.9 1.2 429 0.2 1.6
Dominated Yes Yes Yes Yes No Yes

The best values are highlighted in bold

Table 15 Parameters for order generation by Tomat and GradiSar (2017)

Sequence 1 Sequence 2 Sequence 3 Sequence 4
Items length interval [5, 83] [6, 146] [8,209] [11,335]
Number of pieces 125 102 79 34

lengths of the items were generated for the demands of each sequence and also the
number of pieces to be cut.

Since at each period the non-standard objects in stock depends on the solution
of the previous period, in order to test the simulation we needed to select only one
solution of the undominated solutions set given by our meta-heuristics. Then, for
each sequence, we solved each period instance with our algorithms and, for the meta-
heuristics, we selected the solution with less loss of material among the undominated
set of solutions they obtain. Then, we updated the stock with the generated retails of
the selected solution and tested the next period.

Table 16 compares the solutions we obtained with the ones given by COLA (the
heuristic algorithm used by Tomat and GradiSar (2017) to test the instances). That table
considers the total length of the material loss for each sequence (T . Loss), the final
number of retails at the stock after the last period (Final Ret) and a parameter to
indicate if the solution is dominated or not (Dominated). For all the sequences, the
G RAS P .B obtained undominated solutions, always dominating the solutions given by
COLA. Also, along the tests, the Evol.B did not produced loss of material, however
in two of the sequences the final number of retails at the final stock was very high.

In order to analyse better the simulations, we provide graphics for each sequence
considering the cumulative loss over the periods and also the number of retails at each
period. The results for sequence 1 simulation are shown in Fig. 6. For that instance,
neither GRASP.B nor Evol.B had loss of material at any period and C.H . produced
loss of material only at the initial periods, while C O L A had loss of material in almost
all the periods producing the most loss of material among the four algorithms. Ana-
lyzing the retails number, the four algorithms had only one retail at the final stock, but
while the number of retails of GRAS P.B remained constant for the complete simula-

@ Springer

Meta-heuristics for the one-dimensional cutting stock... 613
Table 16 Comparison with the
solutions of COLA Sequence 1 COLA C.H. GRASP.B Evol.B
T.Loss 90 31 0 0
Final Ret 1 1 1 1
Dominated Yes Yes No No
Sequence 2 COLA C.H. GRASPB Evol.B
T.Loss 1269 382 0 0
Final Ret 6 2 1 11
Dominated Yes Yes No Yes
Sequence 3 COLA C.H. GRASP.B Evol.B
T.Loss 4561 1176 0 0
Final Ret 145 3 1 45
Dominated Yes Yes No Yes
Sequence 4 COLA C.H. GRASPB Evol.B
T.Loss 7999 2899 389 0
Final Ret 210 3 14.6 280
Dominated Yes No No No
The best values are highlighted in bold
Cumulative loss length s COLA --C.H. ---~GRASP.B Evol.B
90 j\
80, "”
70 - e U
60 - 2
50 -
40 -
0 i é 3 éi 5 é ‘7 é é 1b 1‘1 1‘2 1‘3 1‘4 1‘5 1‘6 1‘7 1é lb 2‘0 2‘1 2‘2 2‘3 2‘4 2‘5 26 2‘7 2‘8 2‘9 3‘0
Periods

Fig. 6 Cumulative loss of material and total number of retails per period for sequence 1 from Tomat and

GradiSar (2017)

tion, we observe that C.H . and Evol.B had some fluctuations only at the beginning of
the process, and the number of retails of C O L A presented more perturbations, which
could be undesirable if one wants to predict the behavior of the algorithm.

