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Abstract. In this work we consider some NP-hard cases of the metric
p-source communication spanning tree problem (metric p-OCT). Given
an undirected complete graph G = (V,E) with non-negative length ω(e)
associated to each edge e ∈ E satisfying the triangular inequality, a set
S ⊆ V of p vertices and non-negative routing requirements ψ(u, v) be-
tween all pairs of nodesu ∈ S and v ∈ V , themetric p-OCT’s objective is to
find a spanning tree T ofG, thatminimizes:

∑
u∈S

∑
v∈V ψ(u, v)d(T, u, v),

where d(H,x, y) is theminimumdistance between nodes x and y in a graph
H ⊆ G. This problem is a particular case of the optimum communication
spanning tree problem (OCT). We prove a general result which allows us
to derive polynomial approximation schemes for someNP-hard cases of the
metric p-OCT improving the existing ratios for these problems.

1 Introduction

In this work we consider NP-hard particular cases of the metric p-source optimum
communication spanning tree problem (metric p-OCT) which is a particular case
of the optimum communication spanning tree problem (OCT). In the OCT,
introduced by Hu in 1974 ([Hu, 1974, Wu and Chao, 2004]), the input is an
undirected graph G = (V,E) with non-negative lengths ω(e) associated to each
edge e ∈ E and non-negative requirements ψ(u, v) between each pair of nodes
u, v ∈ V . The problem is to find a spanning tree T of G which minimizes the
total communication cost given by C(T ) =

∑
u∈V

∑
v∈V ψ(u, v)d(T, u, v), where

d(H,x, y) denotes the minimum distance between the nodes x and y in the sub-
graphH ofG. In the p-OCT it is additionally given a set of p nodes (sources) S ⊆
V , that are considered in the objective function: C(T ) =

∑
u∈S

∑
v∈V ψ(u, v)

d(T, u, v).
In [Johnson et al., 1978] it was proven, by a reduction from the 3-exact cover

problem (3-EC), that the minimum routing cost spanning tree problem (MRCT)
is NP-hard. MRCT is a particular case of OCT where for each pair of nodes the
communication requirement between them is equal to one, i.e., ψ(u, v) = 1 for
all u, v ∈ V . In [Wu et al., 2000c] a PTAS was given for the MRCT. Also in this
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work a reduction from the general case to the metric one is presented and it was
proven that MRCT with edge-lengths that satisfy the triangular inequality is
also NP-hard. Also, in [Wu et al., 2000c] a O(log2(n))-approximation for OCT

was presented applying a result from [Bartal, 1996] which was improved to a
O(log(n))-approximation by [Talwar et al., 2003].

A particular case of p-OCT is weighted p-MRCT introduced in [Wu, 2002].
In this case a non-negative sending requirement σ(u) is given for each source
u ∈ S, and the requirement between a source u ∈ S and a node v ∈ V is
ψ(u, v) = σ(u). When the sending requirements σ for the p sources are equal to
one, the problem is called p-MRCT. In [Wu, 2002] it was proven that 2-MRCT

is NP-hard, moreover PTASs were shown for 2-MRCT and for the metric case
of weighted 2-MRCT.

In [Wu et al., 2000a] was introduced the minimum sum-requirement commu-
nication spanning tree problem (SROCT), in which the sending requirement
σ(u) is given for each u ∈ V . Observe that weighted p-MRCT is a particular
case of SROCT, where σ(u) = u for all u ∈ V − S. Also, the authors presented
a 2-approximation algorithm for this problem.

In [Wu, 2004] a 2-approximation algorithm was given for the metric p-OCT

and a 3-approximation for the general 2-OCT.
In this work we present a general result that allows us to derive PTASs for

natural special cases of p-OCT. We introduce three particular NP-hard cases of
p-OCTand we derive PTASs for the metric cases of these problems. Also, we
give new PTASs for the metric p-MRCT and for the fixed parameter weighted
p-MRCT.

