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Abstract. This work considers the metric case of the minimum sum-
requirement communication spanning tree problem (SROCT), which is
an NP-hard particular case of the minimum communication spanning
tree problem (OCT). Given an undirected graph G = (V,E) with non-
negative lengths ω(e) associated to the edges satisfying the triangular
inequality and non-negative routing weights r(u) associated to nodes
u ∈ V , the objective is to find a spanning tree T of G, that minimizes:
1
2

∑
u∈V

∑
v∈V (r(u) + r(v)) d(T, u, v), where d(H,x, y) is the minimum

distance between nodes x and y in a graph H ⊆ G. We present a polyno-
mial approximation scheme for the metric case of the SROCT improving
the until now best existing approximation algorithm for this problem.

1 Introduction

In this work we consider a particular case of the minimum communication span-
ning tree problem (OCT). The OCT was introduced by Hu in 1974. In the
problem it is given an undirected graph G = (V,E) with non-negative length
ω(e) associated to each edge e ∈ E and non-negative requirement ψ(u, v) between
each pair of nodes u, v ∈ V . The problem is to find a spanning tree T of G which
minimizes the total communication cost: C(T ) =

∑
u∈V

∑
v∈V ψ(u, v)d(T, u, v),

where d(H,x, y) denotes the minimum distance between nodes x and y in the
sub-graph H of G. ([1,2])

In [3] it was proved that the minimum routing cost spanning tree problem
(MRCT) is NP-hard (by a reduction from the 3-exact cover problem (3-EC)).
Observe that MRCT is a particular case of OCT where the requirement be-
tween all pair of nodes is equal to one (ψ(u, v) = 1 for all u, v ∈ V ). In [4] a
PTAS for the MRCT was given. The authors presented a reduction from the
general to the metric case, which implies that MRCT with edge-lengths that
satisfy the triangular inequality is also NP-hard. Also, in [4] an O(log2(n))-
approximation was given for OCT applying a result from [5] which was later
improved to a O(log(n))-approximation by [6].

In [7], the minimum product-requirement communication spanning tree prob-
lem (PROCT) and the minimum sum-requirement communication spanning
tree problem (SROCT) were introduced. In these problems each vertex u ∈ V
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has a non-negative routing weight r(u). For PROCT the requirement is defined
as ψ(u, v) = 1

2r(u)r(v), and for SROCT ψ(u, v) = 1
2 (r(u) + r(v)). Both prob-

lems are NP-hard. In [7] a 1.577-approximation algorithm for PROCT and a
2-approximation for SROCT are presented.

The approximation ratio for PROCT was improved in [8] where a PTAS
was given. A particular case of SROCT is the weighted p-MRCT, were given
an integer p, only p nodes of the graph will have a positive routing weight (i.e.
the remaining nodes have zero weight). The particular case in which the p nodes
have routing weight 1 is called p-MRCT. In [9] it was proved that 2-MRCT is
NP-hard. It also was proved in [10] where PTASs for 2-MRCT and the metric
case of weighted 2-MRCT were given.

To the best of our knowledge, there are no results improving the 2-approxima-
tion ratio for SROCT which is also the best known ratio for the metric case of
SROCT (denoted by m-SROCT). Observe that this problem is also NP-hard,
since MRCT is a particular case in which r(u) = 1 for all u ∈ V .

In this work we give a PTAS for m-SROCT improving the best previous
known result for this problem. The idea of our algorithm was inspired in the
previous PTASs for related problems such as MRCT and PROCT. This paper
is organized as follows. In the next section we present some notation. In section
3 we show how to obtain an optimal k-star for SROCT in polynomial time for
a fixed integer k. In section 4 we present a PTASfor the m-SROCT. Finally, in
section 5 the conclusions and future work are given.

2 Definitions

Unless specified we consider all graphs as undirected graphs. Given a graph G
we denote the set of its nodes by VG and the set of its edges by EG (when G is
implicit by context we use V as VG and E as EG).

