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1. Introduction

In this work we consider a particular case of the minimum communication spanning tree problem (OCT). The OCT was
introduced by Hu in 1974. The problem receives an undirected graph G = (V, E) with non-negative length w(e) associated
to each edge e € E and non-negative requirement v (u, v) between each pair of nodes u, v € V. The objective is to find a
spanning tree T of G which minimizes the total communication cost: C(T) = >, >,y ¥ (U, v)d(T, u, v), whered(H, x, y)
denotes the minimum distance between nodes x and y in the sub-graph H of G [3,9].

A particular case of OCT is the minimum routing cost spanning tree problem (MRCT), in which the requirement between
all pair of nodes is equal to one (¥ (u, v) = 1forallu, v € V). In [4] it was proved that MRCT is NP-hard (by a reduction
from the 3-exact cover problem (3-EC)). In [12] a PTAS for the MRCT was given. The authors presented a reduction from
the general to the metric case, which implies that MRCT with edge-lengths that satisfy the triangular inequality is also NP-
hard. Also, in [12] an O(log?(n))-approximation was given for OCT applying a result from [1] which was later improved to a
O(log(n))-approximation by [7].

In [10], the minimum product-requirement communication spanning tree problem (PROCT) and the minimum sum-
requirement communication spanning tree problem (SROCT) were introduced. In these problems each vertex u € V
has a non-negative routing weight r(u). For PROCT the requirement is defined as v (u, v) = %r(u)r(v), and for SROCT

Y(u,v) = %(r(u) + r(v)). Both problems are NP-hard. In [10] a 1.577-approximation algorithm for PROCT and a
2-approximation for SROCT are given.

The approximation ratio for PROCT was improved in [11] where a PTAS was given. A particular case of SROCT is the
weighted p-MRCT, where given an integer p, only p nodes of the graph may have a positive routing weight (i.e. the remaining
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nodes have zero weight). The particular case in which the p nodes have routing weight 1 is called p-MRCT. In [2] it was proved
that 2-MRCT is NP-hard, also proved in [8], where the authors gave PTASs for 2-MRCT and the metric case of weighted
2-MRCT.

Recently in [6] was introduced the weighted source destination communication spanning tree problem (WSDOCT). This
problem is the particular case of OCT where each vertex u € V has non-negative sending and receiving weights, rs(u) and
1. (1) respectively, and the requirement is defined as ¥ (u, v) = % (rs(w)ry (v) + r-(W)rs(v)). Observe that when r, (u) = 1 for
each u € V we have the SROCT problem and when r;(u) = r,(u) for each u € V we have the PROCT problem. So WSDOCT is
a generalization of both problems PROCT and SROCT. Also, in [6] PTASs where given for the metric cases of p-MRCT and fixed
parameter of p-WSDOCT, which is the particular case of WSDOCT where only p nodes may have positive sending weight.

To the best of our knowledge, there are no results improving the 2-approximation ratio for SROCT which is also the best
known ratio for the metric case of SROCT (denoted by m-SROCT). Observe that this problem is also NP-hard, since MRCT is
a particular case in which r(u) = 1forallu € V.

In this work we give a PTAS for m-SROCT improving the best previous known result for this problem. The idea of our
algorithm was inspired in the previous PTASs for related problems such as MRCT and PROCT. This paper is organized as
follows. In the next section we present some notation. In Section 3 we show how to obtain an optimal k-star for SROCT in
polynomial time for a fixed integer k. In Section 4 we present a PTAS for the m-SROCT. Finally, in Section 5 the conclusions
and future work are given.

2. Definitions

Unless specified we consider all graphs as undirected graphs. Given a graph G we denote the set of its nodes by V; and
the set of its edges by E¢ (when G is implicit by context we use V as V; and E as Eg).

Definition 2.1. Given a graph G with non-negative lengths associated to its edges, the length of a path in G is defined as
the sum of the lengths of its edges (a path with no edges has length zero). The distance between node x and node y in H
sub-graph of G is the length of a path with minimum length between x and y in H and is denoted by d(H, x, y).

Now we can define WSDOCT as:

Problem 2.1. WSDOCT—Weighted Source Destination Communication Spanning Tree problem

Input: (G, w, 15, 1). A graph G, a non-negative length function over the edges of G, w : E — Q., a non-negative sending
weight function over the nodes of G, r; : V — Q,, and a non-negative receiving weight function over the nodes of G,
V= Q4.

