
NP-hardness and evolutionary algorithm over new
formulation for a Target Set Selection problem

Santiago V. Ravelo
Institute of Informatics

Federal University of Rio Grande do Sul
Porto Alegre, Brazil

santiago.ravelo@inf.ufrgs.br

Cláudio N. Meneses
Center of Mathematics, Computation

and Cognition
Federal University of ABC

São Paulo, Brazil
claudio.meneses@ufabc.edu.br

Eduardo A.J. Anacleto
Center of Mathematics, Computation

and Cognition
Federal University of ABC

São Paulo, Brazil
eduardo.anacleto@ufabc.edu.br

Abstract—This work considers the Target Set Selection prob-
lem, which can be used to model the propagation and con-
sumption of information, data, ideas and products through
networks, with applications in marketing, medicine, sociology
and bioinformatics. We propose a new version of the problem
and prove it belongs to the NP-hard class. We also design an
evolutionary algorithm that uses, in the crossover and mutation
operators, exact solutions of sub-problems which were modeled
by a new mathematical formulation. We test our approach over
a benchmark of instances constructed from real-world data sets.

Index Terms—Target Set Selection, NP-hard, Binary Linear
Program, Evolutionary algorithm

I. INTRODUCTION

The growth of social networks in the last decades have
shown the critical role they play in society, being used as
communication platforms between individuals, political cam-
paign podiums, advertising staging, scientific and technolog-
ical cooperation resources, teaching and learning interfaces,
among other information and content facilitators. Some of
them influence relations between the individuals or the en-
tities, e.g., the friendship relations in Facebook, the followers
on Instagram, Twitter and YouTube channels, the groups
of WhatsApp and Telegram, or the profiles and solutions
in Stack-Exchange and Stack-Overflow. Given the influences
between the network individuals, one can model the spread of
information, ideas or product acquisition through the network
with diverse applications in several areas such as economy,
sociology or medicine. A class of problems that studies those
spreads is denoted as Target Set Selection.

Target set selection problems receive a network and an
influence relation between the individuals, where each person
can be in an influenced (activated) state or not. Whenever
an individual is influenced, he/she becomes an influencer and
helps to propagate the information through the network. The
objective is to select a minimum group of initial influencers or
to maximize the influenced sub-network size. Some practical

This study was financed in part by the Coordenação de Aperfeiçoamento
de Pessoal de Nı́vel Superior - Brasil (CAPES) - Finance Code 001, the Rio
Grande do Sul Research Foundation - FAPERGS (grant 19/25510001906-8
PqG), the São Paulo Research Foundation - FAPESP (grant 2018/03819–4)
and CNPq (grant 312206/2015-1).

applications arise from marketing, where it is required to
promote the selling of certain products. In such cases, a group
of persons is selected to receive the products at no cost (or
very cheap) in exchange of giving publicity and promoting
the sales as much as possible. Since every new individual that
buys or acquires the products may act as an influencer (kind
of “snow ball” effect), the objective is to reduce the costs by
minimizing the group of individuals receiving the free products
while guaranteeing the whole network (or big part of it) will
be influenced.

Recently, the spread of “fake news” had reached receptive
audiences in some communities, resulting in disinformation
with direct impact in politics, public opinion and the popula-
tion believes [13]. Solutions of the target set selection problem
may help to mitigate the misinformation effect, by recogniz-
ing a group of individuals that will help to spread to the
network accurate news and “good practices” for information
consumption. Some other possible applications of target set
selection problems occur in combating crime, by identifying
informers and obtaining information on criminal organizations,
in medicine by studying the evolution of contagious diseases,
or in bioinformatics by regulating the behavior of bacterial
consortia.

The work of Domingos and Richardson [10], [16] motivated
Kempe et al. [12] to introduce a definition for a target set
selection as a combinatorial optimization problem and, since
then, several proofs of NP-hardness and inapproximability
were given for the problem variants [5], [6], [8], [11]. The
computational difficulty justifies a continuous development of
different approaches as mathematical formulations and bounds
proofs [2], approximation algorithms [12], heuristic or meta-
heuristic methods [9], [10], [16] and exact techniques in
polynomial time for special cases or exponentially for general
cases [3], [7].

In this work we study and propose the maximum effort-
reward GAP Target Set Selection problem (MAX-GAP-TSS),
a new NP-hard version of the Target Set Selection problem. We
also propose a binary linear programming formulation and an
evolutionary algorithm which uses our model to exactly solve
sub-problems in the crossover and mutation operations, and
we test our approach on large instances from the literature,

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

based in real-world datasets.
The rest of the paper is organized as follows. In section II,

we introduce and formally define the MAX-GAP-TSS and, in
section III, we demonstrate the problem is NP-hard. In section
IV, we propose a binary linear programming formulation to the
problem, which is used in section V, to design an evolutionary
algorithm hybridized with the mathematical formulation. The
computational experiments are presented in section VI and, in
section VII, we give final remarks and future woks.

II. PROBLEM DEFINITION

Target set selection problems model propagation processes
in social, biological and computer networks based on inter-
actions of nodes. These problems receive as input a graph
or a digraph where the nodes may have one of two states:
activated or not activated. Many studies consider that once a
node is activated it never returns to a not activated state and
each node, say u, has associated a positive activation threshold
value τ(u). So, a non-activated node u becomes activated iff
it has at least τ(u) already activated neighbors [2], [5], [6],
[9], [11]. The propagation process from an initial set A of
activated nodes, consists of activating all the non-activated
nodes that become activated from A, repeating the process
from the new set of activated nodes until no new nodes can
become activated. Since the activated nodes never return to
a non-activated state, then each new set of activated nodes
contains the previous set and, if the process is repeated k
times, it will generate the following sequence of activated sets
of nodes, being A∗ the result of the propagation process
from A:

A = A0 ⊂ A1 ⊂ A2 ⊂ · · · ⊂ Ak = A∗.