Figure 7 shows the results for the simulation of sequence 2. The loss of material
analysis for this instance is very similar to the previous one (sequence 1): neither
GRASP.Bnor Evol.B had loss of material at any period and C.H . produced loss of
material only at the first periods, while COLA had loss of material in every period pro-

@ Springer

614 S.V.Ravelo et al.

-+--COLA - =C.H. -..=GRASP.B Evol.B

Cumulative loss length

1,400 }
1,200 1 S ‘3
1,000 + [
800 +
600 +
400 +
200 o sE =

|

0 1234567 8 91011121314151617 18192021 2223 24 25 26 27 2829 30

Number of retails

Periods

Fig. 7 Cumulative loss of material and total number of retails per period for sequence 2 from Tomat and
Gradisar (2017)

ducing the most loss of material among the four algorithms. The retails analysis shows
different results: at the final stock Evol.B produced the greater number of retails, fol-
lowed by COLA, while GRASP.B and C.H. produced the less retails. Despite the
number of retails at the final stock from E'vol. B is greater than the producedby CO LA,
we observe that along the simulation, Evol.B maintained an almost constant number
of retails while C O LA presented enormous fluctuations on that number. Such fluc-
tuations are not desirable because if the simulation would ended at a previous period,
for example the 22", then C O L A would had produced the greatest number of retails
and also the most loss of material.

The results of sequence 3 simulation are given by Fig. 8. For that instances, the
Evol.B and GRASP.B produced the lowest loss material values, which were O at
each period. Also, the C.H. produced a small loss compared to the produced by
COLA. Similarly to the previous simulations, the lowest average retail number per
period was given by GRAS P.B which was one, consuming and producing one retail
at each period and the C.H . maintained for almost all the periods the constant number
of one retail at the stock. Despite Evol.B presented an increasing number of retails
at the stock, such increment follows almost a linear proportion over the periods and
is much smaller than the number of retails produced by C O L A, which presents big
fluctuations along the simulation.

Figure 9 gives the simulation results for the sequence 4. Similar to the previous
sequences, the Evol.B did not produced any loss of material, being the second best
results from GRASP.B, whose loss of material is less than 1.4% of the material loss
from C.H. and less than 0.5% of the material loss from C O L A. For this instance the
C.H. presented the lowest numbers of retails at the stock, maintaining the constant
value of three retails in almost all the periods. The second algorithm with lowest retail
number was the GRAS P.B, whose number of retails was also almost constant (10) at
each period. Despite the Evol.B presented the greatest number of retails at the final

@ Springer

Meta-heuristics for the one-dimensional cutting stock...

615

4,800 T
4,200 +
3,600 +
3,000 +
2,400 +
1,800 +
1,200 1

600 +

-...COLA -=-C.H -..=GRASP.B —— Evol.B

Cumulative loss length

180 +
150 T
120 1
90 +
60 T+

o+

Number of retails

S S S Sy Sy s S S S Y e |

=t

11213141516 17 18 19 20 21 22 23 24 25 26 27 2

fmt=— ==t

8 29 30
Periods

8 9101

Fig. 8 Cumulative loss of material and total number of retails per period for instance 3 from Tomat and
Gradisar (2017)

8,000 T
7,000 +
6,000 +
5,000 +
4,000 +
3,000 +
2,000 +
1,000 4

-++-COLA - =C.H. -..=GRASP.B — Evol.B

Cumulative loss length

300 T+
250 T+
200 +
150 T
100 T

50 +

1‘0 1‘1 1‘2 1‘3 1‘4 15 1‘6 1‘7 lé 1‘9 26 2‘1 2‘2 2‘3 2‘4 2‘5 2‘6 2‘7 2‘8 2‘9 Sb

w© 4

Number of retails

=d= SRR PR EE S

= 1

—=
t

10111213141516 171

T

e = = e

324 252627282930

Periods

8192021222

Fig. 9 Cumulative loss of material and total number of retails per period for instance 4 from Tomat and
GradiSar (2017)

stock, we observe that over more than half of the periods, the produced number of
retails was lower than the produced by C O LA, so if the simulation would stopped at

any period
final stock.

before the 23'", then C O L A would had the greatest retail number at the

The authors from Tomat and GradiSar (2017), also proposed an objective function
that considers to minimize the total length of the loss and also the total length of