Output: A spanning tree T of G which minimizes the total weighted routing cost:

1
€M) =3 Y5 (5@ () + rrs)d(T, u, v)

ueV veV

= Z Z rs(ry (v)d(T, u, v).

ueV veV

Also we define the SROCT as:

Problem 2.2. SROCT—Sum-Requirement Communication Spanning Tree problem

Input: (G, w, 15). A graph G, a non-negative length function over the edges of G, w : E — Q. and a non-negative routing
weight function over the nodes of G, s : V — Q..

Output: A spanning tree T of G which minimizes the total weighted routing cost:

1
€Ty =3 )5 (5@ +r5w)d(T, u, v)

ueV veVv

=Y ) r@d(T,u,v).

ueV veVv
Observe that SROCT is the particular case of WSDOCT where r,(u) = 1foreachu € V.

Definition 2.2. Given a graph G, a non-negative sending weight function over the nodes of G, r; : V — Q. and a non-
negative receiving weight function over the nodes of G, r, : V. — Q., we denote r;(G) = Zuev rs(u), r,(G) = Zuev r-(u)
and n(G) = |V;|. When G is implicit by the context we use R to denote 15(G), R to denote r.(G) and n to denote n(G).
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This paper considers the m-SROCT and m-WSDOCT, the metric cases of SROCT and WSDOCT respectively, which are the
particular cases of the problems where the graph G is complete and the length function over the edges satisfies the triangular
inequality. In order to approximate an optimal solution of m-SROCT or m-WSDOCT we introduce the concept of a k-star':

Definition 2.3. Given a graph G and a positive integer k, a k-star of G is a spanning tree of G with no more than k internal
nodes (that is, at least n — k leaves). A core of a k-star T of G is a tree resulting by eliminating n — k leaves from T.

Note that a k-star T can be represented by (t, S), where 7 isacore of T and S = {S,,, ..., Sy} is a vector indexed by the
nodes in T where S, is the set of leaves adjacentin T tou; € V; (1 <i < k).
The problem of finding an optimal k-star for m-SROCT can be defined as:

Problem 2.3. Optimum k-star for m-SROCT

Input: (G, w, 15, k). A positive integer k and an instance of m-SROCT: a complete graph G, a non-negative length function
over the edges of G which satisfies the triangular inequality, w : E — Q. and a non-negative routing weight function over
the nodes of G, 15 : V — Q..

Output: A k-star T of G which minimizes the total weighted routing cost:

C(T) = ey 2pey sWA(T, u, v).

The next section shows an efficient algorithm to find an optimal k-star for m-SROCT.

3. Optimal k-star for m-SROCT
First we introduce the notion of configuration of a k-star:

Definition 3.1. Given a k-star T = (7, S) a configuration of T is (z, L) where L = {l,,, ..., I, } is a vector of integers being
L, = ISy (1 < i < k). A configuration (7, L) is over (k, G), where k is a positive integer and G is a graph, if 7 is a tree of G
with k nodes (thatis,z € Gand |V;| =k)and }_ ., L, =n—k.

In [12] it was observed that given a complete graph G and a fixed positive integer k, the number of configurations over
(k, G) is polynomial in n, resulting O(k*n?*~1). Then, given an instance (G, w, r, k) of the optimum k-star for m-SROCT, our
proposal is to enumerate all possible configurations over (k, G), finding an optimal k-star of each configuration, and finally
select the best k-star among them.

We find an optimal k-star for an instance (G, w, s, k) of the optimum k-star for m-SROCT and a configuration (z, L) over
(k, G), by reducing the problem to an uncapacitated minimum cost flow problem (UMCF).

Problem 3.1. UMCF—Uncapacitated Minimum Cost Flow problem

Input: (G, w, r). A directed graph G, a cost function over the arcs w : E — Q; and a demand function over the nodes
r:vV—=2.

Output: An integer vector indexed by the arcs X = (x.)eer Which minimizes C(X) = ), w(e)x. and guarantees for
eachnodeu € V:

Z Xe — Z Xe:r(u),

ecst(u) e€d™ (u)

wheree € §t(w)ande € §~ (v) iffe = (v, w) (Ve € E, v, w € V).