This work is organized as follows. In section 2, we introduce some definitions.
In section 3 a polynomial time algorithm to find an optimum k-star for a given
k is presented. In section 4 we prove the main result of this work, which allows
us to obtain approximation algorithms for different metric p-OCT problems. In
section 5 we introduce particular cases of p-OCT giving a PTAS for the metric
case of that problem. We finish the paper in section 6 with some conclusions.

2 Definitions

Unless specified all graphs in this work are undirected. Given a graph G we
denote the set of its nodes as VG and the set of its edges as EG (when G is
implicit by the context we use V or E instead of VG or EG and n = |V |). Also,
when G has non-negative lengths associated to its edges, the length of a path
in G is defined as the sum of the lengths of its edges (a path with no edges has
length zero). The distance between node x and node y in a sub-graph H of G is
the length of a path with minimum length between x and y in H and is denoted
by d(H,x, y). Now, for each positive integer p we can define the p-OCT as:
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Problem 1. p-OCT - p-source Optimum Communication spanning Tree problem.
Input: A graph G, a non-negative length function over the edges of G, ω :

E → Q+, a set of p sources S ⊆ V and a non-negative routing requirement
function from each source node to each node of V , ψ : S × V → Q+.

Output: A spanning tree T of G which minimizes the total requirement
routing cost: C(T ) =

∑
u∈S

∑
v∈V ψ(u, v)d(T, u, v).

This paper considers the metric p-OCT, which is the particular case of p-OCT

where the graph G is complete and the length function over the edges satisfies
the triangular inequality. To find a feasible solution of the metric p-OCT we use
a valid k-star1:

Definition 1. Given a graph G, a set S of nodes of G and an integer k ≥ |S|, a
k-star of G is a spanning tree of G with no more than k internal nodes (that is,
at least n−k leaves). A core of a k-star T of G is a tree resulting by eliminating
n− k leaves from T . A core τ is valid for the set S of nodes (or just valid) if τ
contains all the nodes of S. Then, a valid k-star of G is a k-star of G with at
least a valid core.

The problem of finding an optimal valid k-star for the metric p-OCT can be
defined as follows. Also, in section 3, we show how to solve it efficiently.

Problem 2. Optimum valid k-star for the metric p-OCT.
Input: A positive integer k and an instance of metric p-OCT: a complete

graph G, a non-negative length function over the edges of G which satisfies
the triangular inequality, ω : E → Q+, a set of p sources S ⊆ V and a non-
negative routing requirement function between each node of S and each node of
V , ψ : S × V → Q+. (Notice that k ≥ p = |S|)

Output: A valid k-star T of G which minimizes the total requirement routing
cost: C(T ) =

∑
u∈S

∑
v∈V ψ(u, v)d(T, u, v).

3 Optimal Valid k-star for Metric p-OCT

First note that if k and p are constants, the number of possible valid cores of k-
stars ofG is polynomial. Indeed, since the core of a valid k-star must contain the p

vertices in S and k−p other vertices, one can enumerate the

(
n

k − p

)
= O(nk−p)

possibilities. For each different choice one has to enumerate all possible trees with
k vertices and there are O(kk) possible trees. Then, the number of all possible
valid cores is limited by O(kknk−p). Our approach is to find an optimal valid
k-star with core τ for each valid core τ , selecting the minimum k-star among
them.

1 The definition of k-star used in this paper is similar to the one used by
[Wu et al., 2000c, Wu et al., 2000a, Wu et al., 2000b], which is different from the
usual definition of k-star in graph theory (a tree with k leaves linked to a single
vertex of degree k).



140 S.V. Ravelo and C.E. Ferreira

Given a valid core τ , to obtain a valid k-star T with core τ each node of
VG − Vτ must be adjacent to some node of τ (i.e., these nodes will be leaves
of T ).