@ Springer

616 S.V.Ravelo et al.

Table 17 Comparison with the

best solutions of the heuristic Sequence 1 H.S.P. C.H. GRASPB Evol.B

search process in Tomat and Final Ret 3 1 1 1

GradiSar (2017) Obj 907 436 391 281
Sequence 2 H.S.P. C.H. GRASPB Evol.B
Final Ret 1 2 1 11
Obj 2461 1456 486 6306
Sequence 3 H.S.P. C.H. GRASPB Evol.B
Final Ret 1 1 1 26
Obj 8764 2406 422 9092
Sequence 4 H.S.P. C.H. GRASPB Evol.B
Final Ret 4 3 14.6 280
Obj 16320 7181 5004.1 98976

The best values are highlighted in bold

the non used retails along the simulation process. To each length was associated a
weight value, the tested weights were 2 for the length of the material loss and 1 for the
length of the retails. Then, they tested an heuristic search process (H.S.P.) that, after
each period, adjusted parameters associated to the size of the retails and the optimal
number of retail in the stock. Such process was tested for each sequence with different
thresholds for the sizes of the retails and we selected the best results reported by the
authors for each sequence, to compare with our results.

Table 17 compares our solutions with the H.S.P., for each sequence we show the
number of retails at the stock and the objective function value. For almost all the tests,
the best values of the objective function defined by Tomat and Gradisar (2017) was
given by the GRASP.B, while the H.S.P was always worst than GRASP.B, C.H
and in some cases than Evol.B. The greater values of the objective function for the
Evol.B in sequences 2, 3 and 4 are given by the fact that such function depends on
the total length of the retails. Notice that, to minimize the total length of the retails
generally is a worst strategy than to minimize their number, since generating few
greater retails could be better than generating several small ones (ex. there are more
possible items and patterns that one can cut from one retail of size 900 than from
ten retails of size 80, but if comparing by the total length of the retails it would be
preferable the ten retails of size 80). However, to consider the total length of the loss is
a good strategy since it directly represents an economy save or a pollution reduction.
On that direction, our Evol.B gave the best results since the algorithm did not produce
loss of material for any of the simulations.

For all the tested multi-period instances, our GRAP.B algorithm obtained the
most balanced solutions according to the length of the loss and the number of retails,
achieving in almost all the cases the best solutions in both objectives and improving the
best solutions in the literature. Also, our Evol.B was able to produce good solutions
in almost all the instances with no loss of material and even our C.H. was able to
produce some interesting undominated solutions.

@ Springer

Meta-heuristics for the one-dimensional cutting stock... 617

5 Conclusions

We designed and implemented a constructive heuristic, a GRASP meta-heuristic and
an evolutive algorithm to solve the 1D- CSPUL. We tested our proposals over several
instances from the literature and the computational experiments were quite good to all
the tested instances: our algorithms were very fast and arrived on very good solutions,
being able to find in many cases Pareto optimal solutions and, in some cases, the
complete Pareto frontier.

We compared our approaches with the best ones in the literature and, since our goal
was to approximate the Pareto frontier, several times our meta-heuristics were able
to reach attractive solutions that the other approaches did not reach. Generally our
evolutive algorithm presented the best results, always reaching a non-dominated set of
solutions and, among them, finding solutions with the less loss of material compared
to the solutions given for all the other algorithms.

During the tests, we observed our algorithms preferred to cut smaller objects first.
This strategy could be interesting when future demands are expected, since usually
it is easier to create good cut patterns over larger objects. In fact, smaller objects are
often retails from past cutting plans, so it is also desirable to prioritize their use.

We also tested our algorithms over multi-period instances, which consider demands
arrive in different time periods of a time horizon. The results we obtained were very
competitive and for almost all the cases they were a nice improvement over the best
solutions in the literature. Different from the one-period instances, for the multi-period
cases, the best results were not majorly produced by our evolutive meta-heuristic but by
our GRASP, always dominating solutions from previous approaches in the literature.

Some interesting directions for future works are: to also minimize the number of
different cutting patterns (see Feifei et al. 2012), or to consider not the one dimensional
cutting stock problem but the two and three dimensional cutting stock problem (see
Andrade et al. 2016, 2014).