Proposition 3.1. Given an instance I = (G, w, 15, k) of the optimum k-star for m-SROCT and a configuration c = (t, L) over
(k, G), the problem of finding an optimal k-star with configuration c for I can be reduced in polynomial time to the UMCF with
instance I' = (G', ', '), where:

Ve = Ve,

E¢ ={u,vlue Ve Anvert)

o' (U, v) = Ryw(u, v) — 2r;(W)w(u, v) + Zwev, rs(u) (d(t, v, w) + w(u, v)) (I, + 1);

if u e Vg_, thenr’'(u) = —1, otherwise ' (1) = I,.

The graph G’ is a complete bipartite graph on the same node set V; of G. The bi-partition is given by the nodes in 7 and
outside this set. The cost of arc (u, v) is equivalent to the value of assigning u as adjacent of v in a k-star with the given
configuration. We have to consider the cost of sending the routing weight from u to all nodes of t assuming that each node
w € V, receives (I, + 1) times the value r5(u) (considering the transmission to the node w and the leaves adjacent to it);
also, we add the cost of sending the routing weight of the entire graph (R; — (1)) to node u, which must pass by node v.
Finally the demands 1’ are set to ensure assignment between nodes out of 7 and nodes in 7.

1 The definition of k-star used in this paper is the same used by [12,10,11], which is different from the usual definition of k-star in graph theory (a tree
with k leaves linked to a single vertex of degree k).
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Proof. Since demands are integers we know that in any feasible solution the values x, will be either zero or one. Moreover,
exactly n — k arcs of G’ will have value 1. This guarantees that every feasible solution S’ of the flow problem represents an
assignment of leaves outside 7 to be adjacent to nodes in 7 for a k-star T of G with configuration (z, L). Also, it is easy to see
that any k-star T with configuration (z, L) provides a feasible solution to the flow problem: connect node u € t to the [,
leaves adjacent to itin T.

Consider for each u € V;_,, that p(u) is the node in 7 assigned to u in a solution S’, then:

CS)= Y opw)

ueVg_r

csH= Y. (er(v)—rs(u)) o, pw) + Y Y @) d(T, pw), v) + o, p)))

ueVg_r \veVg ueVg_r veVy

+ ) D nde,p@,p)+ Y Y r@W (@@, pW) + o, pv)))

ueVg_r veVg_r—u ueVg_r veVg_r—u

CSH=Y_ Y rdr.uv)—- Y Y r@dr.uv)+ » (Z r(v) — rs(u)> o(u, p(u))

ueVr veVy ueVr veVy ueVg_; \veVg

+ Y Y (T, p@), v) — rd(r, p@), v) + Y > rsw) (d(x, p(u), v) + o(u, pu)))

ueVg_r veVy ueVg_r veVy
+ > D nd,pw,p)+ Y Y r@W (@, pW) + o, pv)))
ueVg_r veVg_r—u ueVg_; veVg_r—u
CS) =) rwdT uv) =Y Y r@dr,uv)— Y > r@dc,p),v)
ueVg veVg ueVr veVy ueVg_ veVy
CS)y=CM =Y > r@dr,uv) =YY r@d,u, vl
ueVy veVy veVr ueVy
CEHY=CM =Y > rd, u, vl +1)
ueVy veVy

where Zuevr Zvev, rs(v)d(z, u, v)(ly + 1) is the same for every solution with the same configuration. Then, an optimal
solution to UMCF with instance I is associated to an optimal k-star with configuration ¢ of m-SROCT with instance I.

In order to obtain I’ from I the cost of each arc in G’ must be calculated. This can be done in O((n — k)k?). Defining the
demands and the graph G itself can be done in O((n — k)k + n). Finally, obtaining the k-star T associated to a solution S’
can b3e done in O(n — k), while the complexity of calculating C(T) would be 0(k?). So, the reduction above can be done in
o(nk’). O

It is well known that UMCF can be solved in O(n log(n) (nk+nlog(n))) = 0(n? log?(n)) (e.g.[5]). Then, finding an optimal
k-star for m-SROCT with fixed k can be done efficiently.

Lemma 3.1. The optimum k-star for m-SROCT with fixed k can be solved in O(n**1 log?(n)).
4. PTAS for m-SROCT

In this section we prove that for0 < § < % there exists a k-star, with k depending on §, whichis a ﬁ—approximation of
m-WSDOCT and its particular case m-SROCT. For that, from now on, we will consider an instance I of m-WSDOCT. Remember
that n = n(G), Ry = rs(G) and R, = r:(G).