Definition 1. Given a graph G with non-negative lengths associated to its edges,
the length of a path in G is defined as the sum of the lengths of its edges (a
path with no edges has length zero). The distance between node x and node y
in H sub-graph of G is the length of a path with minimum length between x and
y in H and is denoted by d(H,x, y).

Now we can define SROCT as:

Problem 1. SROCT - Sum-Requirement Communication Spanning Tree
problem

Input: A graph G, a non-negative length function over the edges of G, ω :
E → Q+ and a non-negative routing weight function over the nodes of G, r :
V → Q+.

Output: A spanning tree T of G which minimizes the total weighted routing
cost:

C(T ) =
∑

u∈V

∑
v∈V

1
2 (r(u) + r(v))d(T, u, v) =

∑
u∈V

∑
v∈V r(u)d(T, u, v).
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Definition 2. Given a graph G and a non-negative routing weight function over
the nodes of G, r : V → Q+, we denote r(G) =

∑
u∈VG

r(u) and n(G) = |VG|.
When G is implicit by the context we use R to denote r(G) and n to denote
n(G).

This paper considers the m-SROCT, the metric case of SROCT, which is
the particular case of SROCT where the graph G is complete and the length
function over the edges satisfies the triangular inequality. In order to approximate
an optimal solution of m-SROCT we introduce the concept of a k-star1:

Definition 3. Given a graph G and a positive integer k, a k-star of G is a
spanning tree of G with no more than k internal nodes (that is, at least n − k
leaves). A core of a k-star T of G is a tree resulting by eliminating n− k leaves
from T .

Note that a k-star T can be represented by (τ, S), where τ is a core of T and
S = {Su1 , ..., Suk

} is a vector indexed by the nodes in τ where Sui is the set of
leaves adjacent in T to ui ∈ Vτ (1 ≤ i ≤ k).

The problem of finding an optimal k-star for m-SROCT can be defined as:

Problem 2. Optimum k-star for m-SROCT
Input: A positive integer k and an instance of m-SROCT: a complete graph

G, a non-negative length function over the edges of G which satisfies the trian-
gular inequality, ω : E → Q+ and a non-negative routing weight function over
the nodes of G, r : V → Q+.

Output: A k-star T of G which minimizes the total weighted routing cost:
C(T ) =

∑
u∈V

∑
v∈V r(u)d(T, u, v).

The next section shows an efficient algorithm to find an optimal k-star.

3 Optimal k-Star for m-SROCT

First we introduce the notion of configuration of a k-star:

Definition 4. Given a k-star T = (τ, S) a configuration of T is (τ, L) where
L = {lu1 , ..., luk

} is a vector of integers being lui = |Sui | (1 ≤ i ≤ k). A configu-
ration (τ, L) is over (k,G), where k is a positive integer and G is a graph, if τ
is a tree of G with k nodes (that is, τ ⊆ G and |Vτ | = k) and

∑
u∈Vτ

lu = n− k.

In [4] it was observed that given a complete graph G and a fixed positive
integer k, the number of configurations over (k,G) is polynomial in n, resulting
O(kkn2k−1). Then, given an instance 〈G,ω, r, k〉 of the optimum k-star for m-
SROCT, our proposal is to enumerate all possible configurations over (K,G),

1 The definition of k-star used in this paper is the same used by [4,7,8], which is
different from the usual definition of k-star in graph theory (a tree with k leaves
linked to a single vertex of degree k).
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finding an optimal k-star of each configuration, and finally select the best k-star
among them.

We find an optimal k-star for an instance 〈G,ω, r, k〉 of the optimum k-star
for m-SROCT and a configuration (τ, L) over (k,G), reducing the problem to
an uncapacitated minimum cost flow problem (UMCF).