The scheme above, termed adjacency-threshold propagation
scheme, assumes for each node all of its neighbors have the
same influence to activate the node, which is unrealistic in
diverse scenarios where there exist individuals with different
values of influences over the same person. For that reason,
we propose a more general strategy to model influence prop-
agation: for any two nodes u and v, the influence of u over
v is given by ψ(u, v) ∈ [0, 1] and, a non-activated node v
becomes activated iff the influence sum of the already activated
nodes over v is at least 1 (i.e., given the set A of activated
nodes, v becomes activated iff

∑
u∈A ψ(u, v) ≥ 1). We denote

this scheme by weighted-influence propagation scheme and
the following fact shows that the previous scheme is easily
modeled by ours.

Fact 1: Given a graph (or digraph) G = (V,E), a positive
threshold function τ : V → Q+ over the nodes and an
initially activated set of nodes A ⊆ V , the activated sets
sequence generated by a propagation process from A using
the adjacency-threshold propagation scheme is exactly the
same sequence generated when using the weighted-influence
propagation scheme with the influence function over every pair
of nodes u, v ∈ V defined as:

ψ(u, v) =

{ 1
τ(v) , if 〈u, v〉 ∈ E
0 , otherwise.

Proof: First, we show that for any set of activated nodes A′ ⊆
V , the set of non-activated nodes that can become activated
from A′ using the adjacency-threshold propagation scheme is
exactly the same that the one using the weighted-influence
propagation scheme.

Consider a non-activated node u that becomes activated
from the activated nodes in A′ using the adjacency-threshold
propagation scheme. By definition, u has at least τ(u) neigh-
bors already activated in A′, so if we denote by A′(u) the
subset of activated nodes of A′ neighbors of u, we obtain:

τ(u) ≤ |A′(u)| =
∑

v∈A′(u)

1

1 ≤
∑

v∈A′(u)

1

τ(u)
=

∑
v∈A′(u)

ψ(v, u).

Implying that u also becomes activated using the weighted-
influence propagation scheme with the influence function ψ
as defined in the fact. The proof in the other direction is
analogously but read backwards.

Hence, any non-activated node u becomes activated from
A′ by using the adjacency-threshold propagation scheme iff
becomes activated from A′ by using the weighted-influence
propagation scheme with the influence function ψ. Then, we
conclude that the sets of non-activated nodes that become
activated from A′ with any of both propagation schemes are
exactly the same. So, given any initially activated set of nodes
A, the sequence of activated sets generated in a propagation
process from A is also the same when using any of the
schemes. Thus, the proof is completed. �

Fact 1 shows that the weighted-influence propagation
scheme is able to model the same situations as the adjacency-
threshold propagation scheme. Furthermore, by setting differ-
ent values to the influence function ψ we are able to model the
propagation process of a larger variety of scenarios in which
one individual may be influenced with different weights by the
others (e.g., followers of celebrities or religious acolyte may
be more influenced by the celebrity or the priest, respectively,
than by another individuals of their network).

Besides considering a more general propagation scheme,
we also consider that each node u requires a non-negative
effort value to be initially activated, say α(u), and provides
a non-negative reward value if activated at some point of
the propagation process, say β(u). These values are set to
model the diversity of scenarios where different individuals
require different costs to promote or use some product and
also provide different profits after the product acquisition (e.g.,
a famous person may require a higher price to show the usage
of a product than a non-famous person and, a company owner
who buys a product to be used by all the employees may
provide more profit than an individual buying the product for
personal use).

Regarding the problem objective, some studies were done
in order to activate the whole graph while minimizing the
number of initially activated nodes, which may be translated

to minimize the effort in order to guarantee a lower bound
reward value [5]–[7], [9], [11]. In contrast, other works were
done in order to maximize the number of activated nodes,
while the initially activated set cardinality is bounded by some
threshold, that is to maximize the reward guaranteeing an
upper bound effort value [8], [12]. Joining both cases, what
the problem seeks is to minimize the effort while maximizing
the reward, then the problem could be seen as a bi-objective
problem. Since in many cases the effort and reward values
may be expressed in the same terms (e.g., money or energy),
our approach is to unify both objectives in one, seeking for
the profit maximization which is given by the reward of the
activated nodes at the end of the propagation process minus
the effort to activate the nodes at the beginning of the process,
i.e., we want to maximize the gap between the final reward
and the initial effort.

Problem 1: Maximum effort-reward GAP Target Set Selec-
tion problem (MAX-GAP-TSS)

Input: A tuple 〈V, ψ, α, β〉, where:
• V is a finite non-empty set of nodes,
• ψ : V × V → [0, 1] is an influence function over each

pair of nodes,
• α : V → Q+ is a non-negative effort function over the

nodes,
• β : V → Q+ is a non-negative reward function over the

nodes.
Output: A set of initially activated nodes A ⊆ V that

maximizes the overall activated reward: the sum of the acti-
vated nodes’ rewards at the end of the propagation process
minus the sum of the initially activated nodes effort (i.e.,
maximizes

∑
u∈A∗ β(u)−

∑
u∈A α(u), where A∗ is the result

of the propagation process from A with weighted-influence
propagation scheme).

To the best of our knowledge, we are the first to propose this
version of the Target Set Selection problem. For that reason, in
next section we discuss over the complexity of solving MAX-
GAP-TSS.

III. NP-HARDNESS

In order to prove MAX-GAP-TSS belongs to the NP-hard
computational complexity class, we propose a polynomial
transformation from another version of the Target Set Selection
problem, which was proved to be NP-hard [5], [11] and we
define as follows:

Problem 2: Minimum Target Set Selection problem (MIN-
TSS)

Input: A tuple 〈G = (V,E), τ〉, where:
• G is a graph with finite non-empty set of nodes V and

set of edges E,
• τ : V → N+ is a positive activation threshold function

over the nodes.
Output: A minimum cardinality set of initially activated

nodes A ⊆ V , that activates all the nodes of the graph (i.e.,
if A∗ is the result of the propagation process from A with
adjacency-threshold propagation scheme, then A∗ = V and A
has minimum cardinality).

Now, we prove the following theorem:
Theorem 1: MAX-GAP-TSS is NP-hard.

Proof: Consider an instance I = 〈G = (V,E), τ〉 of the MIN-
TSS. From this instance we construct the following instance
of the MAX-GAP-TSS:

I ′ =

〈
V, ψ(u, v) =

{ 1
τ(v) , if 〈u, v〉 ∈ E
0 , otherwise

, α = 1, β = 2

〉
Instance I ′ has the same set of nodes as instance I , the

influence function is the same as defined by Fact 1 and, for
all the nodes, the effort and reward functions are, respectively,
the constant values 1 and 2. Notice that I ′ size is O

(
|V |2

)
and also I ′ can be constructed from I in O

(
|V |2

)
time.