Let uv be the node of τ adjacent to v ∈ VG − Vτ in T . Since all nodes in S
belong to τ then: C(T ) = C(τ)+

∑
v∈VG−Vτ

∑
w∈S ψ(w, v)(d(τ, w, uv)+ω(uv, v)).

Thus, in order to find the best vertex of the core τ to link each vertex
v ∈ V − Vτ it suffices to consider the node u∗

v ∈ Vτ that minimizes:∑
w∈S

ψ(w, v)(d(τ, w, uv) + ω(uv, v)).

To compute it efficiently, first we pre-calculate for each w ∈ S and u ∈ Vτ

all the distances d(τ, w, u) (it can be done in O(|S|k) = O(pk)). After that, we
calculate for each pair of nodes v ∈ VG−Vτ and u ∈ Vτ (k(n−k) pairs) the cost
of linking v to vertex u in τ which can be computed in O(|S|) = O(p) using the
pre-calculated distances. Therefore, we can obtain an optimal valid k-star with
core τ in O(k(n− k)p+ pk) = O(npk) time.

From the ideas above, we conclude that it is possible to find and optimal valid
k-star in O(kk+1nk−p+1p) time.

Lemma 1. An optimum valid k-star for metric p-OCT with fixed k ≥ p can be
found in O(nk−p+1) time.

4 Approximation Lemma (for Metric p-OCT Problems)

In this section we present the main result of the paper. First we introduce the
notion of δ-balanced-path, 0 < δ ≤ 1

2 . This definition is based on similar con-
cepts for related problems introduced in [Wu et al., 2000c], [Wu et al., 2000a]
and [Wu et al., 2000b]. Using it we derive a general lemma that applies for dif-
ferent special cases of metric p-OCT.

Definition 2. Given a spanning tree T of G, we denote by ST the minimal sub-
tree of T which contains all the nodes in S. It is easy to see that every leaf of
ST must be a node of S.

Definition 3. We define ψ(S′, U) =
∑

u∈S′
∑

v∈U ψ(u, v) for every S′ ⊆ S and
U ⊆ V .

Definition 4. Given a spanning tree T of G and a path P = w1, ..., wh of T ,
we denote:

– fP = w1 and lP = wh the endpoints of P ;
– V f

P : the set of nodes in T connected to P through vertex fP (including fP
itself);

– V m
P : the set of nodes in T connected to P through an internal node of P

(including these nodes);
– V l

P : the set of nodes in T connected to P through vertex lP (including lP
itself).
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fP lP

Fig. 1. Example of V f
P , V m

P and V l
P for a path P of a tree T . Observe that V f

P is the
set of nodes to the left of fP (including fP ), V

l
P is the set of nodes to the right of

lP (including lP ), V
m
P is the set containing the rest of the nodes and P is the path

connecting fP to lP in T .

Notice that V f
P ∪ V m

P ∪ V l
P = V and these sets are disjoint. We also denote

by Si
P the set of vertices in V i

P ∩ S, where i ∈ {f,m, l}. We say that P is

m-source-free if Sm
P = ∅. If P is m-source-free, Sf

P �= ∅ and Sl
P �= ∅ we say

that P is a connecting-source path.

Now we introduce the definition for δ-balanced-path, that is an m-source-free
path (P ) for which the routing requirement delivered to its interior (V m

P ) is
small, i.e., at most a portion (δ) of the routing requirement that passes through
P . Formally:

Definition 5. Given 0 < δ ≤ 1
2 and a spanning tree T of G, an m-source-

free path P of T is a δ-balanced-path if ψ(Sf
P ∪ Sl

P , V
m
P ) = ψ(S, V m

P ) ≤
δ
(
ψ(Sf

P , V
l
P ) + ψ(Sl

P , V
f
P )
)
.

The following proposition gives a basis for the main result in this work, since
it provides a valid star whose cost is bounded by the cost of the given tree.