The idea of the proof is similar to those presented in [12,10,11]. Given 0 < § < % and a spanning tree T of G, we show
the existence of a set Y of internally disjoint paths whose union results in a sub-tree S of T, such that the communication
cost of each component B € T — S is at most a small fraction of the communication cost of T, which implies that most of
the communication cost of T passes by S. Also, we prove that the size of Y is limited by a function of § and we show how to
construct a k-star from Y, where the value of k depends on the size of Y. The communication cost of the k-star approximates
the communication cost of T by a factor of ﬁ

4.1. Notation

First, in order to present the results of this section, we need some notation, which generalizes the notation given
in[12,10,11]:

Definition 4.1. Given a spanning tree T of G, a set of edges H of T and a node u of T, VB(T, H, u) is the set of nodes in the
component of T — H containing the vertex u.
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Fig. 1. Consider the above spanning tree T of a graph G with sending weight equals one for all the nodes, where all the edges have unitary weights and P is
the path of T from node fp to Ip. Observe that VB(T, Ep, fp) is the set of nodes to the left of fp (including fp), VB(T, Ep, Ip) is the set of nodes to the right of Ip
(including Ip), VB(T, Ep, uy) is the set of nodes containing u, and the three nodes above it, VB(T, Ep, u3) = {us}, VB(T, Ep, uy) is the set of nodes containing

uy and the two nodes below it, and VB(T, Ep, us) is the set of nodes containing us and the node above it. Then, a,f =9, a,i = 5,04 =10, and thus oy =9

and 055 = 5.Also,R£(P) =r1s(VB(T, Ep, up)) x 1+15(VB(T, Ep, u3)) x 2+ 1s(VB(T, Ep, ug)) X 3+15(VB(T,Ep,u5)) x4 =4x1+1x2+3x3+2x4=23
and Ry(P) = rs(VB(T, Ep, u3)) x 4+ rs(VB(T, Ep, u3)) x 3+ ro(VB(T, Ep, ug)) X 2+ 15(VB(T, Ep, u5)) x 1=4x44+1x3+3 x2+2x 1= 27, which
yields Rs(p) = 23.

Definition 4.2. Givenaspanningtree T of G,apathP = uq, ..., u, of T, we denote by fp (or f, when P is clear by the context)
the first node of P and I (or I) the last node. We will use o to denote sending weights and p to denote receiving weights.
We define:

For the sending weights (Fig. 1 gives an example of these notation):

® Op, = 1Ty , Ep, and o, =Ty , Ep, , are the sum of sen Ing weig tsint ecomponento — LCp contammg
! (VB(T, Ep,f)) and o} (VB(T, Ep, 1)) h f sendi ights in th fT —E ini

the first node of P and the component containing the last node of P,

e o) =R — 1{ — a,i, is the sum of sending weights of all the nodes in the component of T — Ep containing an internal
node of P,

e R;(P,v) = Zf‘:}] s (VB(T, Ep, u;)) d(P, v, u;), is the sum over each internal node u; of P of sending weights in the
component of T — Ep containing u; times the distance in P from u; to node v,

° Ré(P) = Rs(P, f), RQ(P) = R,(P, I), represent the sums over each internal node u; of P of the sending weights in the
component of T — Ep containing u; times the distance in P from u; to the first node of P and to the last node of P,

o o = max{a{;, ol}, ofmin = min{a,’:, all,

e if o] = o™ then Ry(P) = R.(P), else R,(P) = R.(P).
Analogously, for the receiving weights:

o ph =1 (VB(T. Ep.f)), ph =17 (VB(T. Ep. 1)), pf = Rr — o — p}y
o R:(P,v) = Y17, i (VB(T, Ep, u)) d(P, v, u), RH(P) = R (P, f), R.(P) = R,(P, I),
o PP = max{p}. pp}, PP = min{p}, pp}.
o if p), = p™ then R, (P) = R}(P), else R, (P) = R.(P).
Now we introduce definitions for separators. A §-separator is a sub-tree of a spanning tree T of G, whose deletion gives
rise to components that are bounded (in the sending weight, receiving weight or both) by a factor § of the total value (Rs or
R;). Formally:

Definition 4.3. Given0 < § < % and a spanning tree T of G, a sub-tree S of T is a §-o -separator of T if every component B
of T — S, satisfies r;(B) < &R;. If every component Bof T — S, satisfies 1, (B) < R;, S is a §-p-separator of T. If both conditions
apply, S is a 6-0 p-separator of T.