First, we prove that any optimal solution for MAX-GAP-
TSS with instance I ′ activates all the nodes at the end of
the propagation process. In that sense, consider A to be an
optimal solution for MAX-GAP-TSS with instance I ′, A∗ to
be the result of the propagation process from A and also, that
there exists a node u ∈ V such that u /∈ A∗ (i.e., u is not
activated at the end of the propagation process from A). Then,
the objective value of A is:

obj(A) =
∑
v∈A∗

β(v)−
∑
v∈A

α(v) = 2 |A∗| − |A| .

If we add u in A, then A∗ will have at least one more node
(u) and the objective value of the new solution (A ∪ {u})
results:

obj (A ∪ {u}) ≥ 2 |A∗|−|A|+β(u)−α(u) = 2 |A∗|−|A|+1.

Then, obj(A ∪ {u}) > obj(A) and since A is optimal,
there should not exist any solution with greater objective value,
implying that such node u does not exist and that any optimal
solution for MAX-GAP-TSS with instance I ′ activates all the
nodes at the end of the propagation process. Moreover, V is
the result of the propagation process from any optimal solution
A for MAX-GAP-TSS with instance I ′ and objective value:

obj(A) = 2 |V | − |A| .

Thus, to maximize the objective value of A is equivalent
to minimize the cardinality of A, which is the objective value
of MIN-TSS with instance I . Since Fact 1 shows that both
propagation schemes activate the same sets of nodes, then
an optimal solution A of MAX-GAP-TSS with instance I ′

activates all the nodes at the end of the propagation process
and also has minimum cardinality, so A is also optimal
for MIN-TSS with instance I . In the other direction, any
optimal solution of MIN-TSS with instance I is a minimum
cardinality solution that activates all the nodes at the end of
the propagation process, so it is also an optimal solution for
MAX-GAP-TSS with instance I ′.

Finally, since the transformation complexity from I to I ′ is
O
(
|V |2

)
time, we conclude there exists a polynomial time

reduction from MIN-TSS to MAX-GAP-TSS and, since MIN-
TSS is NP-hard [5], [11], then MAX-GAP-TSS is also NP-
hard. Therefore, the proof is completed. �

IV. MATHEMATICAL FORMULATION

We propose a binary linear programming model to be used
in the construction of different approaches to solve the MAX-
GAP-TSS. In particular, we use our formulation to exactly
solve small instances as part of the evolutionary algorithm we
present in the next section.

In the direction of formalizing our formulation, from now
on consider we are dealing with an instance I = 〈V, ψ, α, β〉
of the MAX-GAP-TSS.

First, we define the variables of the formulation. We consid-
ered three different types of binary variables. The first type of
binary variables are associated with each node u ∈ V , taking
value 1 if the node belongs to the initially activated set A:

xu =

{
1, if u is initially activated
0, otherwise.

The second type of binary variables are also associated with
each node u ∈ V , taking value 1 if the node is activated
at some point of the propagation process from the initially
activated nodes:

yu =

{
1, if u is activated
0, otherwise.

The last type of binary variables are associated with each pair
of different nodes u, v ∈ V , taking value 1 if u is activated
before v in the propagation process:

zuv =

{
1, if u is activated before v
0, otherwise.

Notice that variables of types xu and yu give us, respec-
tively, the nodes whose effort and reward must be considered
in the objective function, so we can express the objective
function as:

max
∑
u∈V

β(u)yu −
∑
u∈V

α(u)xu.

Now, we need to determine the formulation constraints.
Observe that the variables of type zuv determine the activation
order. Then some constraints are needed to guarantee such
order is not violated. One of the order constraints must
guarantee that if node u is activated before v, then v cannot
be activated before u (i.e., only one of zuv or zvu can be
equals to 1), the other constraint must guarantee that if node
u is activated before v and v is activated before w, then u
also must be activated before w (i.e., if zuv = zvw = 1,
then zuw = 1). Both constraints are easily modeled by the
following inequalities:

zuv + zvu ≤ 1 ∀u, v ∈ V
zuv + zvw − zuw ≤ 1 ∀u, v, w ∈ V.

Since the variables of types zuv and xu indicate an activated
state, then we must guarantee the node u ∈ V is actually
activated whenever xu = 1 or zuv = 1 for any other node
v ∈ V . Constraints that consider those conditions are:

zuv ≤ yu ∀u, v ∈ V
xu ≤ yu ∀u ∈ V.

If we consider the weight-influence propagation scheme, to
a node u be activated (i.e., yu = 1), it is required that the
node belongs to the initially activated set (i.e., xu = 1) or the
sum of the preceding activated nodes influences over u should
be greater or equal to 1 (i.e.,

∑
v∈V ψ(v, u)zvu ≥ 1). Such

conditions can be expressed by the following inequalities:

yu ≤ xu +
∑
v∈V

ψ(v, u)zvu ∀u ∈ V.

We also include constraints to enforce the activation of the
node u (i.e., yu = 1) if the sum of the influences of the
previous activated nodes over u is greater or equal to 1 (i.e.,∑
v∈V ψ(v, u)zvu ≥ 1):∑

v∈V
ψ(v, u) (zvu − yu) < 1 ∀u ∈ V.

The above inequalities are strict, implying that the set of
solutions they describe is not convex. A strategy to avoid strict
inequalities is to include a positive constant, say ε, smaller than
1 (e.g, 10−3):∑

v∈V
ψ(v, u) (zvu − yu) ≤ 1− ε ∀u ∈ V.