Proposition 1. Consider 0 < δ ≤ 1
2 , a spanning tree T of G and a set Y of

internally disjoint δ-balanced-paths of T whose union results in ST . Then there
exists a valid (|Y |+ 1)-star X such that: C(X) ≤ (1 + 2δ)C(T ). Where two
paths are internally disjoint if the intersection of their sets of nodes is empty or
contains nodes that are endpoints of both paths.

Proof. First we note that there exists a spanning tree T such that ST = ST ,
all vertices of T that do not belong to ST are leaves and C(T ) ≤ C(T ). If all
vertices of T that do not belong to ST are leaves, then T = T , otherwise there
exists a leaf u in T that is not adjacent to any node of ST . Let v be the nearest
node to u in ST . Since all the nodes of S are in ST and the graph is metric, the
spanning tree T ′ of G, resulting from removing the edge adjacent to u in T and
adding the edge (v, u) satisfies C(T ′) ≤ C(T ). It is easy to see that repeating
this process to all the leaves that are not adjacent to a node in ST we obtain
tree T . With this property we can suppose that in tree T all vertices in V − ST

are leaves. Now we construct a valid (|Y |+ 1)-star X of G as follows:

– The core τ of X has the set of nodes that are endpoints of the paths in
Y . Two nodes u, v ∈ τ are adjacent in τ if in Y there exists a path with
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endpoints u and v. Since the paths in Y are internally disjoint and their
union results in the tree ST , we conclude that τ is a tree over the endpoints
of the paths in Y .

– For every node u ∈ τ and for every leaf v ∈ V − τ adjacent to u in T we also
include an edge (u, v) in X .

– Observe that each node u ∈ T not included in X by the previous steps
belongs to V m

P for some path P ∈ Y . Then, we include edge (u, fP ) in X if
ω(u, fP ) ≤ ω(u, lP ), otherwise we include edge (u, lP ) in X .

Our construction guarantees X to be a (|Y |+ 1)-star of G with core τ . Then,
we only need to analyze its associated communication cost, which can be cal-
culated by adding over each edge e the communication amount passing over e
times the length of e. Since every edge is a path with exactly two vertices we
also use the notation given by definition 4 on the edges. Then:

C(X) =
∑

e∈EX

(
ψ(Sf

e , V
l
e ) + ψ(Sl

e, V
f
e )
)
ω(e)

=
∑
e∈Eτ

(
ψ(Sf

e , V
l
e ) + ψ(Sl

e, V
f
e )
)
ω(e)

+
∑

e∈EX−τ

(
ψ(Sf

e , V
l
e ) + ψ(Sl

e, V
f
e )
)
ω(e).

Observe that, by construction, each edge e ∈ Eτ corresponds to a δ-balanced-
path P ∈ Y , such that: ψ(Sf

e , V
l
e ) + ψ(Sl

e, V
f
e ) ≤ ψ(Sf

P , V
l
P ) + ψ(Sl

P , V
f
P ) +

ψ(S, V m
P ). Also, by the triangular inequality: ω(e) ≤ ω(P ), then:

C(X) ≤
∑
P∈Y

(
ψ(Sf

P , V
l
P ) + ψ(Sl

P , V
f
P ) + ψ(S, V m

P )
)
ω(P )

+
∑

e∈EX−τ

(
ψ(Sf

e , V
l
e ) + ψ(Sl

e, V
f
e )
)
ω(e).

Notice that for every edge e ∈ EX−τ one of its endpoints is a leaf outside of
τ and the other one a node of τ . Let p(u) be the node in τ adjacent in X to a
leaf u ∈ V − τ , then:

C(X) ≤
∑
P∈Y

(
ψ(Sf

P , V
l
P ) + ψ(Sl

P , V
f
P ) + ψ(S, V m

P )
)
ω(P )

+
∑

u∈VX−τ

ψ(S, u)ω(u, p(u))

≤
∑
P∈Y

(
ψ(Sf

P , V
l
P ) + ψ(Sl

P , V
f
P ) + ψ(S, V m

P )
)
ω(P )

