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This work considers the optimum weighted source–destination communication spanning 
tree problem (WSDOCT), which is an NP-hard special case of the optimum communication 
spanning tree problem (OCT). Given an undirected graph G = (V , E) with non-negative 
lengths ω(e) associated to the edges and non-negative routing weights σ(u) and ρ(u)

respectively to sending and receiving communication of nodes u ∈ V , the objective is to 
find a spanning tree T of G , that minimizes:

∑
u,v∈V

(σ (u)ρ(v) + ρ(u)σ (v))d(T , u, v),

where d(H, x, y) is the minimum distance between nodes x and y in a graph H ⊆ G . We 
present a polynomial time approximation scheme for the metric case of the WSDOCT. This 
result improves the until now best existing approximation algorithm for this problem. Also, 
we give a 2-approximation for the problem which improves the time complexity required 
by our PTAS to achieve this approximation ratio.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Suppose we need to connect n servers in order to minimize the latency of the information delivery between them. 
If we know an estimate for the latency of delivering an information unit between each pair of servers and the amount 
of information units they share, then we are dealing with the optimum communication spanning tree problem (OCT), 
introduced by Hu in [6]. The OCT receives a graph G = (V , E) with non-negative lengths associated to each edge and 
a non-negative communication requirement function ψ(u, v) over all pair of nodes u, v ∈ V . The objective is to find a 
spanning tree T of G that minimizes the total communication cost. This cost is calculated by summing over all pair of 
nodes the communication requirement multiplied by the distance in the tree between them. Other interesting problems of 
the literature consider routing costs in graphs, such as, [2,3,8,13].

In this work we study the optimum weighted source–destination communication spanning tree problem (WSDOCT), 
a particular case of OCT introduced in [10]. The main applications of the WSDOCT lay in the area of network design 
problems: computer networks, telecommunication networks, transportation networks or supply networks. This problem 
considers the class of product-requirements incorporating directedness into the requirement model, in the sense that each 
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node u ∈ V has non-negative sending and receiving requirements σ(u) and ρ(u), and the requirement function is defined 
as ψ(u, v) = 1

2 (σ (u)ρ(v) + ρ(u)σ (v)).
The WSDOCT is NP-hard even when all the requirements are unitary (i.e. σ(u) = ρ(u) = 1 for all u ∈ V ) [7]. This special 

case is known as the minimum routing cost spanning tree problem (MRCT), and in [17] the authors presented a reduction 
from the general to the metric case which implies that even with edge-length satisfying the triangular inequality the prob-
lem remains NP-hard. Also, in [17], were given a PTAS for the MRCT and using results of [1] a O (log2 n)-approximation for
OCT. Later, results of [12] allowed to improve to O (log n) the approximation ratio for OCT which still is the best known 
ratio for the general and metric versions of OCT and WSDOCT.

The complexity of the WSDOCT justified the study of special cases of the problem, most of them NP-hard problems, as 
well. That are the cases of the minimum product-requirement communication spanning tree problem (PROCT) and min-
imum sum-requirement communication spanning tree problem (SROCT), introduced in [15]. PROCT is the case in which 
the requirements are equal for each node (i.e. σ(u) = ρ(u) for all u ∈ V ), and SROCT is the case in which all the re-
ceiving requirement are unitary (i.e. ρ(u) = 1 for all u ∈ V ). In [15] a 1.577-approximation algorithm for PROCT and a 
2-approximation for SROCT were presented. The approximation ratio for PROCT was improved in [16], where a PTAS was 
given.

Another particular case of WSDOCT is the weighted p-MRCT, which is also the particular case of SROCT where, given 
an integer p, only p nodes of the graph will have a positive sending requirement (i.e. the remaining nodes have zero 
sending requirement). When all the p nodes have sending requirement equals to 1, the problem is called p-MRCT. In [5] it 
was proved that 2-MRCT is NP-hard, this result was also proved in [14] where a PTAS for 2-MRCT and the metric case of 
weighted 2-MRCT were given.

Two other NP-hard particular cases of WSDOCT were introduced and studied in [10], the p-WSDOCT and the p-WDOCT. 
The p-WSDOCT is a generalization of p-MRCT where the receiving requirement for each node may be any non-negative 
value, while the p-WDOCT is a particular case of p-WSDOCT where all the non-zero sending requirement are 1. Also, in 
[10] and [11], PTASs were given for the metric versions of SROCT, p-MRCT, p-WDOCT and fixed parameter p-WSDOCT

(where the fixed parameter was on the sending requirements).
In this work we give a 2-approximation algorithm for WSDOCT with time complexity O (n2 log n +mn) and also we prove 

that there exists a PTAS for metric case of WSDOCT. Both the results improve the best known ratios for the problem.
This paper is organized as follows. In the next section we give some notation. In section 3 we present our PTAS for 

the metric WSDOCT. Subsections 3.1, 3.2 and 3.3, discuss over the proofs to achieve our result. In section 4 we show the 
2-approximation for WSDOCT. Finally, in section 5 the conclusions and future work are given.

2. Definitions

Given a graph G we denote the set of its nodes as V G and the set of its edges as EG (when G is implicit by context we 
use V and E instead of V G and EG ).

Definition 1. Given a graph G with non-negative lengths associated to its edges, the length of a path in G is defined as the 
sum of the lengths of its edges (a path with no edges has length zero). The distance between node x and node y in H
sub-graph of G is the length of a path with minimum length between x and y in H and is denoted by d(H, x, y).

Now we can define WSDOCT as:

Problem 1. WSDOCT: Weighted Source Destination Communication Spanning Tree problem
Input: A graph G, a non-negative length function over the edges of G, ω : E → Q+ , a non-negative sending requirement function 

over the nodes of G, σ : V → Q+ and a non-negative receiving requirement function over the nodes of G, ρ : V → Q+ .
Output: A spanning tree T of G which minimizes the total routing cost:
c(T , σ , ρ) = 1

2

∑
u∈V

∑
v∈V (σ (u)ρ(v) + ρ(u)σ (v))d(T , u, v).

Definition 2. Given a graph G and a non-negative sending and receiving requirement functions over the nodes of G , σ :
V → Q+ and ρ : V →Q+ , we denote σ(G) = ∑

u∈V G
σ(u), ρ(G) = ∑

u∈V G
ρ(u) and n(G) = |V G |. When G is implicit by the 

context we use Rσ to denote σ(G), Rρ to denote ρ(G) and n to denote n(G).