The last set of constraints we define are to avoid some
symmetries and they force that any activated node u (i.e.,
yu = 1) must be activated before or after any other node
v (i.e., zuv = 1 or zvu = 1):

yu ≤ zuv + zvu ∀u, v ∈ V.
Finally, we propose the following binary linear formulation

with O
(
|V |2

)
variables and O

(
|V |3

)
constraints:

Model 1: Binary linear program for instance 〈V, ψ, α, β〉 of
MAX-GAP-TSS:

max
∑
u∈V

β(u)yu −
∑
u∈V

α(u)xu

s.t.

zuv + zvu ≤ 1 ∀u, v ∈ V
zuv + zvw − zuw ≤ 1 ∀u, v, w ∈ V
zuv − yu ≤ 0 ∀u, v ∈ V
xu − yu ≤ 0 ∀u ∈ V

yu − xu −
∑
v∈V

ψ(v, u)zvu ≤ 0 ∀u ∈ V∑
v∈V

ψ(v, u)zvu −
∑
v∈V

ψ(v, u)yu ≤ 1− ε ∀u ∈ V

yu − zuv − zvu ≤ 0 ∀u, v ∈ V
xu, yu, zuv ∈ {0, 1} ∀u, v ∈ V.

By changing the objective function to min
∑
u∈V α(u)xu

and adding the constraint
∑
u∈V β(u)yu ≥ K, for a

given positive constant K, we obtain a new formula-
tion for a generalized MIN-TSS. By considering as objec-
tive function max

∑
u∈V β(u)yu and adding the constraint∑

u∈V α(u)xu ≤ K, we obtain a new formulation for a gen-
eralization of another NP-hard Target Set Selection problem
[8], [12].

V. EVOLUTIONARY ALGORITHM

Our proposal is to hybridize a classical evolutionary algo-
rithm [15] with other approaches as mathematical program-
ming and local search. Evolutionary algorithms have been
able to produce satisfactory solutions for several complex and
difficult problems [4], [17], [19], and improvements could been
achieved by solving sub-problems of large instances exactly,
using those results to obtain “better” solutions. With that
objective, during the crossover and mutation operations, we
leave at most K free nodes (fixing the rest of the nodes in
the solution or out of the solution) and we calculate an exact
solution to the sub-problem with the K free nodes. The exact
solutions of the generated sub-problems are computed with a
given solver and the sub-problem formulation using Model 1.
Finally, each solution of the larger instances pass through a
local search process, in order to improve the quality. Algorithm
1 shows our evolutionary approach and we describe it in the
sequence.

Input : 〈V, ψ, α, β〉, instance of the MAX-GAP-TSS.
Output : Ā, solution of the MAX-GAP-TSS with instance 〈V, ψ, α, β〉.

1 begin
2 Ā ← ∅
3 S0 ← ∅
4 while |S0| < POOL SIZE do
5 A ←GENERATE(V, ψ, α, β)
6 S0 ← S0 ∪ {A}
7 if obj(A) > obj(Ā) then
8 Ā ← A
9 end

10 end
11 i ← 0
12 j ← 0
13 while i ≤MAX ITERATIONS and j ≤MAX NO UPDATE do
14 for each A ∈ Si do
15 fitness[A] ← ρ × obj(A) + θ×HAMMING(A, Si)
16 end
17 Si+1 ← ∅
18 for l ← 1 to CROSSOVER NUMBER do
19 A1, A2 ← pair of different solutions from Si , randomly selected according to the

fitness value
20 A ←CROSSOVER(A1, A2, V, ψ, α, β,K)
21 Si+1 ← Si+1 ∪ {A}
22 if obj(A) > obj(Ā) then
23 Ā ← A
24 j ← 0
25 end
26 end
27 Si+1 ← Si ∪ Si+1
28 S′ ← ∅
29 for l ← 1 to MUTATION NUMBER do
30 A ← random solution from Si+1
31 A ← MUTATION(A, V, ψ, α, β,K)
32 S′ ← S′ ∪ {A}
33 if obj(A) > obj(Ā) then
34 Ā ← A
35 j ← 0
36 end
37 end
38 S′ ← Si+1 ∪ S

′

39 S′′ ← µ×POOL SIZE solutions from S′ with greater objective value
40 Si+1 ← (1 − µ)×POOL SIZE solutions from S′ with greater HAMMING distance

to S′′

41 Si+1 ← Si+1 ∪ S
′′

42 i ← i + 1
43 j ← j + 1
44 end
45 return Ā
46 end

Algorithm 1: Evolutionary algorithm for MAX-GAP-
TSS.

Algorithm 1 requires the specification of some parameters,
that can be received as part of the input (besides the instance
of MAX-GAP-TSS) or defined in the algorithm body. Those
parameters are:
• POOL_SIZE, to indicate the size of the population at the

beginning/ending of each iteration;
• MAX_ITERATIONS and MAX_NO_UPDATE, to indicate,

respectively, the maximum number of generations and the

maximum number of generations without updating the
best solution found;

• CROSSOVER_NUMBER, to indicate the number of new
solutions generated by crossover operations at each gen-
eration;

• MUTATION_NUMBER, to indicate the number of new
solutions generated by the mutation operation at each
generation;

• ρ and θ, weights of the objective value and the average
distance of a solution to the pool, used for fitness evalu-
ation;

• K, to indicate the maximum number of free nodes for
the definition of the sub-problems to exactly be solved;

• µ, to indicate the percentage of the solutions with best
objective value to be part of the next generation, being
(1− µ) the percentage of the solution selected to the next
generation based on a distance criteria.

Algorithm 1 begins with an empty solution Ā at line 2,
which is updated in lines 7-9, 22-25 and 33-36 every time
e better solution is obtained (i.e., a solution with greater
objective value), being the last value of Ā the algorithm output.
The first generation of solutions, denoted S0, is initialized
as an empty collection in line 3 and POOL_SIZE randomly
generated solutions are added between lines 4 and 10. Then, to
reference the current number of generations and the number of
generations without updating the best solution found, in lines
11 and 12 are initialized counter variables i and j, whose
values are updated between lines 42 and 43 of the algorithm
main loop (lines 13 to 44) and whenever a new best solution
is found, variable j is reset (lines 24 and 35). At the beginning
of every iteration of the main loop, between lines 14 and 16,
each solution receives a fitness value, composed by a weighted
sum of the objective function value and the average Hamming
distance of the solution to the rest of the pool. Then, between
lines 18 and 26 new solutions are constructed by a crossover
operator over two parents selected from the pool. The parents
are randomly selected in line 19 by applying a probabilis-
tic distribution, which depends on the previously calculated
fitness, where the probability of the solution A be selected
as parent is given by fitness[A]∑

A′∈Si
fitness[A′] (i.e., the fitness of A

divided by the fitness sum of every solution of the pool). Thus,
solutions with greater fitness values have greater probabilities
of being parents of new solutions. In line 27, we also include
as possible candidates for the next generation all the solutions
of the current one, and between lines 29 and 37 we apply a
mutation operator to randomly selected solutions that are also
added as candidates for the next generation. Finally, between
lines 38 and 41, we select the µ×POOL SIZE solutions with
greater objective function values to the next generation, and,
in order to provide some diversity, we complete the new
pool with the (1− µ)×POOL SIZE solutions farther from
the already selected solutions.