+
∑
P∈Y

∑
u∈V m

P

ψ(S, u)ω(u, p(u)) +
∑
u∈VI

ψ(S, u)ω(u, p(u)),

where VI is the set of leaves in X that are not in τ and have the same adjacent
node in both trees T and X . Notice that all leaves in T outside of τ adjacent (in
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T ) to some node of τ belong to VI (that is, only nodes in V m
P for some P ∈ Y

may be out of VI ∪ Vτ ).
For every P ∈ Y and every node u ∈ V m

P , p(u) is one of the endpoints of the
path P . Thus ω(u, p(u)) = min{ω(u, fP ), ω(u, lP )}:

C(X) ≤
∑
P∈Y

(
ψ(Sf

P , V
l
P ) + ψ(Sl

P , V
f
P ) + ψ(S, V m

P )
)
ω(P )

+
∑
P∈Y

∑
u∈V m

P

ψ(S, u)min {ω(u, fP ), ω(u, lP )}+
∑
u∈VI

ψ(S, u)ω(u, p(u)).

Let q(u) be the node in ST adjacent to u ∈ T − ST and for u ∈ ST consider
q(u) = u, then:

C(X) ≤
∑
P∈Y

(
ψ(Sf

P , V
l
P ) + ψ(Sl

P , V
f
P ) + ψ(S, V m

P )
)
ω(P )

+
∑
P∈Y

∑
u∈V m

P

ψ(S, u)min {ω(u, fP ), ω(u, lP )} +
∑
u∈VI

ψ(S, u)ω(u, q(u)).

By the triangular inequality ω(u, fP ) ≤ ω(q(u), fP ) + ω(u, q(u)) for P ∈ Y
and u ∈ V m

P (the same applies for lP ). Since q(u) ∈ P , ω(q(u), fP ) ≤ ω(P ) and
ω(q(u), lP ) ≤ ω(P ). So, min {ω(u, fP ), ω(u, lP )} ≤ ω(P ) + ω(u, q(u)). Then:

C(X) ≤
∑
P∈Y

(
ψ(Sf

P , V
l
P ) + ψ(Sl

P , V
f
P ) + ψ(S, V m

P )
)
ω(P )

+
∑
P∈Y

∑
u∈V m

P

ψ(S, u) (ω(P ) + ω(u, q(u))) +
∑
u∈VI

ψ(S, u)ω(u, q(u))

=
∑
P∈Y

(
ψ(Sf

P , V
l
P ) + ψ(Sl

P , V
f
P ) + ψ(S, V m

P )
)
ω(P )

+
∑
P∈Y

ω(P )ψ(S, V m
P ) +

∑
u∈VT−τ

ψ(S, u)ω(u, q(u))

≤
∑
P∈Y

(
ψ(Sf

P , V
l
P ) + ψ(Sl

P , V
f
P ) + 2ψ(S, V m

P )
)
ω(P )

+
∑

u∈VX−τ

ψ(S, u)ω(u, q(u)).

Since each P ∈ Y is δ-balanced, ψ(S, V m
P ) ≤ δ

(
ψ(Sf

P , V
l
P ) + ψ(Sl

P , V
f
P )
)
.

Also, ω(u, q(u)) = 0 for each node u in ST , then:

C(X) ≤
∑
P∈Y

(1 + 2δ)
(
ψ(Sf

P , V
l
P ) + ψ(Sl

P , V
f
P )
)
ω(P )

+
∑

u∈VT−ST

ψ(S, u)ω(u, q(u))

≤ (1 + 2δ)C(T ).

�
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The above lemma gives us a general result: given 0 < δ ≤ 1
2 , if a metric

p-OCT problem Π satisfies that for any spanning tree T of G there exists a
set of k internally disjoint δ-balanced-paths whose union results in ST , then for
each T there exists a (k + 1)-star XT such that C(XT ) ≤ (1 + 2δ)C(T ). Thus,
for an optimal spanning tree T ∗ there exists a valid (k + 1)-star of G which
is a (1 + 2δ)-approximation for Π . Then, an optimal valid (k + 1)-star of G is
a (1 + 2δ)-approximation for Π . Remember that, by lemma 1, we can find an
optimal valid (k + 1)-star in O(nk−p+2) (and therefore an approximation for the
optimum value).