3. PTAS for metric-WSDOCT

In this section we only consider the metric-WSDOCT(the metric case of WSDOCT), which is the particular case of WS-

DOCT where the graph G is complete and the length function over the edges satisfies the triangular inequality.
In order to approximate an optimal solution of metric-WSDOCT we introduce the concept of k-star1:

1 The definition of k-star used in this paper is the same used by [10,11,15–17], which is different from the usual definition of k-star in graph theory (a 
tree with k leaves linked to a single vertex of degree k).
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Definition 3. Given a graph G and a positive integer k, a k-star of G is a spanning tree of G with no more than k internal 
nodes (that is, at least n −k leaves). A core of a k-star T of G is a tree resulting by eliminating n −k leaves from T . A k-star 
may be defined by (τ , S), being τ its core and S = {

Su1 , · · · , Suk

}
, where Sui represents the set of leaves adjacent in the 

k-star to the node ui of τ (1 ≤ i ≤ k).

The idea of the PTAS is to select a fixed integer k > 0 depending on the desired approximation ratio and to iterate over 
all the possible sub-trees of the graph with k nodes. Then, for each sub-tree τ we approximate an optimal k-star with core 
τ . Finally, we select the k-star with minimum communication cost which will guarantee the approximation.

In order to approximate an optimal k-star with a given core τ we split the proof into three parts:

• First, we show how to obtain an optimal k-star with core τ if all the leaves (nodes out of τ ) have binary receiving 
requirement (i.e. r(u) ∈ {0,1} for all u ∈ V − Vτ ).

• Then, we show that when the leaves have integer receiving requirement (i.e. r(u) ∈N+) we can transform the problem 
to the case in which the receiving requirement of the leaves are binary.

• Finally, we show that for any receiving requirements on the leaves, there exists a reduction to integer receiving require-
ment on the leaves that guarantees some approximation.

This section is organized as follows. In subsection 3.1 we show how to obtain an optimal k-star with a given core τ when 
all the receiving requirements of the leaves are binary. In subsection 3.2 we show how to obtain an optimal k-star with a 
given core τ when the receiving requirements of the leaves are integers. In subsection 3.3 we show how to approximate an 
optimal k-star with core τ when the receiving requirements of the leaves are any rational. Finally, in subsection 3.4 we give 
the PTAS for metric-WSDOCT.

3.1. Optimal k-star with binary receiving requirement on leaves

Suppose we are given a sub-tree τ of G with k nodes and an instance of metric-WSDOCT where all the receiving 
requirements of the leaves are binary: ρ(u) ∈ {0,1} for each u ∈ V − Vτ . In this subsection we will show how to obtain an 
optimal k-star with core τ for such instance, by modeling the problem as a minimum flow problem.

First we introduce the notion of configuration of a k-star:

Definition 4. Given a k-star T = (τ , S) and a receiving requirement function ρ : V → Q+ such that ρ(u) ∈ {0,1} for each 
u ∈ V G−τ , a configuration of T is (τ , L∅, L+) where L∅ = {l∅u1

, ..., l∅uk
} and L+ = {l+u1

, ..., l+uk
} are two vectors of integers being 

l∅ui
= |S0

ui
| and l+ui

= |S1
ui

|, where S0
ui

is the set of nodes of Sui with receiving requirement equals to zero and S1
ui

is the set 
of nodes of Sui with receiving requirement equals to one (1 ≤ i ≤ k).

Observe that the number of possible configurations with core τ is O  
(
nk

)
which is polynomial in n. So, our proposal is 

to enumerate all possible configurations with core τ , finding an optimal k-star of each configuration, and finally select the 
best k-star among them.

We find an optimal k-star for metric-WSDOCT with a given configuration (τ , L∅, L+) where ρ : V G−τ → {0,1}, by reduc-
ing the problem to an uncapacitated minimum cost flow problem (UMCF).

Problem 2. UMCF - Uncapacitated Minimum Cost Flow problem
Input: A directed graph G, a cost function over the arcs ω : E →Q+ and a demand function over the nodes r : V → Z.
Output: An integer vector indexed by the arcs X = (xe)e∈E which minimizes c(X) = ∑

e∈E ω(e)xe and guarantees for each node 
u ∈ V :

∑
e∈δ+(u)xe − ∑

e∈δ−(u) xe = r(u),

where e ∈ δ+(w) and e ∈ δ−(v) iff e = 〈v, w〉 (∀e ∈ E, v, w ∈ V ).

Given an instance I = 〈G, σ ,ρ,ω,k〉 of metric-WSDOCT with configuration C = (τ , L∅, L+) where ρ : V G−τ → {0,1}, in 
order to reduce our problem to UMCF we define the set of nodes U∅ (U+) obtained by creating the node u∅ (u+) for 
each node u of τ . Then, we define the directed graph G ′ on the set of nodes V G−τ ∪ U∅ ∪ U+ , which is bipartite and the 
bi-partition is given by the nodes in V G−τ and outside this set. Also, we add an arc between each node of U∅ (U+) to each 
node of V G−τ in G ′ with receiving requirement zero (one). We associate, to each arc 〈u∅, v〉 (〈u+, v〉), a cost equivalent 
to the value of assigning v as adjacent of u in a k-star with the given configuration. In order to calculate that cost, we 
have to consider the cost of routing the sending requirement of v to all nodes of τ assuming that each node w ∈ Vτ

receives (l+w + ρ(w)) times the value σ(v) (considering the transmission to the node w and the leaves adjacent to it that 
have receiving requirement one); also, when v has receiving requirement one, we must add the cost of routing the sending 
requirement of the entire graph (Rσ − σ(v)) to node v , which will pass by node u. Finally we set the demands to ensure 
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Fig. 1. Given an instance of WSDOCT with binary receiving requirement on the leaves and a configuration (τ , L∅, L+). First, we create a partition with the 
nodes (ui)∅ and (ui)+ where ui ∈ τ and 1 ≤ i ≤ k. We also associate to each node (ui)∅ a demand with value −l∅ui

and to each node (ui)+ a demand 
with value −l+ui

. Then we create a second partition with the nodes v j ∈ G − τ (1 ≤ j ≤ n − k), associating to each one of those nodes a demand with 
value 1. Finally, we add an arc from each node (ui)∅ to each node in the second partition with ρ = 0 and also from each node (ui)+ to each node in the 
second partition with ρ = 1. We set a cost to each arc 〈u∅, v〉 (〈u+, v〉) equivalent to the value of assigning v as adjacent of u in a k-star with the given 
configuration.

assignment between nodes out of V G−τ and nodes in V G−τ . The following proposition gives us that reduction and Fig. 1
illustrates it.