Acknowledgements This work was partially supported by the Brazilian National Council for Scientific
and Technological Development (CNPq) under grant 312206/2015-1.

References

Abuabara, A., Morabito, R.: Cutting optimization of structural tubes to build agricultural light aircrafts.
Ann. OR 169, 149-165 (2009). https://doi.org/10.1007/s10479-008-0438-7

Andrade, R., Birgin, E., Morabito, R.: Two-stage two-dimensional guillotine cutting stock problems with
usable leftover. Int. Trans. Oper. Res. 23(1-2), 121-145 (2016). https://doi.org/10.1111/itor.12077

Andrade, R., Birgin, E.G., Morabito, R., Ronconi, D.P.: MIP models for two-dimensional non-guillotine
cutting problems with usable leftovers. J. Oper. Res. Soc. 65(11), 1649-1663 (2014). https://doi.org/
10.1057/jors.2013.108

Arenales, M.N., Cherri, A.C., Nascimento, D.N., Vianna, A.: A new mathematical model for the cutting
stock/leftover problem. Pesqui. Oper. 35, 509-522 (2015). https://doi.org/10.1590/0101-7438.2015.
035.03.0509

Cherri, A., Arenales, M., Yanasse, H.: The one-dimensional cutting stock problem with usable leftover—a
heuristic approach. Eur. J. Oper. Res. 196, 897-908 (2009). https://doi.org/10.1016/j.ejor.2008.04.039

@ Springer

https://doi.org/10.1007/s10479-008-0438-7
https://doi.org/10.1111/itor.12077
https://doi.org/10.1057/jors.2013.108
https://doi.org/10.1057/jors.2013.108
https://doi.org/10.1590/0101-7438.2015.035.03.0509
https://doi.org/10.1590/0101-7438.2015.035.03.0509
https://doi.org/10.1016/j.ejor.2008.04.039

618 S.V.Ravelo et al.

Cherri, A., Arenales, M., Yanasse, H.: The usable leftover one-dimensional cutting stock problem—a
priority-in-use heuristic. Int. Trans. Oper. Res. 20, 189-199 (2013). https://doi.org/10.1111/j.1475-
3995.2012.00868.x

Cherri, A.C., Arenales, M.N., Yanasse, H.H., Poldi, K.C., Vianna, A.C.G.: The one-dimensional cutting
stock problem with usable leftovers—a survey. Eur. J. Oper. Res. 236(2), 395402 (2014). https://doi.
org/10.1016/j.ejor.2013.11.026

Cui, Y., Yang, Y.: A heuristic for the one-dimensional cutting stock problem with usable leftover. Eur. J.
Oper. Res. 204(2), 245-250 (2010). https://doi.org/10.1016/j.ejor.2009.10.028

Eschenauer, H., Koski, J., Osyczka, A.: Multicriteria Design Optimization. Springer, Berlin (1990). https://
doi.org/10.1007/978-3-642-48697-5

Feifei, G., Lin, L., Jun, P, Xiazi, Z.: Study of one-dimensional cutting stock problem with multi-objective
optimization. In: International Conference on Computer Science and Information Processing (CSIP),
pp. 571-574 (2012). https://doi.org/10.1109/CSIP.2012.6308918

GradiSar, M., Erjavec, J., Tomat, L.: One-dimensional cutting stock optimization with usable leftover: a
case of low stock-to-order ratio. Int. J. Decis. Supp. Syst. Technol. 3, 54—66 (2011). https://doi.org/
10.4018/jdsst.2011010104

GradiSar, M., Jesenko, J., Resinovi¢, G.: Optimization of roll cutting in clothing industry. Comput. Oper.
Res. 24(10), 945-953 (1997). https://doi.org/10.1016/S0305-0548(97)00005- 1

GradiSar, M., Kljaji¢, M., Resinovi¢, G., Jesenko, J.: A sequential heuristic procedure for one-dimensional
cutting. Eur. J. Oper. Res. 114(3), 557-568 (1999). https://doi.org/10.1016/S0377-2217(98)00140-4