Lemma 2. Consider a metric p-OCT problem for which we can guarantee for
every spanning tree T the existence of k internally disjoint δ-balanced-paths
whose union results in ST . Thus, there exists a (1 + 2δ)-approximation algo-
rithm with time complexity O(nk−p+2) where 0 < δ ≤ 1

2 .

The following proposition provides a sufficient condition for the existence of
an internally disjoint δ-balanced-path set whose union results in ST for any
spanning tree T of a metric p-OCT problem.

Proposition 2. Consider a metric p-OCT problem. Given 0 < δ ≤ 1
2 , if it

satisfies that every connecting-source path of any spanning tree T of G can be
divided in, at most k internally disjoint δ-balanced-paths, then there exists a set
of internally disjoint δ-balanced-paths of T with at most 2k(p−1) elements whose
union results in ST .

Proof. Let T be a spanning tree of G, and consider the corresponding sub-tree
ST , whose leaves are nodes of S (ST has at most p leaves), and ST is also a tree.
Then, the number of nodes with degree greater than two in ST is at most p− 1.

Consider now the collection of paths Y constructed from ST such that each
path has as endpoints nodes with degree different of two in ST or nodes of S,
and all the internal nodes of these paths are not in S and has degree two in ST .
It is easy to see that the number of paths in Y is at most 2p − 2 (that is, the
number of nodes in S which contains the leaves of ST plus the number of nodes
with degree greater than two in ST minus one). Also, observe that each path
in Y is a connecting-source path, so it can be divided in at most k internally
disjoint δ-balanced-paths. Then, by applying that division we obtain a set of
δ-balanced-paths with at most 2k(p− 1) elements whose union results in ST .�

Finally, from the results given by lemma 2 and proposition 2 we conclude:

Lemma 3. Consider a metric p-OCT problem. If, for this problem it holds that
for every connecting-source path P of any spanning tree of G there exists at most
k internally disjoint δ-balanced-paths whose union results in P , there exists a
(1 + 2δ)-approximation algorithm with time complexity O(n(2k−1)(p−1)+1) where
0 < δ ≤ 1

2 .

In next section we use this result to prove PTASs for three different metric
p-OCT problems, for which the condition given above holds.
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5 PTAS for Three p-OCT Metric Problems

In the previous section we provide a general result to obtain good approximations
for p-OCT metric problems. In this section we show some special cases for which
lemma 3 applies and consequently we are able to provide PTASs.

The first problem we introduce is the p-source Weighted Source Destination
Optimum Communication spanning Tree problem (p-WSDOCT) which is a
particular case of the p-OCT, where there is a sending requirement for each
source node and also all the nodes have a receiving requirement associated:

Problem 3. p-WSDOCT - p-source Weighted Source Destination Optimum
Communication spanning Tree problem.

Input: A graph G, a non-negative length function over the edges of G, ω :
E → Q+, a set of p sources S ⊆ V , a positive sending requirement σ : S → Q+

and a non-negative receiving requirement λ : V → Q+. The requirement function
between u ∈ S and v ∈ V is given by ψ(u, v) = σ(u)λ(v).

Output: A spanning tree T of G which minimizes the total requirement
routing cost: C(T ) =

∑
u∈S

∑
v∈V σ(u)λ(v)d(T, u, v).

Now, using the result of lemma 3 we prove the following theorem:

Theorem 1. There exists a PTAS for metric p-WSDOCT with fixed param-
eter. Given 0 < δ ≤ 1

2 , the algorithm can find a (1 + 2ξδ)-approximation in

O

(
n

(
2 1

δ−δ2
−1

)
(p−1)+1

)
time complexity where ξ =

∑
u∈S σ(u)

min{σ(u)}u∈S
.