Now we describe the procedures used by Algorithm 1. First,
we have the GENERATE function which constructs a random
initial solution. The GENERATE function pseudo-code is given

by Algorithm 2.

Input : 〈V, ψ, α, β〉, instance of the MAX-GAP-TSS.
Output : A, random initial solution.

1 begin
2 A ← ∅
3 A∗ ← ∅
4 n ← random integer between 0 and |V |
5 while

∣∣A∗∣∣ < n do
6 u ← random node from V \ A∗
7 A ← A ∪ {u}
8 A∗ ← propagation process result from A
9 end

10 A ← LOCAL SEARCH(A)
11 return A
12 end

Algorithm 2: Algorithm to generate an initial solution.

Observe that Algorithm 2 begins with two empty sets A
and A∗, for the solution being constructed and for the result
of the propagation process from that solution (lines 2 and 3).
Then, in line 4, a random integer n is uniformly generated in
the interval [0, |V |], to determine a minimum number of nodes
that must be activated as result of the propagation process from
A. At each iteration of the loop from line 5 to 9, a node is
randomly selected with an uniform distribution among the not
activated nodes resulting of the propagation process from A
(i.e., selected from V \A∗). Then, the selected node is added
to the solution A and the result of the propagation process
from A is updated. After constructing a random solution
A that guarantees the activation of at least n nodes, the
algorithm returns an improved solution by executing a local
search procedure from A, where two solutions are neighbors
if they differ in at most one node. Formally, we defined the
neighborhood of A as:

N(A) = {A′ : A′ ⊆ V and |A−A′| ≤ 1 and |A′ −A| ≤ 1}

Another procedure Algorithm 1 uses is the CROSSOVER,
described by Algorithm 3.

Input : 〈V, ψ, α, β〉, instance of the MAX-GAP-TSS; A1, A2 , parents of the new solution;
K, number of free nodes.

Output : A, solution generated by the crossover of A1 and A2 .
1 begin
2 A ← A1 ∩ A2
3 A∗ ← propagation process result from A
4 while

∣∣(A1 ∪ A2) \ A∗
∣∣ > K do

5 u ← random node from (A1 ∪ A2) \ A∗
6 A ← A ∪ {u}
7 A∗ ← propagation process result from A
8 end
9 if 1 ≤ |V \ A∗| ≤ K then

10 A ← SOLVER(V, ψ, α, β, A, (A1 ∪ A2) \ A∗)
11 end
12 A ← LOCAL SEARCH(A)
13 return A
14 end

Algorithm 3: Crossover operator algorithm.

Besides the instance of MAX-GAP-TSS, Algorithm 3 re-
ceives as input two parent solutions A1 and A2, and the
positive integer K. The new solution begins as the intersection
of the parents (line 2) and while there exist more than K
initially activated nodes of the parents that are not activated
at the end of the propagation process from the new solution
A, one of those nodes is randomly selected and added to A
(lines 4-8). Thus, at line 10, there are at most K initially
activated nodes of the parents that are not activated in the
propagation process from A, we select those nodes to define
the set of free nodes used by the exact solver (denote such

set by A′). Then, at line 10, we call a solver (e.g., CPLEX,
Gurobi) to exactly compute an optimal solution for the sub-
problem defined by the instance 〈V, ψ, α, β〉, the solution
being constructed A and the set of free nodes A′. For the sub-
problem formulation we construct Model 1 from the instance
〈V, ψ, α, β〉, we obtain the propagation sequence from A:
A = A0 ⊂ A1 ⊂ A2 ⊂ · · · ⊂ Am = A∗, and we fix the
following variables:

• For each node u in A (solution being constructed, which
is the set of initially activated nodes) we fix variable xu
equals to 1;

• For each node u in A∗ (result of the propagation process
from A) we fix variable yu equals to 1;

• For every 0 ≤ i < j ≤ m, we fix each zuv equals to
1, where u ∈ Ai and v ∈ Aj (every node in Ai was
activated before any node of Aj);

• For every 0 ≤ i ≤ m, we sort Ai and set zuv equals 1,
for each pair of nodes u, v ∈ Ai where u is before v in
the sorting (nodes activated in the same step can be in
any activation order);

• For each pair of nodes u ∈ A∗ and v /∈ A∗, we
fix variable zuv equals to 1 (nodes in A∗ are already
activated, so the activation moment could be considered
before than any node out of A∗);

• For each zuv fixed to 1, we fix zvu equals to 0 (if node
u is activated before v, then v cannot be activated before
u);

• For each node u in A∗\A, we fix the variable xu equals to
0 (nodes that are activated during the propagation process
from A have no need to be initially activated);

• For each node u in V \ (A ∪A′), we fix the variable
xu equals to 0 (only the free nodes can be added to the
initially activated set).

After fixing those values, the number of variables of Model
1 is reduced to at most (K × |V |+K + |V \A∗|), from
the originally

(
|V |2 + 2× |V |

)
variables, which for small

values of K implies in almost the square root of the original
number of variables. Furthermore, before calling the solver,
we check at line 9 if the number of variables of the reduced
model is small enough (depending only on the constant K).
Thus, the sub-problem generated is much simpler and the
specific solvers could be able to compute an exact solution
in “reasonable time”. Succeeding the solver call, Algorithm
3 returns an improved solution obtained by a local search
procedure (similar to the one of Algorithm 2) over the resulting
solution from the solver.