Proposition 1. Given an instance I = 〈G, σ ,ρ,ω,k〉 of the optimum k-star for metric-WSDOCT and a configuration C = (τ , L∅, L+)

where ρ : V G−τ → {0,1}, the problem of finding an optimal k-star with configuration C for I can be reduced in polynomial time to 
the UMCF with instance I ′ = 〈

G ′,ω′, r′〉, where:

• V G ′ = V G−τ ∪ {u∅, u+ : u ∈ Vτ };
• EG ′ = {(u∅, v)|u ∈ Vτ ∧ v ∈ V G−τ ∧ ρ(v) = 0}

∪ {(u+, v)|u ∈ Vτ ∧ v ∈ V G−τ ∧ ρ(v) = 1};
• ω′(u∅, v) = ∑

w∈Vτ
σ (v) (d(τ , u, w) + ω(u, v))

(
l+w + ρ(w)

)
;

ω′(u+, v) = (Rσ − 2σ(v))ω(u, v)

+∑
w∈Vτ

σ (v) (d(τ , u, w) + ω(u, v))
(
l+w + ρ(w)

) ;
• if u ∈ V G−τ then r′(u) = 1, otherwise r′(u∅) = −l∅u and r′(u+) = −l+u .

Proof. Since demands are integer we know that in any feasible solution the values xe will be either zero or one. Moreover, 
exactly n − k arcs of G ′ will have value 1. This guarantees that every feasible solution S ′ of the flow problem represents 
an assignment of leaves of V G−τ to be adjacent to nodes in τ for a k-star T of G with configuration (τ , L∅, L+). Also, it 
is easy to see that any k-star T with configuration (τ , L∅, L+) provides a feasible solution to the flow problem: for each 
u ∈ τ connect u∅ to the l∅u leaves with receiving requirement zero adjacent to u in T and connect u+ to the l+u leaves with 
receiving requirement one adjacent to u in T .

Let S ′ be a solution for UMCF with instance I ′ obtained by the transformation described in Proposition 1 over an instance 
I of the optimum k-star for metric-WSDOCT. Let T be the associated k-star to S ′ , V∅ the set of nodes of V G−τ with receiving 
requirement zero and V+ the set of nodes of V G−τ with receiving requirement one. Also, for v ∈ V∅ (v ∈ V+), p(v) denotes 
the node in τ such that p(v)∅ (p(v)+) is adjacent to v in S ′ , then:
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c(S ′) =
∑

u∈V G−τ

ω′(p(u), u)

=
∑

u∈V G−τ

∑
v∈Vτ

σ (u) (d(τ , p(u), v) + ω(p(u), u))
(
l+v + ρ(v)

)

+
∑

u∈{v|v∈V G−τ ∧ρ(v)=1}
(Rσ − 2σ(u))ω(p(u), u).

Observe that for every leaf u ∈ V G−τ and node v of τ :

d(T , u, v) = d(τ , p(u), v) + ω(p(u), u).

Also, Rσ = ∑
v∈V G

σ(v) and for every leaf u ∈ V G−τ , if ρ(u) �= 1, then ρ(u) = 0. Then:

c(S ′) =
∑

u∈V G−τ

∑
v∈Vτ

σ (u)d(T , u, v)
(
l+v + ρ(v)

)

+
∑

u∈V G−τ

⎛
⎝ ∑

v∈V G

σ(v) − 2σ(u)

⎞
⎠ρ(u)ω(p(u), u)

=
∑

u∈V G−τ

∑
v∈Vτ

σ (u)ρ(v)d(T , u, v) +
∑

u∈V G−τ

∑
v∈Vτ

σ (u)d(T , u, v)l+v

+
∑

u∈V G−τ

∑
v∈V G

σ(v)ρ(u)ω(p(u), u) +
∑

u∈V G−τ

−2σ(u)ρ(u)ω(p(u), u)

=
∑

u∈V G−τ

∑
v∈Vτ

σ (u)ρ(v)d(T , u, v)

+
∑

u∈V G−τ

⎛
⎝∑

v∈τ

σ (u)d(T , u, v)l+v +
∑

v∈V G−τ

σ (u)ρ(v)ω(p(v), v)

⎞
⎠

+
∑

u∈V G−τ

∑
v∈Vτ

σ (v)ρ(u)ω(p(u), u) +
∑

u∈V G−τ

−2σ(u)ρ(u)ω(p(u), u).

Notice that for every pair of nodes u, v of V G−τ :

d(T , u, v) = d(T , u, p(v)) + ω(p(v), v).

Then:

c(S ′) =
∑

u∈V G−τ

∑
v∈Vτ

σ (u)ρ(v)d(T , u, v)

+
∑

u∈V G−τ

∑
v∈V G−τ

σ (u)ρ(v)d(T , u, v) +
∑

u∈V G−τ

2σ(u)ρ(u)ω(p(u), u)

+
∑

u∈V G−τ

∑
v∈Vτ

σ (v)ρ(u)ω(p(u), u) +
∑

u∈V G−τ

−2σ(u)ρ(u)ω(p(u), u)

=
∑

u∈V G−τ

∑
v∈V G

σ(u)ρ(v)d(T , u, v) +
∑

u∈V G−τ

∑
v∈Vτ

σ (v)ρ(u)ω(p(u), u).

By considering the sending requirement from each node of τ :∑
u∈Vτ

∑
v∈Vτ

σ (u)d(T , u, v)(l+v + ρ(v)),

we get:

c(S ′) =
∑

u∈V G−τ

∑
v∈V G

σ(u)ρ(v)d(T , u, v) +
∑

u∈V G−τ

∑
v∈Vτ

σ (v)ρ(u)ω(p(u), u)

+
∑ ∑

σ(u)d(T , u, v)(l+v + ρ(v))
u∈Vτ v∈Vτ
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−
∑

u∈Vτ

∑
v∈Vτ

σ (u)d(T , u, v)(l+v + ρ(v))

=
∑

u∈V G

∑
v∈V G

σ(u)ρ(v)d(T , u, v) −
∑

u∈Vτ

∑
v∈Vτ

σ (u)d(T , u, v)(l+v + ρ(v))

= 1

2

∑
u∈V G

∑
v∈V G

(σ (u)ρ(v) + ρ(u)σ (v))d(T , u, v)

−
∑

u∈Vτ

∑
v∈Vτ

σ (u)d(T , u, v)(l+v + ρ(v))

= c(T ,σ ,ρ) −
∑

u∈Vτ

∑
v∈Vτ

σ (u)d(T , u, v)(l+v + ρ(v)).