Problem 3. UMCF - Uncapacitated Minimum Cost Flow problem
Input: A directed graph G, a cost function over the arcs ω : E → Q+ and a

demand function over the nodes r : V → Z.
Output: An integer vector indexed by the arcsX = (xe)e∈E which minimizes

C(X) =
∑

e∈E ω(e)xe and guaranties for each node u ∈ V :∑
e∈δ+(u) xe −

∑
e∈δ−(u) xe = r(u),

where e ∈ δ+(w) and e ∈ δ−(v) iff e = 〈v, w〉 (∀e ∈ E, v, w ∈ V ).

Proposition 1. Given an instance I = 〈G,ω, r, k〉 of the optimum k-star for
m-SROCT and a configuration c = (τ, L) over (k,G), the problem of finding an
optimal k-star with configuration c for I can be reduced in polynomial time to
the UMCF with instance I ′ = 〈G′, ω′, r′〉, where:

– VG′ = VG;
– EG′ = {(u, v)|u ∈ VG−τ ∧ v ∈ τ};
– ω′(u, v)=Rω(u, v)+

∑
w∈Vτ

r(u) (d(τ, v, w)+ω(u, v)) (lw+1)−2r(u)ω(u, v);
– if u ∈ VG−τ then r′(u) = −1, otherwise r′(u) = lu.

The graph G′ is a complete bipartite graph on the same node set VG of G.
The bi-partition is given by the nodes in τ and outside this set. The cost of
arc 〈u, v〉 is equivalent to the value of assigning u as adjacent of v in a k-star
with the given configuration. We have to consider the cost of sending the routing
weight from u to all nodes of τ assuming that each node w ∈ Vτ receives (lw+1)
times the value r(u) (considering the transmission to the node w and the leaves
adjacent to it); also, we add the cost of sending the routing weight of the entire
graph (R− r(u)) to node u, which must pass by node v. Finally the demands r′

are set to ensure assignment between nodes out of τ and nodes in τ .

Proof. Since demands are integer we know that in any feasible solution the values
xe will be either zero or one. Moreover, exactly n− k arcs of G′ will have value
1. This guaranties that every feasible solution S′ of the flow problem represents
an assignment of leaves outside τ to be adjacent to nodes in τ for a k-star T
of G with configuration (τ, L). Also, it is easy to see that any k-star T with
configuration (τ, L) provides a feasible solution to the flow problem: connect
node u ∈ τ to the lu leaves adjacent to it in T .

Observe that2: C(S′) = C(T ) − ∑
u∈Vτ

∑
v∈Vτ

r(v)d(τ, u, v)(lu + 1), where∑
u∈Vτ

∑
v∈Vτ

r(v)d(τ, u, v)(lu +1) is the same for every solution with the same
configuration. Then, an optimum of UMCF with instance I ′ is associated to an
optimal k-star with configuration c of m-SROCT with instance I.

2 A detailed proof of this fact can be found in the full version of the paper.
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In order to obtain I ′ from I the cost of each arc in G′ must be calculated.
This can be done in O((n− k)k3). Defining the demands and the graph G′ itself
can be done in O((n− k)k + n). Finally, obtaining the k-star T associated to a
solution S′ can be done in O(n − k), while the complexity of calculating C(T )
would be O(k3). So, the reduction above can be done in O(nk3).

�

It is well known that UMCF can be solved in O(n log(n)(nk + n log(n))) =
O(n2 log2(n)) (e.g. [11]). Then, finding an optimal k-star for m-SROCT with
fixed k can be done efficiently.

Lemma 1. The optimum k-star for m-SROCT with fixed k can be solve in
O(n2k+1 log2(n)).

4 PTAS for m-SROCT

In this section we prove that for 0 < δ ≤ 1
2 there exists a k-star, with k depending

on δ, which is a 1
1−δ -approximation ofm-SROCT. For that, from now on, we will

consider an instance I of m-SROCT. Remember that n = n(G) and R = r(G).
The idea of the proof is similar to those presented in [4], [7] and [8]. Given

0 < δ ≤ 1
2 and a spanning tree T of G, we show the existence of a set Y of

internally disjoint paths whose union results in a sub-tree S of T , such that the
communication cost of each component B ∈ T −S is at most a small fraction of
the communication cost of T , which implies that most of the communication cost
of T passes by S. Also, we prove that the size of Y is limited by a function of δ and
we show how to construct a k-star from Y , where the value of k depends on the
size of Y . The communication cost of the k-star approximates the communication
cost of T by a factor of 1

1−δ .