The last procedure Algorithm 1 uses is the MUTATION
operation. That operator receives an instance of the MAX-
GAP-TSS, a solution A to be mutated and the integer K.
The idea is to select K random nodes from the set of nodes
A′ to leave as free nodes for the sub-problem. An uniformly
random integer number ` is generated between 0 and K , to
select ` free nodes from A to A′ and K−` free nodes from V
to A′. Then, we remove from the solution A the selected free
nodes and, similarly as in Algorithm 3, we exactly solve the

sub-problem obtained by the instance, the initially activated
nodes A and the free nodes A′. The solution of the solver is
also submitted to the same local search procedure and returned
to the main algorithm. The pseudo-code for the MUTATION
procedure is given by Algorithm 4.

Input : 〈V, ψ, α, β〉, instance of the MAX-GAP-TSS; A, solution to be mutated; K, number
of free nodes.

Output : A, mutated solution.
1 begin
2 ` ← random integer number between 0 and K
3 A1 ← ` random nodes from A
4 A2 ← K − ` random nodes from V
5 A′ ← A1 ∪ A2
6 A ← A \ A′
7 A∗ ← propagation process result from A
8 if 1 ≤ |V \ A∗| ≤ K then
9 A ← SOLVER(V, ψ, α, β, A,A′ \ A∗)

10 end
11 A ← LOCAL SEARCH(A)
12 return A
13 end

Algorithm 4: Mutation operator algorithm.

VI. EXPERIMENTS

With the objective of analyzing the applicability of our
evolutionary approach, this section presents computational ex-
periments over several real-world datasets. The larger datasets
were obtained from Standford Large Dataset Collection [14],
while the smaller datasets were obtained from UCINET IV
DATASETS [1]. All the selected datasets (larger and smaller)
are described by Table I.

Name Symmetrical # of nodes # of influence arcs
Krackhardt office css [1] No 21 278
Zachary Karate club [1] Yes 34 155
B&K office [1] No 40 1.560
B&K fraternity [1] No 58 3.306
Gagnon&Macrae prison [1] No 67 182
ego-Facebook [14] Yes 4.039 88.234
CA-HepPh [14] Yes 12.008 118.521
CA-AstroPh [14] Yes 18.772 198.110
CA-CondMat [14] Yes 23.133 93.497
Cit-HepTh [14] No 27.770 352.807

TABLE I
SELECTED DATASETS FROM [14] AND [1].

Some of the datasets were also used in a previous work
for the MIN-TSS [9] and, since the existing datasets do
not provide information to compute the influence, reward
nor effort values, we constructed instances for the MIN-TSS
following the threshold criteria proposed by the authors of [9]:
• Constant threshold, each node u receives as threshold the

minimum between d(u) and a constant value, where d(u)
is the node degree. For each dataset and each value of τ
in {2, 4, 6, 8, 10}, an instance was constructed.

• Proportional thresholds, each node receives as threshold
η × d(u), for a given constant η. For each dataset and
each value of η in {0.1, 0.2, 0.3, 0.4, 0.5}, an instance
was constructed. For η = 0.5 the nodes are activated
under majority threshold [2].

• Random threshold, each node u receives as threshold
activation value a random integer number in [1, d(u)].

The above description is for instances of MIN-TSS and,
to obtain instances for the MAX-GAP-TSS, we applied the
reduction described in section III.

In order to execute the tests, we implemented our algorithms
in the C++ programming language using the compiler g++

7.4.0, being the algorithms parameters: POOL SIZE = 10,
CROSSOVER NUMBER = 10, MUTATION NUMBER =
10, MAX ITERATIONS = 300, MAX NO ITERATIONS =
50, ρ = 1, θ = 1, K = 10, µ = 1. We used the Mersenne
Twister algorithm [18] with seed value 211612 for the pseudo-
random numbers generation and the gettimeofday()
function to obtain the CPU times. For each instance, our
implementations were executed in a processor Intel Xeon(R)
CPU E5-1620v2 with 4 cores of 3,70GHz each, and 16 GB
of RAM, under Ubuntu Linux 18.04.3 LTS 64 bits.

In the direction of analyzing the quality of the solutions,
we used the CPLEX to solve the instances constructed from
the small datasets selected from [1]. For all these instances,
our algorithms were able to find solutions in a very short
time, with the same objective values as the solutions found
by the CPLEX. Hence, our approach found almost optimal
solutions for all the small instances and, for the instances the
CPLEX was able to prove optimality, our algorithms found
also optimal solutions. Table II gives the results of the small
instances experiments. For the large instances from [14], the
CPLEX was not able to find feasible solutions, however our
approach found interesting solutions where the cardinality of
the initial set that activates the whole network was at most an
order of magnitude smaller than the network size. Table III
resumes the experiments for the large set of instances.

VII. CONCLUSIONS

We introduced a new version of the Target Set Selection
problem, suitable for several practical applications. We proved
the problem belongs to the NP-hard class and also we pre-
sented a new binary linear formulation, which can be easily
adapted to other Target Set Selection problems. Besides that,
we designed an evolutionary algorithm hybridized with our
mathematical formulation and we run tests over a benchmark
of instances based on real-world data-sets. Our results seem
satisfactory and very competitive, furthermore, for several of
the tested instances, we obtained “almost” optimal solutions
in a “small” amount of time. Future works will consider to hy-
bridize evolutionary algorithms with primal-dual formulations,
Lagrangian relaxation or results from polyhedral and approx-
imation theories. Also, despite the instances were constructed
from real-world datasets, some parameters (influence, reward
and effort) were artificial since they were not considered by
the existing datasets. Thus, another line of work would be
to create and make available more realistic and meaningful
datasets for the MAX-GAP-TSS.

REFERENCES

[1] UCINET IV DATASETS. http://vlado.fmf.uni-lj.si/pub/networks/data/
UciNet/UciData.htm. Accessed: 2020-05-09.

[2] E. Ackerman, O. Ben-Zwi, and G. Wolfovitz. Combinatorial model
and bounds for target set selection. Theoretical Computer Science,
411(44):4017 – 4022, 2010.