Observe that:

∑
u∈Vτ

∑
v∈Vτ

σ (u)d(T , u, v)(l+v + ρ(v)),

is the same for every solution of metric-WSDOCT with instance I and configuration C . Then, an optimum of UMCF with 
instance I ′ is associated to an optimal k-star with configuration C of metric-WSDOCT with instance I .

In order to obtain I ′ from I the cost of each arc in G ′ must be calculated. This can be done in O ((n − k)k3). Defining 
the demands and the graph G ′ itself can be done in O ((n − k)k + n). Finally, obtaining the k-star T associated to a solution 
S ′ can be done in O (n − k), while the complexity of calculating c(T , σ , ρ) would be O (k3). So, the reduction above can be 
done in O (nk3). �

It is well known that UMCF can be solved in O (n log(n)(nk +n log(n))) = O (n2 log2(n)) (e.g. [9]). Then, finding an optimal 
k-star for metric-WSDOCT with fixed k can be done efficiently.

Lemma 1. Given τ , if ρ(u) ∈ {0,1} for all u ∈ V − Vτ , then the optimum k-star with core τ for metric-WSDOCT can be solved in
O  

(
nk+2 log2(n)

)
time.

3.2. Optimal k-star with integer receiving requirement on leaves

In this subsection we consider there are given a sub-tree τ of G with k nodes and an instance of metric-WSDOCT

where ρ(u) ∈ N+ for each u ∈ V − Vτ , and we show how to obtain an optimal k-star with core τ for metric-WSDOCT in 
O  

((
n + Rρ

)k+2
log2 (

n + Rρ

))
time. The proposal is to transform the given instance of metric-WSDOCT into an instance 

where all the leaves have binary receiving requirement. In order to do that, we will split each leaf u with receiving require-
ment greater than 1 (ρ(u) > 1) into ρ(u) leaves with receiving requirement equals 1 and adjust the sending requirement 
and edge-lengths for those new leaves.

Let denote by V>1 the set of leaves (nodes in V − Vτ ) with receiving requirement greater than 1. Also, define graph G ′ , 
sending requirement function σ ′ , receiving requirement function ρ ′ and length function over the edges ω′ as follows:

• For each u ∈ V>1 and i ∈ {1, · · · ,ρ(u)}, add node ui to V G ′ where:
– σ ′(ui) = σ(u)

ρ(u)
, ρ ′(ui) = 1 and

– ω′(ui, v) =
(
σ(u)

(
Rρ−ρ(u)

)+ρ(u)(Rσ −σ(u))
)

ρ(u)
(

σ(u)
ρ(u)

(
Rρ−1

)+Rσ − σ(u)
ρ(u)

) ω(u, v) (v ∈ Vτ ).

• The rest of the nodes (those in V − V>1) are added to V G ′ with the same sending and receiving requirement values. 
Also, the rest of the edges have the same length function.

Notice that the transformation above guarantees:

∑
u∈V G′

σ(u) =
∑

u∈V G

σ(u) = Rσ , and
∑

u∈V G′
ρ(u) =

∑
u∈V G

ρ(u) = Rρ.

Also, an optimal k-star X ′ with core τ for instance 
〈
G ′, σ ′,ρ ′,ω′〉 satisfies that for every node u ∈ V>1 all the nodes ui

(i ∈ {1, · · · ,ρ(u)}) are adjacent to the same node of τ in X ′ . In order to prove that, suppose there exist two nodes u1 and 
u2 obtained from some u ∈ V>1 such that u1 is adjacent to v1 ∈ Vτ in X ′ and u2 is adjacent to v2 ∈ Vτ , with v1 �= v2. Then 
the communication cost on X ′ results:
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c(X ′,σ ′,ρ ′) =
∑

u,v∈V G′−{u1,u2}
d(X ′, u, v)

(
σ ′(u)ρ ′(v) + ρ ′(u)σ ′(v)

)

+
∑

u∈V G′−{u1,u2}
d(X ′, u1, u)

(
σ ′(u1)ρ

′(u) + σ ′(u)
)

+
∑

u∈V G′−{u1,u2}
d(X ′, u1, u)

(
σ ′(u2)ρ

′(u) + σ ′(u)
)

+ (
ω(u1, v1) + ω(u2, v2) + d(X ′, u1, u2)

) (
σ ′(u1) + σ ′(u2)

)
.

Without loss of generality suppose:∑
u∈V G′−{u1,u2}

d(X ′, u1, u)
(
σ ′(u1)ρ

′(u) + σ ′(u)
) + ω(u1, v1)

(
σ ′(u1) + σ ′(u2)

)

≤
∑

u∈V G′−{u1,u2}
d(X ′, u2, u)

(
σ ′(u2)ρ

′(u) + σ ′(u)
) + ω(u2, v2)

(
σ ′(u1) + σ ′(u2)

)
.

Denote by X∗ the k-star with core τ obtained by replacing the edge 〈u2, v2〉 by 〈u2, v1〉 in X ′ , then:

c(X∗,σ ′,ρ ′) =
∑

u,v∈V G′−{u1,u2}
d(X ′, u, v)

(
σ ′(u)ρ ′(v) + ρ ′(u)σ ′(v)

)

+2
∑

u∈V G′−{u1,u2}
d(X ′, u1, u)

(
σ ′(u1)ρ

′(u) + σ ′(u)
)

+2 (ω(u1, v1))
(
σ ′(u1) + σ ′(u2)

)
≤ c(X ′,σ ′,ρ ′) + d(X ′, v1, v2)

(
σ ′(u1) + σ ′(u2)

)
< c(X ′,σ ′,ρ ′).

Arriving in a contradiction because X ′ is optimal. Since an optimal k-star X ′ with core τ for instance 
〈
G ′, σ ′,ρ ′,ω′〉

satisfies that for every node u ∈ V>1 all the nodes ui (i ∈ {1, · · · ,ρ(u)}) are adjacent to the same node of v ∈ Vτ in X ′ , 
then replacing in X ′ all the nodes ui (i ∈ {1, · · · ,ρ(u)}) by u we obtain a k-star X with core τ which is a solution for 
metric-WSDOCT and instance 〈G, σ ,ρ,ω〉. Also, it is easy to see that for every k-star with core τ for 〈G, σ ,ρ,ω〉, there 
exists a k-star with core τ for 

〈
G ′, σ ′,ρ ′,ω′〉 that is obtained by replacing each u ∈ V>1 by the nodes ui (i ∈ {1, · · · ,ρ(u)}).