4.1 Notation

First, in order to present the results of this section, we need some notation,
which generalizes the notation given in [4], [7] and [8]:

Definition 5. Given a spanning tree T of G, a set of edges H of T and a node
u of T , V B(T,H, u) is the set of nodes in the component of T −H containing
the vertex u.

Definition 6. Given a spanning tree T of G, a path P = u1, ..., uh of T , we
denote by fP (or f , when P is clear by the context) the first node of P and lP
(or l) the last node. We will use η to denote number of nodes and ρ to denote
communication requirements. We define:

For the number of nodes (figure 1 gives an example of these notation):

– ηfP = |V B(T,EP , f)| and ηlP = |V B(T,EP , l)|, are the number of nodes in
the component of T −EP containing the first node of P and the component
containing the last node of P ,
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– ηmP = n − ηfP − ηlP , is the number of nodes of all the component of T − EP

containing an internal node of P ,
– N(P, v) =

∑h−1
i=2 |V B(T,EP , ui)| d(P, v, ui), is the sum over each internal

node ui of P of the number of nodes in the component of T −EP containing
ui times the distance in P from ui to node v,

– Nf (P ) = N(P, f), Nl(P ) = N(P, l), represent the sums over each internal
node ui of P of the number of nodes in the component of T −EP containing
ui times the distance in P from ui to the first node of P and to the last node
of P ,

– ηsP = max{ηfP , ηlP }, ηiP = min{ηfP , ηlP }, represents the number of nodes in
the greater component of T − EP containing an extremal node of P ,

– if ηfP = ηsP then N(P ) = Nf(P ), else N(P ) = Nl(P ).

Analogously, for the communication requirements:

– ρfP = r (V B(T,EP , f)), ρ
l
P = r (V B(T,EP , l), ρ

m
P = R− ρfP − ρlP ,

– R(P, v) =
∑h−1

i=2 r (V B(T,EP , ui)) d(P, v, ui), Rf (P ) = R(P, f), Rl(P ) =
R(P, l),

– ρsP = max{ρfP , ρlP }, ρiP = min{ρfP , ρlP },
– if ρfP = ρsP then R(P ) = Rf (P ), else R(P ) = Rl(P ).

fP u2

u3

u4

u5 lP

Fig. 1. Consider the above spanning tree T of a graph G, where all the edges have
unitary weights and P is the path of T from node fP to lP . Observe that V B(T,EP , fP )
is the set of nodes to the left of fP (including fP ), V B(T,EP , lP ) is the set of nodes
to the right of lP (including lP ), V B(T,EP , u2) is the set of nodes containing u2

and the three nodes above it, V B(T,EP , u3) = {u3}, V B(T,EP , u4) is the set of
nodes containing u4 and the two nodes below it, and V B(T,EP , u5) is the set of
nodes containing u5 and the node above it. Then, ηf

P = 9, ηl
P = 5, ηm

P = 10, and thus
ηs
P = 9 and ηl

P = 5. Also, Nf (P ) = |V B(T,EP , u2)| × 1 + |V B(T,EP , u3)| × 2 +
|V B(T,EP , u4)|×3+|V B(T,EP , u5)|×4 = 4×1+1×2+3×3+2×4 = 23 and Nl(P ) =
|V B(T,EP , u2)|×4+ |V B(T,EP , u3)|×3+ |V B(T,EP , u4)|×2+ |V B(T,EP , u5)|×1 =
4× 4 + 1× 3 + 3× 2 + 2× 1 = 27 , which yields N(p) = 23.