Proof. Consider a connecting-source path P for any spanning tree T of G, where:∑
u∈V m

P

λ(u) ≤ δ (1− δ)
∑
u∈V

λ(u).

Observe that:

ψ(S, V m
P ) =

(∑
u∈S

σ(u)

)⎛⎝ ∑
u∈V m

P

λ(u)

⎞⎠ ≤ (∑
u∈S

σ(u)

)
δ (1− δ)

∑
u∈V

λ(u)

≤
(∑

u∈S

σ(u)

)
δ
(
1− (δ − δ2)

)∑
u∈V

λ(u)

=

(∑
u∈S

σ(u)

)
δ

(∑
u∈V

λ(u)− (δ − δ2)
∑
u∈V

λ(u)

)

≤
(∑

u∈S

σ(u)

)
δ

⎛⎝∑
u∈V

λ(u)−
∑

u∈V m
P

λ(u)

⎞⎠ .

Since V = V l
P ∪ V f

P ∪ V m
P :

ψ(S, V m
P ) ≤

(∑
u∈S

σ(u)

)
δ

⎛⎝∑
u∈V l

P

λ(u) +
∑
u∈V f

P

λ(u)

⎞⎠
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≤
(∑

u∈S

σ(u)

)
δ

∑
u∈Sf

P
σ(u)

min{σ(u)}u∈S

∑
u∈V l

P

λ(u)

+

(∑
u∈S

σ(u)

)
δ

∑
u∈Sl

P
σ(u)

min{σ(u)}u∈S

∑
u∈V f

P

λ(u)

=

∑
u∈S σ(u)

min{σ(u)}u∈S
δ
(
ψ(Sf

P , V
l
P ) + ψ(Sl

P , V
f
P )
)
.

So, P is a
∑

u∈S σ(u)

min{σ(u)}u∈S
δ-balanced-path and every connecting-source path of T

can be divided in at most 1
δ−δ2 paths like P , which is a connecting-source path

that satisfies
∑

u∈V m
P

λ(u) ≤ δ (1− δ)
∑

u∈V λ(u).

Then, by applying lemma 3 we conclude that for metric p-WSDOCT there

exists a
(
1 + 2

∑
u∈S σ(u)

min{σ(u)}u∈S
δ
)
-approximation algorithm with time complexity

O

(
n

(
2 1

δ−δ2
−1

)
(p−1)+1

)
. �

Another particular case of p-WSDOCT is the p-source Weighted Destina-
tion Optimum Communication spanning Tree problem (p-WDOCT), where all
vertices of S have unitary sending requirement (σ(S) = 1).

Problem 4. p-WDOCT - p-source Weighted Destination Optimum Communi-
cation spanning Tree problem.

Input: A graph G, a non-negative length function over the edges of G, ω :
E → Q+, a set of p sources S ⊆ V and a non-negative receiving requirement
λ : V → Q+. The requirement function between u ∈ S and v ∈ V is given by
ψ(u, v) = λ(v).

Output: A spanning tree T of G which minimizes the total requirement
routing cost: C(T ) =

∑
u∈S

∑
v∈V λ(v)d(T, u, v).

Observe that p-WDOCT is a particular case of p-WSDOCT in which:

ξ =

∑
u∈S σ(u)

min{σ(u)}u∈S
=

p

1
= p.

Then, using theorem 1 we conclude the following result for p-WDOCT:

Corollary 1. There exists a PTAS for metric p-WDOCT, which can find a

(1 + 2pδ)-approximation in O

(
n

(
2 1

δ−δ2
−1

)
(p−1)+1

)
time complexity where 0 <

δ ≤ 1
2 .