Let X be a k-star with core τ for instance 〈G, σ ,ρ,ω〉 and X ′ the associated k-star with core τ and instance 〈
G ′, σ ′,ρ ′,ω′〉. Also, denote by pT (u) the node in τ adjacent to a leaf u in some k-star of core τ . Then:

c(X ′,σ ′,ρ ′) − c(X,σ ,ρ)

=
∑

u∈V>1

ρ(u)∑
i=1

ω′(ui, p X ′(ui))
((

Rσ − σ ′(u)
)
ρ ′(u) + σ ′(u)

(
Rρ − ρ ′(u)

))

−
∑

u∈V>1

ω(u, p X (u))
(
(Rσ − σ(u))ρ(u) + σ(u)

(
Rρ − ρ(u)

))

=
∑

u∈V>1

ρ(u)ω′(u, p X (u))

(
Rσ − σ(u)

ρ(u)
+ σ(u)

ρ(u)

(
Rρ − 1

))

−
∑

u∈V>1

ω(u, p X (u))
(
(Rσ − σ(u))ρ(u) + σ(u)

(
Rρ − ρ(u)

))

= 0.

Implying that X and X ′ have same communication cost. Then, if X ′ is optimal, the k-star X obtained from X ′ is an 
optimal k-star with core τ for metric-WSDOCT with instance 〈G, σ ,ρ,ω〉.

In the previous subsection we show how to find in O  
(

nk+2 log2(n)
)

computational time, an optimal k-star with core τ
for metric-WSDOCT when ρ(u) ∈ {0,1} for all u ∈ V − Vτ which is the case of ρ ′ , where n(G ′) ≤ n + Rρ . Leading us to the 
following result.

Lemma 2. Given an instance I = 〈G, σ ,ρ,ω〉 for metric-WSDOCT and a sub-tree τ of G, such that for every u ∈ V − Vτ ρ(u) ∈ N, 
an optimal k-star (k = n(τ )) with core τ for metric-WSDOCT can be found in O  

((
n + Rρ

)k+2
log2 (

n + Rρ

))
time complexity.
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3.3. Approximation ratio of optimal k-star for metric-WSDOCT

In this subsection we consider an instance I of metric-WSDOCT, 0 < δ ≤ 1
2 and a sub-tree τ of G with k nodes. We will 

transform the given instance I into an instance I ′ where all receiving requirement of the leaves are integers, and we will 
show that an optimal k-star with core τ of I ′ is a (1 + 8δ)-approximation for some optimal special k-star X with core τ of 
I (if such X exists).

First we need to define the special k-star mentioned above, which is the δ-balanced k-star. This definition depends on 
the concept of δ-σρ-separator.

Definition 5. Given 0 < δ ≤ 1
2 , a spanning tree T of a graph G and two non-negative functions σ and ρ of sending and 

receiving requirements over the set of nodes V , a sub-tree S of T is a δ-σρ-separator of T if every component B of T − S , 
satisfies σ(B) ≤ δRρ and ρ(B) ≤ δRσ .

Definition 6. Given 0 < δ ≤ 1
2 , a k-star T of a graph G and two non-negative functions σ and ρ of sending and receiving 

requirements over the set of nodes V . We say, that T is a δ-balanced k-star if its core τ is a minimal δ-σρ-separator of T .

Our goal is to approximate an optimal δ-balanced k-star with core τ . In order to achieve that, we show how to transform 
any instance of metric-WSDOCT to an instance in which every node out of τ have integer receiving requirement. The idea 
is to identify a threshold such that every leaf u with receiving requirement lower than the threshold gets ρ(u) = 0. Then, 
we modify the new receiving requirement to guarantee that each leaf gets an integer receiving requirement and the sum of 
them is a value that depends on n and δ.

Denote by V L = V − Vτ = {
u1, · · · , un−k

}
, the set of leaves to be added to τ in order to build a solution, and consider 

a sorting over the elements of V L that if i < j then ρ(ui) ≤ ρ(u j) for all i, j ∈ {1, · · · ,n − k}. Also, let m be the maximum 
value between 1 and n − k, such that 

∑m
i=1 ρ(u) ≤ δ2 Rρ , and consider V 0

L = {u1, · · · , um}. Then, define a new receiving 
requirement function ρ ′ , such that ρ ′(u) = 0 if u ∈ V 0

L , otherwise ρ ′(u) = ρ(u).
Consider a value μ such that if V L − V 0

L = ∅ then μ = 1, otherwise let μ be the minimal value of ρ ′ on the set V L − V 0
L , 

and define ρ ′′ a new receiving requirement function where ρ ′′(u) =
⌊

ρ ′(u)
δμ

⌋
if u ∈ V L − V 0

L , otherwise ρ ′′(u) = ρ ′(u)
δμ . Observe 

that for every node u, 1
δμρ ′(u) ≥ ρ ′′(u) and (1 + 2δ)ρ ′′(u) ≥ 1

δμρ ′(u). Then, for any k-star T with core τ :

1

δμ(1 + 2δ)
c(T ,σ ,ρ ′) ≤ c(T ,σ ,ρ ′′) ≤ 1

δμ
c(T ,σ ,ρ ′).

Let X ′′ be an optimal solution of metric-WSDOCT with requirement function ρ ′′ , then, for any k-star T with core τ :

1

δμ(1 + 2δ)
c(X ′′,σ ,ρ ′) ≤ c(X ′′,σ ,ρ ′′) ≤ c(T ,σ ,ρ ′′) ≤ 1

δμ
c(T ,σ ,ρ ′).

So, c(X ′′, σ , ρ ′) ≤ (1 + 2δ)c(T , σ , ρ ′), for any k-star T with core τ .
Now we find an upper bound for the communication cost of a k-star. For any k-star T with core τ :

c(T ,σ ,ρ) = c(T ,σ ,ρ ′) +
m∑

i=1

ρ(ui)
∑
v∈V

d(T , ui, v)σ (v).