[3] I. Bliznets and D. Sagunov. Solving Target Set Selection with Bounded
Thresholds Faster than 2n. In 13th International Symposium on
Parameterized and Exact Computation (IPEC 2018), volume 115 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 22:1–
22:14, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik.

http://vlado.fmf.uni-lj.si/pub/networks/data/UciNet/UciData.htm
http://vlado.fmf.uni-lj.si/pub/networks/data/UciNet/UciData.htm

Instances
Evolutionary Algorithm

Information of the best solution found CPLEX Overall
Value |A| |A∗| Iter. Seconds Calls Iter. Seconds

K
ra

ck
ha

rd
t

of
fic

e
cs

s

co
ns

ta
nt

2 40 2 21 0 0.0000 0 50 0.0020
4 38 4 21 0 0.0000 0 50 0.0026
6 36 6 21 0 0.0000 0 50 0.0030
8 34 8 21 0 0.0000 2 50 0.0097
10 32 10 21 0 0.0001 0 50 0.0034

pr
op

or
tio

na
l 0.1 41 1 21 0 0.0000 0 50 0.0017

0.2 40 2 21 0 0.0000 0 50 0.0021
0.3 40 2 21 0 0.0001 0 50 0.0039
0.4 39 3 21 0 0.0002 0 50 0.0056
0.5 38 4 21 0 0.0001 0 50 0.0034

random 40* 2 21 0 0.0000 210 50 3.0441

Z
ac

ha
ry

K
ar

at
e

cl
ub

co
ns

ta
nt

2 66* 2 34 0 0.0001 0 50 0.0031
4 57* 11 34 1 0.1763 230 51 2.5693
6 54* 14 34 1 0.0423 115 51 0.5228
8 52* 16 34 35 0.2339 96 85 0.4949
10 51* 17 34 1 0.0924 133 51 1.0042

pr
op

or
tio

na
l 0.1 67* 1 34 0 0.0000 0 50 0.0023

0.2 67* 1 34 0 0.0000 0 50 0.0025
0.3 67* 1 34 0 0.0002 0 50 0.0048
0.4 65 3 34 0 0.0002 7 50 0.0356
0.5 64 4 34 0 0.0001 7 50 0.0364

random 64* 4 34 1 0.0003 2 51 0.0162

B
&

K
of

fic
e co

ns
ta

nt

2 78 2 40 0 0.0001 0 50 0.0055
4 76 4 40 0 0.0001 0 50 0.0070
6 74 6 40 0 0.0001 0 50 0.0071
8 72 8 40 0 0.0001 0 50 0.0078
10 70 10 40 0 0.0001 0 50 0.0089

pr
op

or
tio

na
l 0.1 76 4 40 0 0.0001 0 50 0.0091

0.2 72 8 40 0 0.0001 0 50 0.0086
0.3 68 12 40 0 0.0001 0 50 0.0162
0.4 65 15 40 0 0.0001 0 50 0.0100
0.5 63 17 40 0 0.0001 0 50 0.0114

random 77 3 40 0 0.0001 0 50 0.0067

B
&

K
fr

at
er

ni
ty co

ns
ta

nt

2 114 2 58 0 0.0001 0 50 0.0141
4 112 4 58 0 0.0001 0 50 0.0155
6 110 6 58 0 0.0001 0 50 0.0169
8 108 8 58 0 0.0002 0 50 0.0176
10 106 10 58 0 0.0001 0 50 0.0118

pr
op

or
tio

na
l 0.1 110 6 58 0 0.0001 0 50 0.0169

0.2 104 12 58 0 0.0002 0 50 0.0186
0.3 99 17 58 0 0.0002 0 50 0.0200
0.4 96 20 58 0 0.0002 0 50 0.0204
0.5 91 25 58 0 0.0002 0 50 0.0214

random 114 2 58 0 0.0001 0 50 0.0101

G
ag

no
n&

M
ac

ra
e

pr
is

on

co
ns

ta
nt

2 120 14 67 0 0.0004 17 50 0.1968
4 99 35 67 11 0.2543 174 61 0.9826
6 97 37 67 12 0.3435 253 62 1.1223
8 96 38 67 26 0.3243 330 76 1.0606
10 96 38 67 11 0.3226 174 61 0.9906

pr
op

or
tio

na
l 0.1 129 5 67 0 0.0002 0 50 0.0098

0.2 129* 5 67 0 0.0002 254 50 2.3519
0.3 128 6 67 0 0.0441 96 50 1.0640
0.4 126 8 67 1 0.0141 129 51 0.7299
0.5 126 8 67 0 0.0360 9 50 0.0886

random 122* 12 67 8 0.0020 20 58 0.0570

TABLE II
EXPERIMENTS RESUME FOR SMALL INSTANCES FROM [1]. THE *

INDICATES THAT THE SOLUTION WAS PROVED TO BE OPTIMAL.

[4] M. R. Bonyadi and D. C. Reutens. Optimal-margin evolutionary
classifier. IEEE Transactions on Evolutionary Computation, 23(5):885–
898, 2019.

[5] C. C. Centeno, M. C. Dourado, L. D. Penso, D. Rautenbach, and J. L.
Szwarcfiter. Irreversible conversion of graphs. Theoretical Computer
Science, 412(29):3693 – 3700, 2011.

[6] N. Chen. On the approximability of influence in social networks. SIAM
Journal on Discrete Mathematics, 23(3):16, 2009.

[7] C. Y. Chiang, L. H. Huang, B. J. Li, J. Wu, and H. G. Yeh. Some
results on the target set selection problem. Journal of Combinatorial
Optimization, 25(4):702–715, 2013.

[8] F. Cicalese, G. Cordasco, L. Gargano, M. Milanič, J. Peters, and
U. Vaccaro. Spread of influence in weighted networks under time and
budget constraints. Theoretical Computer Science, 586:40 – 58, 2015.
Fun with Algorithms.

[9] G. Cordasco, L. Gargano, and A. A. Rescigno. On finding small sets that
influence large networks. Social Network Analysis and Mining, 6(1):94,
2016.

[10] P. Domingos and M. Richardson. Mining the network value of cus-
tomers. In Proceedings of the Seventh ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’01, pages
57–66, New York, NY, USA, 2001. ACM.

[11] P. A. Dreyer and . S. Roberts. Irreversible k-threshold processes: Graph-
theoretical threshold models of the spread of disease and of opinion.
Discrete Applied Mathematics, 157(7):1615 – 1627, 2009.