GradiSar, M., Trkman, P.: A combined approach to the solution to the general one-dimensional cutting stock
problem. Comput. Oper. Res. 32(7), 1793-1807 (2005). https://doi.org/10.1016/j.cor.2003.11.028

Ogunranti, G.A., Oluleye, A.E.: Minimizing waste (off-cuts) using cutting stock model: the case of one
dimensional cutting stock problem in wood working industry. J. Ind. Eng. Manag. 9(3), 834-859
(2016). https://doi.org/10.3926/jiem.1653

Poldi, K.C., Arenales, M.N.: Heuristics for the one-dimensional cutting stock problem with limited multiple
stock lengths. Comput. Oper. Res. 36(6), 2074-2081 (2009). https://doi.org/10.1016/j.cor.2008.07.001

Ravelo, S.V., Meneses, C.N., Santos, M.O.: Mathematical programming models for the one-dimensional
cutting stock problem with usable leftover. XLII SBPO (2010)

Tam, V.W.Y., Tam, C.M., Chan, J.JK.W., Ng, W.C.Y.: Cutting construction wastes by prefabrication. Int. J.
Constr. Manag. 6(1), 15-25 (2006). https://doi.org/10.1080/15623599.2006.10773079

Tomat, L., GradiSar, M.: One-dimensional stock cutting: optimization of usable leftovers in consecutive
orders. CEJOR 25(2), 473-489 (2017). https://doi.org/10.1007/s10100-017-0466-y

Sajn, N.: Environmental impact of the textile and clothing industry: What consumers need to know. European
Parliamentary Research Service (2019)

Wattanasiriseth, P., Krairit, A.: An application of cutting-stock problem in green manufacturing: a case
study of wooden pallet industry. IOP Conf. Ser.: Mater. Sci. Eng. 530, 012005 (2019). https://doi.org/
10.1088/1757-899x/530/1/012005

Waischer, G., HauBner, H., Schumann, H.: An improved typology of cutting and packing problems. Eur. J.
Oper. Res. 183(3), 1109-1130 (2007). https://doi.org/10.1016/j.ejor.2005.12.047

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer

https://doi.org/10.1111/j.1475-3995.2012.00868.x
https://doi.org/10.1111/j.1475-3995.2012.00868.x
https://doi.org/10.1016/j.ejor.2013.11.026
https://doi.org/10.1016/j.ejor.2013.11.026
https://doi.org/10.1016/j.ejor.2009.10.028
https://doi.org/10.1007/978-3-642-48697-5
https://doi.org/10.1007/978-3-642-48697-5
https://doi.org/10.1109/CSIP.2012.6308918
https://doi.org/10.4018/jdsst.2011010104
https://doi.org/10.4018/jdsst.2011010104
https://doi.org/10.1016/S0305-0548(97)00005-1
https://doi.org/10.1016/S0377-2217(98)00140-4
https://doi.org/10.1016/j.cor.2003.11.028
https://doi.org/10.3926/jiem.1653
https://doi.org/10.1016/j.cor.2008.07.001
https://doi.org/10.1080/15623599.2006.10773079
https://doi.org/10.1007/s10100-017-0466-y
https://doi.org/10.1088/1757-899x/530/1/012005
https://doi.org/10.1088/1757-899x/530/1/012005
https://doi.org/10.1016/j.ejor.2005.12.047

	Meta-heuristics for the one-dimensional cutting stock problem with usable leftover
	Abstract
	1 Introduction
	2 Problem definition
	3 Algorithms
	3.1 Constructive heuristic
	3.2 GRASP based algorithm
	3.3 Evolutive based algorithm

	4 Computational experiments
	4.1 Numerical instances
	4.2 Practical instances
	4.3 Randomly generated instances
	4.4 Multi-period instances from Che2013
	4.5 Multi-period instances from tomat17

	5 Conclusions
	Acknowledgements
	References