Also, for every i ∈ {1, · · · ,m}, ui is a leaf of T and:

d(T , ui, v) = d(T , ui, pT (ui)) + d(T , pT (ui), v),

then:

c(T ,σ ,ρ) = c(T ,σ ,ρ ′)

+
m∑

i=1

ρ(ui)
∑

v∈V 0
L

(d(T , ui, pT (ui)) + d(T , pT (v), v))σ (v)

+
m∑

i=1

ρ(ui)
∑

v∈V 0
L

d(T , pT (ui), pT (v))σ (v)

+
m∑

i=1

ρ(ui)
∑

v∈V −V 0

(d(T , ui, pT (ui)) + d(T , pT (ui), v))σ (v).
L
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Suppose X is an optimal δ-balanced k-star with core τ and requirement function ρ . Denote by ω(τ) the sum of all the 
edge lengths in τ , since the graph is metric, for every u ∈ V 0

L ,

d(T , u, pT (u)) ≤ d(X, u, p X (u)) + d(τ , pT (u), p X (u)) ≤ d(X, u, p X (u)) + ω(τ).

Then:

c(T ,σ ,ρ) ≤ c(T ,σ ,ρ ′) +
m∑

i=1

3ρ(ui)Rσ ω(τ )

+
m∑

i=1

ρ(ui)
∑

v∈V 0
L

(d(X, ui, p X (ui)) + d(X, p X (v), v))σ (v)

+
m∑

i=1

ρ(ui)
∑

v∈V −V 0
L

(d(X, ui, p X (ui)) + d(X, p X (ui), v))σ (v).

Since c(X ′′, σ , ρ ′) ≤ (1 + 2δ) c(X, σ , ρ ′), by using in the above equation X ′′ instead of T , we get:

c(X ′′,σ ,ρ) ≤ (1 + 2δ) c(X,σ ,ρ) + 3Rσω(τ )

m∑
i=1

ρ(ui)

≤ (1 + 2δ) c(X,σ ,ρ) + 3δ2 Rσ Rρω(τ ).

Now we analyze the value of 3δ2 Rσ Rρω(τ ). In order to do that, the following proposition gives us a lower bound for 
the communication requirement passing over any edge of τ in X .

Proposition 2. Given an optimal δ-balanced k-star X with core τ and an edge e ∈ Eτ , the communication requirement passing over e
in X is at least δ2 Rσ Rρ .

Proof. Let Xu and Xv be the sub-trees of X after removing edge e, then the communication requirement passing over e in 
X is:

σ(Xu)ρ(Xv) + ρ(Xu)σ (Xv) = σ(Xu)
(

Rρ − ρ(Xu)
) + ρ(Xu) (Rσ − σ(Xu)) .

Since X is a δ-balanced k-star and τ is minimal, then:

σ(Xu) > δRσ or ρ(Xu) > δRρ and

Rσ − σ(Xu) > δRσ or Rρ − ρ(Xu) > δRρ.

Without loss of generality suppose σ(Xu) > δRσ . Then, we analyze two possibilities:

• If Rσ − σ(Xu) ≤ δRσ , then Rρ − ρ(Xu) > δRρ, σ(Xu) ≥ Rσ − δRσ ≥ Rσ
2 , and the communication requirement passing 

over e in X is at least:

Rσ

2
δRρ + ρ(Xu) (Rσ − σ(Xu)) ≥ δ

2
Rσ Rρ.

• Otherwise, the communication requirement passing over e in X is at least:

δRσ

(
Rρ − ρ(Xu)

) + ρ(Xu) (δRσ ) = δRσ Rρ ≥ δ

2
Rσ Rρ. �

Proposition 2 allows us to obtain:

c(X,σ ,ρ) ≥
∑
e∈Eτ

δ

2
Rσ Rρω(e) ≥ δ

2
Rσ Rρω(τ ).

Then:

c(X ′′,σ ,ρ) ≤ (1 + 2δ) c(X,σ ,ρ) + 3δ (2c(X,σ ,ρ)) ≤ (1 + 8δ) c(X,σ ,ρ).

The previous subsections showed us how to find X ′′ in computational time O  
(
(n + Rr′′ )k+2 log2 (n + Rr′′ )

)
. Since δ2 Rρ ≤

(m + 1)μ ≤ nμ and Rr′′ ≤ Rρ

μ , then Rr′′ ≤ nRρ
2 = n

2 .

δ Rρ δ
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Lemma 3. Given 0 < δ ≤ 1
2 and τ a sub-tree of G with k nodes, if there exists a δ-balanced k-star of G with core τ , then 

there exists an (1 + 8δ)-approximation for the optimum δ-balanced k-star with core τ for metric-WSDOCT, that can be found in 

O  
((

n + n
δ2

)k+2
log2

(
n + n

δ2

))
time complexity.

3.4. PTAS

In order to obtain our PTAS, we use a result of [11], in which it was proved that for any constant 0 < δ ≤ 1
2 and any 

instance of metric-WSDOCT, an optimal δ-balanced k-star with k =
(

3

(⌈
6
δ

⌉2 − 11
⌈

6
δ

⌉
+ 1

))
is a ( 1

1−δ
)-approximation of 

the optimum value, but no algorithm to find such approximation was given.
Then, given an instance of metric-WSDOCT and 0 < δ ≤ 1

2 . Our algorithm proposal is to enumerate over all possible 

sub-trees τ of G that can be core of a k-star, with k =
(

3

(⌈
6
δ

⌉2 − 11
⌈

6
δ

⌉
+ 1

))
. There are O (kk) possible trees over 

k nodes and 
(

n
k

)
= O (nk) possible ways of selecting k nodes among the n nodes of G , so the total of possibilities to 

enumerate is O  
(
kknk

) = O  
(
nk

)
.

As shown in the previous subsections, for each enumerated τ we find in O  
((

n + n
δ2

)k+2
log2

(
n + n

δ2

))
time, an (1 +

8δ)-approximation to an optimal δ-balanced k-star with core τ . Then, by selecting the minimum communication cost k-star 
among all of them, we obtain a ( 1+8δ

1−δ
)-approximation for WSDOCT.

Theorem 1. There exists a PTAS for metric-WSDOCT such that, for any constant 0 < δ ≤ 1
2 a 

(
1 + 9δ

1−δ

)
-approximation can be found 

with time complexity O  
(

nk
(

n + n
δ2

)k+2
log2

(
n + n

δ2

))
, where k =

(
3

(⌈
6
δ

⌉2 − 11
⌈

6
δ

⌉
+ 1

))
.