Now we introduce definitions for separators. A δ-separator is a sub-tree of a
spanning tree T of G, whose deletion gives rise to components that are bounded
(in the number of nodes, routing weight or both) by a factor δ of the total value
(n or R). Formally:
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Definition 7. Given 0 < δ ≤ 1
2 and a spanning tree T of G, a sub-tree S of T

is a δ-η-separator of T if every component B of T − S, satisfies n(B) ≤ δn. If
every component B of T − S, satisfies r(B) ≤ δR, S is a δ-ρ-separator of T . If
both conditions apply, S is a δ-ηρ-separator of T .

Also, we define δ-ηρ-path and δ-ηρ-spine:

Definition 8. Given 0 < δ ≤ 1
2 and a spanning tree T of G, a path P of T is a

δ-ηρ-path of T if ηmP ≤ δ n
6 and ρmP ≤ δR

6 .

Definition 9. Given 0 < δ ≤ 1
2 and a spanning tree T of G, a set Y =

{P1, P2, ..., Pl} of δ-ηρ-paths internally-disjoint of T is a δ-ηρ-spine, if S =⋃l
i=1 Pi is a minimal δ-ηρ-separator of T . ext(Y ) denotes the endpoints set of

all paths in Y .

4.2 Approximation Lemma

Using those definitions we prove that for any 0 < δ ≤ 1
2 , any spanning tree T of

G and any δ-ηρ-spine Y of T , there exists a |ext(Y )|-star with communication
cost bounded by 1

1−δC(T ). This lemma, together with lemma 4 are the basis of
the main result of this work.

Lemma 2. Given 0 < δ ≤ 1
2 , a spanning tree T of G and a δ-ηρ-spine Y of T ,

there exists a |ext(Y )|-star X of G satisfying C(X) ≤ 1
1−δC(T ).

In order to conclude that result, first we use the following three propositions3.

Proposition 2. Given 0 < δ ≤ 1
2 a δ-ηρ-path P of a δ-ηρ-spine of a spanning

tree T of G, then:

(R + n− ηmP − ρmP )
(
ηfP ρ

l
P + ηlPρ

f
P

)
ω(P )

+
(
ηlP + ρlP

) (
ω(P )

(
ηmP ρfP + ηfP ρ

m
P

)
+RNl(P ) + nRl(P )

)

+
(
ηfP + ρfP

) (
ω(P )

(
ηmP ρlP + ηlP ρ

m
P

)
+RNf(P ) + nRf (P )

)

≤ 6 + 5δ

6
(R+ n)

(
ηfP ρ

l
P + ηlPρ

f
P + ηiP ρ

m
P + ηmP ρiP

)
ω(P )

+ (R+ n)
((
ηsP − ηiP

)
R(P ) +

(
ρsP − ρiP

)
N(P )

)
.

Proposition 3. Given 0 < δ ≤ 1
2 , a spanning tree T of G and a δ-ηρ-spine Y

of T , there exists a |ext(Y )|-star X of G which satisfies:

C(X) ≤
∑

P∈Y

(
ηfP ρ

l
P + ρfP η

l
P

)
ω(P ) + min {Δfl(P ), Δlf (P )}

+R
∑

u∈VG

d(T, u, S) + (n− 2)
∑

u∈VG

r(u)d(T, u, S).

3 The proofs of the propositions are intricate and do not bring any new insight into
the problem, also they can be found in the full version of the paper.
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Where Δwz(P ) = ω(P ) (ηmP ρwP + ρmP ηwP ) + RNz(P ) + (n − 2)Rz(P ), w, z ∈
{f, l}, and S =

⋃
P∈Y P .

Observe that the result above shows the existence of a |ext(Y )|-star X of G
(which comes from a δ-ηρ-spine Y of a spanning tree of G) and also gives us an
upper bound for the associated communication cost of X . The next proposition
gives us a lower bound for the communication cost of a spanning tree of G.