Notice that the weighted p-MRCT is also a particular case of p-WSDOCT

and the p-MRCT is a particular case of p-WDOCT so the results above imply
also new PTASs for the fixed parameter metric weighted p-MRCT and for the
metric p-MRCT.
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Table 1. Comparison of our approach with current state of art in the literature.
As it can be seen, for almost all the problems our approach improve the previous
approximation ratios, only for the case of 2-MRCT it does not give a better solution
(we obtain the same approximation scheme but with a greater complexity time). In
the case of the PTASs it was considered the approximation (1 + ε) being ε ∈ (0, 1].

Problem Best Approach In Literature Our Approach
Ratio Complexity References Ratio Complexity

2-MRCT PTAS O
(
n

1
ε
+1

)
[Wu, 2002] PTAS O

(
n

8
ε(2−ε)

)

p-MRCT 2 O
(
n3

)
[Wu et al., 2000a] PTAS O

(
n

(
8p2

ε(2p−ε)
−1

)
(p−1)+1

)

weighted

p-MRCT 2 O
(
n3

)
[Wu et al., 2000a] PTAS O

(
n

(
8ξ2

ε(2ξ−ε)
−1

)
(p−1)+1

)

p-WDOCT 2 O
(
np−1

)
[Wu, 2004] PTAS O

(
n

(
8p2

ε(2p−ε)
−1

)
(p−1)+1

)

fixed parameter

p-WSDOCT 2 O
(
np−1

)
[Wu, 2004] PTAS O

(
n

(
8ξ2

ε(2ξ−ε)
−1

)
(p−1)+1

)

p-USCOCT 2 O
(
np−1

)
[Wu, 2004] PTAS O

⎛
⎜⎝n

(
4log 2

2+ε
(r)−1

)
(p−1)+1

⎞
⎟⎠

Another particular case of p-OCT in which we can apply our results is the
p-Uniform Source Connecting Optimum Communication spanning Tree problem
(p-USCOCT). In this problem the minimum routing requirement between two
sources must be at least a fixed ratio of the sum of requirements between all the
pairs of nodes2:

Problem 5. p-USCOCT - p-Uniform Source Connecting Optimum Communica-
tion spanning Tree problem.

Input: A graph G, a non-negative length function over the edges of G, ω :
E → Q+, a set of p sources S ⊆ V , a fixed ratio r > 0 and a non-negative routing
requirement function between each node of S and each node of V , ψ : S × V →
Q+, where each pair of sources u, v ∈ S satisfies ψ(u, v) ≥ r

∑
u∈S

∑
v∈V ψ(u, v).

Output: A spanning tree T of G that minimizes the total requirement routing
cost: C(T ) =

∑
u∈S

∑
v∈V ψ(u, v)d(T, u, v).

Similar ideas allow us to prove that for 0 < δ ≤ 1
2 we can divide any

connecting-source path P of a spanning tree of G in an instance of metric p-
USCOCT with no more than 2log 1

1+δ
(r) internally disjoint δ-balanced-paths.

Then by applying lemma 3 we obtain:

2 Metric p-USCOCT is NP-hard, a reduction from SAT is given in the full version of
the paper.
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Theorem 2. There exists a PTAS for the metric p-USCOCT. Given 0 < δ ≤
1
2 , the algorithm guarantees a (1 + 2δ)-approximation of the optimum solution

in time complexity O

(
n

(
4log 1

1+δ
(r)−1

)
(p−1)+1

)
.3

6 Conclusions

In this work we consider different NP-hard variants of p-OCT: metric case of
p-MRCT, p-WDOCT fixed parameter WSDOCTand p-USCOCT. We prove
a lemma that allows us to present PTAS’s for these problems, being possible to
use that result in order to obtain other approximations for some other particular
cases of p-OCT. Also we prove that metric USCOCT is NP-hard. In table 1 we
summarize our approaches and compare with previous results in literature. Many
questions remain open regarding p-OCT and related problems. For example,
no PTAS for metric p-OCT is known. Also, when we do not consider metric
problems much is still to be researched.
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