4. 2-Approximation for WSDOCT

Theoretically the PTAS shown in the previous section represents a good step forward on the study of the metric-WSDOCT, 
but in practice the time complexity is not feasible. Also, the above discussion does not bring any new light on the com-
plexity of the general WSDOCT. For these reasons, in this section we generalize the result in [15] for SROCT and give a 
2-approximation algorithm not only for the metric case but also for the general case of WSDOCT, with time complexity 
O (n2 log n + mn), where m is the number of edges of G (m = |EG |).

The algorithm is simple. For each node u of G calculate a shortest-path spanning tree rooted at u and select the mini-
mum communication tree among them. A shortest-path spanning tree rooted at a node u, is a spanning tree T of G , where 
the distance in T from u to each node v of G is equal to the minimum distance from u to v in G (i.e. d(T , u, v) = d(G, u, v)

for all v ∈ V G ). For example, Dijkstra’s algorithm for minimum distances from a source find such a tree [4]. Since each tree 
can be calculated in O (n log n + m), and we calculate O (n) trees, the time complexity of the algorithm is (n2 log n + mn).

Now we prove that the above algorithm guarantees a 2-approximation of the optimum value. Before that we need to 
introduce the concepts of σ -centroid and ρ-centroid.

Definition 7. Given an instance of WSDOCT and a spanning tree T of G , a node u is an σ -centroid (ρ-centroid) of T if for 
each component C of T resulting after remove u from T , satisfies: σ(C) ≤ Rσ

2 (ρ(C) ≤ Rρ

2 ).

The idea of the proof is first to establish a lower bound on the communication cost of any spanning tree T of G using 
the path P between the σ -centroid and the ρ-centroid of T . Then, we demonstrate that the communication cost of any 
spanning tree T of G is at least a half of the minimum between a shortest-path spanning tree rooted at the σ -centroid of 
T and shortest-path spanning tree rooted at the ρ-centroid of T . Finally, we conclude the 2-approximation algorithm.

In order to simplify the notation, from now on we will use c(T ) to represent the communication cost c(T , σ , ρ) of any 
spanning tree T of G .

Lemma 4. Given an instance of WSDOCT and a spanning tree T of G. If P is the path in T between the σ -centroid and the ρ-centroid 
of T , then:

c(T ) ≥ 1

2

∑
u∈V G

(
Rρσ (u) + Rσ ρ(u)

)
d(T , u, P ) + 1

2
Rσ Rρω(P ).

Where, d(T , u, P ) denotes the distance in T from node u to the nearest node of P , and ω(P ) is the sum over the lengths of the edges 
in P .
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xσ

u1

u2

u3

xρ

v1

v2

v3 v4

v5

v6

v7 v8

v9

Fig. 2. Consider a tree T and the path (in T ) between the σ -centroid xσ and the ρ-centroid xρ . Notice that C P (v2) = C P (v3) = C P (v4) = {v2, v3, v4}
and C P (v5) = C P (v6) = {v5, v6}, while for the rest of the nodes in T , C P (u) = {u}. Also, observe that p(v1) = p(v2) = p(v3) = p(v4) = p(xσ ) = xσ , 
p(v5) = p(v6) = p(u1) = u1, p(v7) = p(v8) = p(u2) = u2, p(u3) = u3 and p(v9) = p(xρ) = xρ .

Proof. Consider a spanning tree T of G:

c(T ) = 1

2

∑
u∈V G

∑
v∈V G

(σ (u)ρ(v) + ρ(u)σ (v))d(T , u, v)

=
∑

u∈V G

∑
v∈V G

σ(u)ρ(v)d(T , u, v).

Denote by T − P the graph resulting from removing the nodes and edges of P from T . Then, for each node u /∈ P define 
C P (u) as the set of nodes in the same component of u in T − P and for each node u ∈ P , C P (u) = {u}. Also, we define as 
p(u) the node of P with minimum distance to v in T , when u ∈ P , p(u) = u. Fig. 2 exemplifies these notations. Then:

c(T ) ≥
∑

u∈V G

∑
v /∈C P (u)

σ (u)ρ(v) (d(T , u, P ) + d(T , v, P ))

+
∑

u∈V G

∑
v∈V G

σ(u)ρ(v)d(P , p(u), p(v))

=
∑

u∈V G

∑
v /∈C P (u)

σ (u)ρ(v)d(T , u, P ) +
∑

u∈V G

∑
v /∈C P (u)

σ (u)ρ(v)d(T , v, P )

+
∑

u∈V G

∑
v∈V G

σ(u)ρ(v)d(P , p(u), p(v))

=
∑

u∈V G

σ(u)d(T , u, P )
∑

v /∈C P (u)

ρ(v) +
∑

u∈V G

ρ(u)d(T , u, P )
∑

v /∈C P (u)

σ (v)

+
∑

u∈V G

∑
v∈V G

σ(u)ρ(v)d(P , p(u), p(v)).

Notice that for each node u /∈ P we have:

σ(C P (u)) ≤ Rσ

2
and ρ(C P (u)) ≤ Rρ

2
,

and for each node u ∈ P d(T , u, P ) = 0. Then:

c(T ) ≥
∑

u∈V G

σ(u)d(T , u, P )
Rρ

2
+

∑
u∈V G

ρ(u)d(T , u, P )
Rσ

2

+
∑ ∑

σ(u)ρ(v)d(P , p(u), p(v)).
u∈V G v∈V G
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If we denote by P (T , u, v) the path in T between nodes u and v , then:

c(T ) ≥
∑

u∈V G

σ(u)d(T , u, P )
Rρ

2
+

∑
u∈V G

ρ(u)d(T , u, P )
Rσ

2

+
∑

u∈V G

∑
v∈V G

σ(u)ρ(v)
∑

e∈P (T ,u,v)∩P

ω(e)

= 1

2

∑
u∈V G

(
σ(u)Rρ + ρ(u)Rσ

)
d(T , u, P )

+
∑
e∈P

ω(e)
∑

u∈V G

∑
v∈{w|w∈V G∧e∈P (T ,u,w)}

σ(u)ρ(v).

For each edge e of T , denote Te1 and Te2, the sub-trees obtained after remove e from T . Then:

c(T ) ≥ 1

2

∑
u∈V G

(
σ(u)Rρ + ρ(u)Rσ

)
d(T , u, P )

+
∑
e∈P

ω(e) (σ (Te1)ρ(Te2) + ρ(Te1)σ (Te2)) .