Proposition 4. Given 0 < δ ≤ 1
2 , a spanning tree T of G and a δ-ηρ-spine Y

of T , then:

C(T ) ≥
∑

P∈Y

(
ρlP η

f
P + ρfP η

l
P + ρiP η

m
P + ηiPρ

m
P

)
ω(P )

+
∑

P∈Y

(
ηsP − ηiP

)
R(P ) +

(
ρsP − ρiP

)
N(P )

+(1− δ)

(

n
∑

u∈VG

r(u)d(T, u, S) +R
∑

u∈VG

d(T, u, S)

)

.

Where S =
⋃

P∈Y P .

Now we demonstrate the lemma 2, which states that if we are given a δ-ηρ-
spine Y of a spanning tree T , then we can construct a star whose core lies on
ext(Y ), such that its communication cost is bounded by 1

1−δC(T ).

Proof. Let S =
⋃

P∈Y P be the minimal δ-ηρ-separator associated with Y and
X the |ext(Y )|-star of G given by proposition 3, then:

C(X) ≤
∑

P∈Y

(
ηfPρ

l
P + ρfP η

l
P

)
ω(P ) + min {Δfl(P ), Δlf (P )}

+R
∑

u∈VG

d(T, u, S) + (n− 2)
∑

u∈VG

r(u)d(T, u, S)

≤
∑

P∈Y

R+ n− ρmP − ηmP
R+ n− ρmP − ηmP

(
ηfPρ

l
P + ρfP η

l
P

)
ω(P ) + min {Δfl(P ), Δlf (P )}

+R
∑

u∈VG

d(T, u, S) + n
∑

u∈VG

r(u)d(T, u, S).

Since the minimum between two numbers is less than or equal to their weighted
median, we have:

C(X) ≤
∑

P∈Y

R + n− ρmP − ηmP
R + n− ρmP − ηmP

(
ηfP ρ

l
P + ρfP η

l
P

)
ω(P )

+
∑

P∈Y

ηlP + ρlP

ηlP + ρlP + ηfP + ρfP
Δfl(P ) +

ηfP + ρfP

ηlP + ρlP + ηfP + ρfP
Δlf (P )

+R
∑

u∈VG

d(T, u, S) + n
∑

u∈VG

r(u)d(T, u, S).
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Since every path P satisfies R+n− ηmP − ρmP = ηfP + ηlP + ρfP + ρlP , and every
P ∈ Y is a δ-ηρ-path, then by applying the result of Proposition 2 we conclude:

C(X) ≤
∑

P∈Y

(
6+5δ
6

)
(R + n)

R+ n− ρmP − ηmP

(
ηfP ρ

l
P + ρfP η

l
P + ηiPρ

m
P + ρiP η

m
P

)
ω(P )

+
∑

P∈Y

n+R

R+ n− ρmP − ηmP

((
ηsP − ηiP

)
R(P ) +

(
ρsP − ρiP

)
N(P )

)

+R
∑

u∈VG

d(T, u, S) + n
∑

u∈VG

r(u)d(T, u, S).

Notice that any δ-ηρ-path satisfies: ρmP + ηmP ≤ δ
6R+ δ

6n = δ
6 (n+R), then:

C(X) ≤
∑

P∈Y

(
6+5δ
6

)
(R + n)

R+ n− δ
6 (R + n)

(
ηfP ρ

l
P + ρfP η

l
P + ηiPρ

m
P + ρiP η

m
P

)
ω(P )

+
∑

P∈Y

n+R

R+ n− δ
6 (R+ n)

((
ηsP − ηiP

)
R(P ) +

(
ρsP − ρiP

)
N(P )

)

+R
∑

u∈VG

d(T, u, S) + n
∑

u∈VG

r(u)d(T, u, S)

=
6 + 5δ

6− δ

∑

P∈Y

(
ηfPρ

l
P + ρfP η

l
P + ηiP ρ

m
P + ρiP η

m
P

)
ω(P )

+
6

6− δ

∑

P∈Y

((
ηsP − ηiP

)
R(P ) +

(
ρsP − ρiP

)
N(P )

)

+
1

1− δ
(1− δ)

(

R
∑

u∈VG

d(T, u, S) + n
∑

u∈VG

r(u)d(T, u, S)

)

.