[12] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of
influence through a social network. In Proceedings of the Ninth ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’03, pages 137–146, New York, NY, USA, 2003. ACM.

Instances
Evolutionary Algorithm

Information of the best solution found CPLEX Overall
Value |A| |A∗| Iter. Seconds Calls Iter. Seconds

eg
o-

Fa
ce

bo
ok co

ns
ta

nt

2 7870 208 4039 7 0.30 70 57 5.10
4 7645 433 4039 46 6.10 45 96 12.22
6 7415 663 4039 89 15.71 99 139 24.97
8 7201 877 4039 74 16.45 31 124 26.70
10 6997 1081 4039 167 46.49 102 217 61.89

pr
op

or
tio

na
l 0.1 7930 148 4039 91 9.51 0 141 14.60

0.2 7539 539 4039 299 56.35 1 300 56.35
0.3 7087 991 4039 294 83.92 88 300 85.55
0.4 6406 1672 4039 69 29.37 2 119 51.40
0.5 5817 2261 4039 260 156.92 81 300 180.39

random 6424 1654 4039 161 69.78 349 211 91.10

C
A

-H
ep

Ph

co
ns

ta
nt

2 22010 2006 12008 93 32.58 246 143 87.77
4 18871 5145 12008 62 215.89 253 112 373.75
6 17343 6673 12008 75 341.30 204 125 547.58
8 16417 7599 12008 142 730.03 275 192 981.29
10 15770 8246 12008 179 987.53 378 229 1271.33

pr
op

or
tio

na
l 0.1 23686 330 12008 12 3.75 0 62 18.10

0.2 23213 803 12008 169 150.47 47 219 190.99
0.3 21367 2649 12008 291 755.66 16 300 780.56
0.4 19166 4850 12008 286 1234.46 36 300 1296.90
0.5 17970 6046 12008 236 1142.46 212 286 1370.10

random 18081 5935 12008 252 618.10 422 300 829.26

C
A

-A
st

ro
Ph co

ns
ta

nt

2 35686 1858 18772 101 55.26 308 151 138.10
4 32413 5131 18772 75 353.85 196 125 596.46
6 30295 7249 18772 110 719.67 232 160 1046.67
8 28839 8705 18772 82 677.47 133 132 1100.97
10 27726 9818 18772 100 952.21 202 150 1450.01

pr
op

or
tio

na
l 0.1 37219 325 18772 42 27.04 7 92 56.09

0.2 36521 1023 18772 231 407.68 56 281 490.48
0.3 34549 2995 18772 281 1264.19 24 300 1349.85
0.4 30772 6772 18772 274 2933.47 6 300 3230.34
0.5 27969 9575 18772 274 3607.12 137 300 3950.60

random 28789 8755 18772 299 3049.41 807 300 3059.38

C
A

-C
on

dM
at co

ns
ta

nt

2 42654 3612 23133 18 17.26 5 68 46.53
4 36333 9933 23133 9 16.94 23 59 54.16
6 32509 13757 23133 158 1232.59 253 208 1761.24
8 30069 16197 23133 163 2082.80 285 213 2772.39
10 28441 17825 23133 193 2737.02 395 243 3416.41

pr
op

or
tio

na
l 0.1 45655 611 23133 67 59.84 104 117 100.19

0.2 44520 1746 23133 217 735.66 68 267 894.67
0.3 40523 5743 23133 197 2313.72 6 247 2894.48
0.4 35688 10578 23133 298 5407.88 51 300 5446.20
0.5 33085 13181 23133 296 5935.88 279 300 6013.20

random 34246 12020 23133 243 3870.14 434 293 4744.98
C

it-
H

ep
T

h co
ns

ta
nt

2 50924 4616 27770 108 345.51 322 158 595.70
4 48917 6623 27770 136 1280.98 561 186 1685.39
6 48880 6660 27770 187 2156.70 434 237 2738.04
8 47957 7583 27770 239 3181.69 253 289 3870.10
10 46453 9087 27770 261 3681.16 445 300 4222.45

pr
op

or
tio

na
l 0.1 50937 4603 27770 49 174.49 0 99 370.47

0.2 50937 4603 27770 32 224.95 0 82 581.36
0.3 50937 4603 27770 44 387.70 20 94 817.61
0.4 50935 4605 27770 41 518.33 88 91 990.53
0.5 50935 4605 27770 58 755.61 125 108 1311.57

random 50923 4617 27770 130 1902.14 326 180 2571.71

TABLE III
EXPERIMENTS RESUME FOR LARGE INSTANCES FROM [1].

[13] D. M. J. Lazer, M. A. Baum, Y. Benkler, A. J. Berinsky, K. M. Greenhill,
F. Menczer, M. J. Metzger, B. Nyhan, G. Pennycook, D. Rothschild,
M. Schudson, S. A. Sloman, C. R. Sunstein, E. A. Thorson, D. J. Watts,
and J. L. Zittrain. The science of fake news. Science, 359(6380):1094–
1096, 2018.

[14] J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network
dataset collection. http://snap.stanford.edu/data, June 2014. Accessed:
2020-05-09.

[15] A. Pétrowski and S. Ben-Hamida. Evolutionary Algorithms, volume 9.
Wiley, 2017.

[16] M. Richardson and P. Domingos. Mining knowledge-sharing sites
for viral marketing. In Proceedings of the Eighth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
KDD ’02, pages 61–70, New York, NY, USA, 2002. ACM.

[17] S. Y. Huang and Y. Chen. Proving theorems by using evolutionary search
with human involvement. In 2017 IEEE Congress on Evolutionary
Computation (CEC), pages 1495–1502, 2017.

[18] M. Saito and M. Matsumoto. SIMD-oriented fast Mersenne Twister: a
128-bit pseudorandom number generator. In Monte Carlo and Quasi-
Monte Carlo Methods, 64(2):607–622, 1993.

[19] A. Shirazi, J. Ceberio, and J. A. Lozano. Evolutionary algorithms to
optimize low-thrust trajectory design in spacecraft orbital precession
mission. In 2017 IEEE Congress on Evolutionary Computation (CEC),
pages 1779–1786, 2017.

http://snap.stanford.edu/data