For each edge e of P we have the σ -centroid in one of the sub-trees Te1 or Te2, and the ρ-centroid in the other 
sub-tree. Without loss of generality suppose the σ -centroid of T is in Te1, then the ρ-centroid is in Te2, and σ(Te1) ≥ Rσ

2

and ρ(Te2) ≥ Rρ

2 . Then:

c(T ) ≥ 1

2

∑
u∈V G

(
σ(u)Rρ + ρ(u)Rσ

)
d(T , u, P )

+
∑
e∈P

ω(e)
(
σ(Te1)ρ(Te2) + (

Rρ − ρ(Te2)
)
(Rσ − σ(Te1))

)

c(T ) ≥ 1

2

∑
u∈V G

(
σ(u)Rρ + ρ(u)Rσ

)
d(T , u, P )

+
∑
e∈P

ω(e)

(
Rσ Rρ

2
+ (2σ(Te1) − Rσ )ρ(Te2) +

(
Rσ

2
− σ(Te1)

)
Rρ

)

≥ 1

2

∑
u∈V G

(
σ(u)Rρ + ρ(u)Rσ

)
d(T , u, P )

+
∑
e∈P

ω(e)

(
Rσ Rρ

2
+ (2σ(Te1) − Rσ )

Rρ

2
+

(
Rσ

2
− σ(Te1)

)
Rρ

)

= 1

2

∑
u∈V G

(
σ(u)Rρ + ρ(u)Rσ

)
d(T , u, P ) +

∑
e∈P

ω(e)
Rσ Rρ

2

= 1

2

∑
u∈V G

(
σ(u)Rρ + ρ(u)Rσ

)
d(T , u, P ) + 1

2
Rσ Rρω(P ). �

The following lemma guarantees that for every spanning tree T there exists a node u such that the shortest-path span-
ning tree rooted at u has communication cost at must twice the communication cost of T .

Lemma 5. Given an instance of WSDOCT and a spanning tree T of G, there exists a node u such that any shortest-path spanning tree 
X rooted at u satisfies:

c(X) ≤ 2c(T ).

Proof. Notice that for any spanning tree T and every node x:

c(T ) = 1

2

∑ ∑
(σ (u)ρ(v) + ρ(u)σ (v))d(T , u, v)
u∈V G v∈V G
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≤ 1

2

∑
u∈V G

∑
v∈V G

(σ (u)ρ(v) + ρ(u)σ (v)) (d(T , u, x) + d(T , v, x))

c(T ) ≤ 1

2

∑
u∈V G

∑
v∈V G

(σ (u)ρ(v) + ρ(u)σ (v))d(T , u, x)

+1

2

∑
u∈V G

∑
v∈V G

(σ (u)ρ(v) + ρ(u)σ (v))d(T , v, x)

=
∑

u∈V G

∑
v∈V G

(σ (u)ρ(v) + ρ(u)σ (v))d(T , u, x)

=
∑

u∈V G

d(T , u, x)

⎛
⎝σ(u)

∑
v∈V G

ρ(v) + ρ(u)
∑

v∈V G

σ(v)

⎞
⎠

=
∑

u∈V G

(
σ(u)Rρ + ρ(u)Rσ

)
d(T , u, x).

Then, if we denote by Xσ a shortest-path spanning tree rooted at the σ -centroid xσ of T , by Xρ a shortest-path spanning 
tree rooted at the ρ-centroid xρ of T , and by P the path in T between this centroids xσ and xρ :

c(Xσ ) ≤
∑

u∈V G

(
σ(u)Rρ + ρ(u)Rσ

)
d(X, u, xσ )

≤
∑

u∈V G

(
σ(u)Rρ + ρ(u)Rσ

)
d(T , u, xσ )

=
∑

u∈V G

(
σ(u)Rρ + ρ(u)Rσ

)
(d(T , u, p(u)) + d(P , p(u), xσ )) .

Analogously:

c(Xρ) ≤
∑

u∈V G

(
σ(u)Rρ + ρ(u)Rσ

) (
d(T , u, p(u)) + d(P , p(u), xρ)

)
.

The minimum between two values is not greater than their average value, then:

min
{

c(Xσ ), c(Xρ)
}

≤ 1

2

∑
u∈V G

(
σ(u)Rρ + ρ(u)Rσ

)
(d(T , u, p(u)) + d(P , p(u), xσ ))

+1

2

∑
u∈V G

(
σ(u)Rρ + ρ(u)Rσ

) (
d(T , u, p(u)) + d(P , p(u), xρ)

)

min
{

c(Xσ ), c(Xρ)
} ≤ 1

2

∑
u∈V G

(
σ(u)Rρ + ρ(u)Rσ

)
(2d(T , u, p(u)) + ω(P ))

=
∑

u∈V G

(
σ(u)Rρ + ρ(u)Rσ

)
d(T , u, p(u))

+ω(P )

2

∑
u∈V G

(
σ(u)Rρ + ρ(u)Rσ

)

=
∑

u∈V G

(
σ(u)Rρ + ρ(u)Rσ

)
d(T , u, p(u)) + Rσ Rρω(P ).

By using the result of the Lemma 4:

min
{

c(Xσ ), c(Xρ)
} ≤ 2c(T ).

Then, for one of the nodes xσ or xρ in T , any shortest-path spanning tree rooted at it guarantees the result of the 
lemma. �



22 S.V. Ravelo, C.E. Ferreira / Theoretical Computer Science 771 (2019) 9–22
Suppose T ∗ is an optimal spanning tree for an instance of WSDOCT, by Lemma 5 there exists a node u such that any 
shortest-path spanning tree rooted at u is a 2-approximation for T ∗ . Then, obtaining a shortest-path spanning tree for each 
node of G and selecting a minimum among them, guarantees to find a 2-approximation for WSDOCT. Since we analyzed 
before, such algorithm has O (n2 log n + mn) time complexity.

Theorem 2. There exists a 2-approximation algorithm for WSDOCT with time complexity O (n2 log n + mn).

5. Conclusions

In this work we present a PTAS for metric-WSDOCT and also a 2-approximation for WSDOCT, both problems are NP-hard 
particular cases of OCT. The best previously known result for these problems was a O  (log(n))-approximation algorithm due 
to [12,17]. This result generalizes previous results for particular cases of the studied problems, these are the cases of MRCT,
PROCT and SROCT ([11,16,17]). Many questions remain open regarding OCT and related problems. One could improve the 
approximation ratio for WSDOCT or other particular case of OCT. One could obtain an inapproximability result for OCT and 
some of its particular cases. In future works we will attempt to answer these questions for some of these problems.
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