Since 6+5δ
6−δ = (6+5δ)(1−δ)

(6−δ)(1−δ) = 6−δ−5δ2

(6−δ)(1−δ) < 6−δ
(6−δ)(1−δ) = 1

1−δ and 6
6−δ < 6+5δ

6−δ <
1

1−δ , by applying Proposition 4 we obtain: C(X) ≤ 1
1−δC(T ).

�

4.3 Existence of Bounded δ-ηρ-Spine

In the next lemma we show that there exists a δ-ηρ-spine Y of T whose |ext(Y )|
is bounded by a function of δ.

Lemma 3. Given 0 < δ ≤ 1
2 and a spanning tree T of G, there exists a δ-ηρ-

spine Y of T satisfying |ext(Y )| ≤ 3
(⌈

6
δ

⌉2 − 11
⌈
6
δ

⌉
+ 1

)
.

Proof. Consider a minimal δ-ρ-separator Sρ of T and a minimal δ-η-separator
Sη of T . If Sρ and Sη have at least one node in common, then define S′ = Sρ∪Sη

and obviously S′ is a δ-ηρ-separator. If Sρ and Sη have no nodes in common,
then since both are trees, Sη must be included in a component of T−Sρ. But, Sρ
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is a δ-ρ-separator of T , then every component of T − Sρ has weight bounded by
δR, so the path P in T connecting Sρ to Sη satisfies ρmP < δR. Analogously, P
also satisfies ηmP < δn. Then, P can be divided into 6 paths each one with weight
bounded by δR

6 and another 6 paths each one with number of nodes bounded

by δn
6 . Since each division uses 5 internal nodes, in the worst case, using 10

internal nodes we obtain a division of P in δ-ηρ-paths, and S′ = Sρ ∪ Sη ∪ P is
a δ-ηρ-separator.

By modifying4 a proof of [4], [7] and [8], we prove that there exists an Y ′
ρ and an

Y ′
η sets of internally-disjoint δ-ηρ-paths, satisfying ∪P∈Y ′

ρ
P = Sρ, ∪P∈Y ′

η
P = Sη

and
∣
∣ext(Y ′

ρ)
∣
∣ ,
∣
∣ext(Y ′

η)
∣
∣ ≤ ⌈

6
δ

⌉2 − 11
⌈
6
δ

⌉
+ 1.

For each path P ∈ Y ′
ρ if P contains internal nodes in ext(Y ′

η), divide P on those
nodes to create new internally-disjoint δ-ηρ-paths and put those new paths in
Yρ, otherwise add P to Yρ. Analogously, define Yη from Y ′

η and ext(Y ′
ρ). Observe

that no path of Yη ∪Yρ has an internal node in ext(Yη)∪ ext(Yρ), also Yη and Yρ

are sets of internally-disjoint δ-ηρ-paths such that ∪P∈YρP = Sρ, ∪P∈YηP = Sη

and:

|ext(Yρ ∪ Yη)| ≤ 2

(⌈
6

δ

⌉2

− 11

⌈
6

δ

⌉
+ 1

)

.

Notice that, since Sη ∪ Sρ is acyclic, each path of Yρ internally-intersects at
most one path in Yη and vice-verse.

If there are two paths Pη ∈ Yη and Pρ ∈ Yρ whose internal-intersection is not
empty and their end-points do not belong to their intersection, then no other
path of Yη intersects any path of Yρ, and by removing from Pη the internal
nodes of the intersection we add at most two new extremal points (the end-
points of the intersection). Then Y ′ = (Yη − Pη)∪ Yρ ∪ (Pη − (Pη ∩ Pρ)) is a set
of internally-disjoint δ-ηρ-paths which satisfies ∪P∈Y ′P = S′ and:

|ext(Y ′)| ≤ 2

(⌈
6

δ

⌉2

− 11

⌈
6

δ

⌉
+ 1

)

+ 2.

Otherwise, if no path of Yη intersects any path of Yρ then, as seen before,
there exists a path P connecting Sη to Sρ that can be divided in at most 11
δ-ηρ-paths, and the union of those paths with Yη and Yρ results in a set Y ′ of
internally-disjoint δ-ηρ-paths such that ∪P∈Y ′P = S′ and:

|ext(Y ′)| ≤ 2

(⌈
6

δ

⌉2

− 11

⌈
6

δ

⌉
+ 1

)

+ 10.

The last possibility is that at least one path of Yη internally-intersects a path
of Yρ and each not-empty intersection between a path of Yη and a path of Yρ

contains at least one endpoint. Then, remove from each path in Yη the internal
nodes of the intersection with each path in Yρ (notice that a path of Yη at most
internally-intersects one path in Yρ). In this case the number of new extremal

4 Such modification can be found in the full version of the paper.
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points will be at most |Y ′
η | and the set Y ′ defined by the union of Yρ with the

modified Yη is a set of internally-disjoint δ-ηρ-paths that satisfies ∪P∈Y ′P = S′

and:

|ext(Y ′)| ≤ 3

(⌈
6

δ

⌉2

− 11

⌈
6

δ

⌉
+ 1

)

.

Since, for 0 < δ ≤ 1
2 :

(⌈
6
δ

⌉2 − 11
⌈
6
δ

⌉
+ 1

)
≥ 122− 11(12)+1 = 13 > 10, then

we always can obtain a set Y ′ of internally-disjoint δ-ηρ-paths which satisfies
∪P∈Y ′P = S′ and:

|ext(Y ′)| ≤ 3

(⌈
6

δ

⌉2

− 11

⌈
6

δ

⌉
+ 1

)

.

If S′ is a minimal δ-ηρ-separator, then Y = Y ′ is a δ-ηρ-spine. Otherwise,
exists a minimal δ-ηρ-separator S ⊂ S′ and by deleting from each path in Y ′ the
elements that are not contained in S we obtain a δ-ηρ-spine Y of T satisfying:

|ext(Y )| ≤ 3

(⌈
6

δ

⌉2

− 11

⌈
6

δ

⌉
+ 1

)

.

�

4.4 PTAS

Using lemmata 2 and 3 we can state the following proposition:

Proposition 5. Given 0 < δ ≤ 1
2 and a spanning tree T of G, there exists a(

3
(⌈

6
δ

⌉2 − 11
⌈
6
δ

⌉
+ 1

))
-star X of G, such that C(X) ≤ 1

1−δC(T ).

Let T ∗ be an optimal spanning tree for m-SROCT over G, by proposition

5 for any 0 < δ ≤ 1
2 , there exists a

(
3
(⌈

6
δ

⌉2 − 11
⌈
6
δ

⌉
+ 1

))
-star X of G such

that C(X) ≤ 1
1−δC(T ∗). Since an optimal

(
3
(⌈

6
δ

⌉2 − 11
⌈
6
δ

⌉
+ 1

))
-star X∗ of

G guarantees C(X∗) ≤ C(X), then C(X∗) ≤ 1
1−δC(T ∗).

Lemma 4. Given 0 < δ ≤ 1
2 an optimal

(
3
(⌈

6
δ

⌉2 − 11
⌈
6
δ

⌉
+ 1

))
-star of G is

a 1
1−δ -approximation for m-SROCT.

The results of lemmata 1 and 4 complete the necessary tools for providing the
PTAS:

Theorem 1. There exists a PTAS for m-SROCT, such that a
(
1 + δ

1−δ

)
-

approximation can be found in O

(
n
6
(� 6

δ �2−11� 6
δ�+1

)
+1

log2(n)

)
time complexity

where 0 < δ ≤ 1
2 .
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5 Conclusions

In this work we present a PTAS for m-SROCT, a NP-hard particular case of
OCT. The best previously known result for this problem was a 2-approximation
algorithm due to [7]. Many questions remain open regarding OCT and related
problems. One could improve the approximation ratio for SROCT or other
particular case of OCT. In future works we will attempt to answer this question
for some of these problems.
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