Also, we define 6-o p-path and §-0 p-spine:
Definition 4.4. Given0 < § < % and a spanning tree T of G, a path P of T is a -0 p-path of T if o]} < 8% and pp' < SRG—'.

Definition 4.5. Given0 < § < % and a spanning tree T of G, asetY = {Py, P,, ..., P;} of §-0 p-paths internally-disjoint of
T is a §-0 p-spine, if S = U£:1 P; is a minimal 8-0 p-separator of T. ext (Y) denotes the endpoints set of all pathsin Y.

4.2. Approximation lemma

We prove that forany 0 < § < % any spanning tree T of G and any §-o p-spine Y of T, there exists a |ext (Y)|-star with
communication cost bounded by fTaC (T). This lemma, together with Lemma 4.3 is the basis of the main result of this work.
Lemma 4.1. Given 0 < § <

C(X) < 75C(M).

%, a spanning tree T of G and a §-o p-spine Y of T, there exists a |ext(Y)|-star X of G satisfying
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In order to conclude that lemma we prove some intermediary results. Given a §-o p-spine Y of a spanning tree T of G, we
replace each path of Y by the edge connecting its endpoints and select the best endpoint to be adjacent of the nodes in the
middle of the path. Since the paths of Y are §-o p-paths, the amount of communication requirement associated to its middle
nodes is at most a % part of the total requirement of the tree, also the graph is metric, so this modification increases the total
communication cost of T in at most a § fraction of its original value. Also, since the union of the paths in Y define a -0 p
separator S of T, the communication requirement of each component out of S is at must a § part of the total communication
requirement of T. Then, by removing the edges of each component out of S, and adding an edge between each node of the
component to the nearest endpoint of Y, we are able to obtain a k-star of G such that its communication cost approximates
the communication cost of T in a (1 + ¢€) factor, with € depending on § and k equal to the number of endpoints of Y. The
detailed proofs of these claims are given in next sections.

4.2.1. Upper bound for a k-star
First, given a §-o p-spine Y of a spanning tree of G, we show how to construct a |ext(Y)|-star of G and also, we give an
upper bound for the communication cost of the star.

Proposition 4.1. Given0 < § < % a spanning tree T of G and a -0 p-spine Y of T, there exists a |ext(Y)|-star X of G which
satisfies:

CX) < Z (o}:pl', + p{,o,i) ®(P) + min {Aﬂ(P), Alf(P)}
PeY

+R Z rsW)d(T, u, S) + R Z r(wd(T, u, S)

ueVg ueVg
where A,,;(P) = w(P) (07" oy + pp'oy’) + ReRE(P) + RRE(P), w, z € {f, I}, and S = (Jpy P-

Proof. We are given0 < § < % and a 8-o p-spine Y of a spanning tree T of G. Let S = Upcy P and define a |ext (Y)|-star X as
follows:

e The core 7 of X has the set of nodes that are endpoints of the paths in Y (ext(Y)). Two nodes u, v € t are adjacent in t if
in Y there exists a path with endpoints u and v. Since the paths in Y are internally disjoint and their union results in the
tree S, we conclude that 7 is a tree over ext(Y).

e For every node u € t and for every node v € VB(T, Es, u) — {u}, we also include an edge (u, v) in X.

e Observe that each node u € T not included in X by the previous steps belongs to V — VB(T, Es, fp) — VB(T, Es, Ip) for
some path P € Y. Then, we include edge (u, fp) in X if Ag(P) < Ay (P), otherwise we include edge (u, Ip) in X.

Formally X is defined:
[ ] VX = VG
e E. = {(u, v)|3P € Y with endpoints u and v}
e Ex =E, U{(u,v)|lueV, AveVB(,Es,u)}
U{(w,v)|AP €Y :v e V(T,P) Ag(P) =1 Au=fp}
U{w,v)|AP €Y :v e V(T,P) Ag(P) =0 Au=1Ip}
where, if Ag(P) < Ay (P) then g(P) = 1, otherwise g(P) = 0,and V(T, P) = Uuefo{f,l} VB(T, Ep, u).

Our construction guarantees X to be a |ext(Y)|-star of G with core 7. Then, we only need to analyze its associated
communication cost. For that, consider e; and e; the endpoints of edge e € Ex. Also, notice that we can calculate the
communication cost of a solution X by adding over each edge e € Ex the communication amount passing over e times
the length of e:

CX) =) 1 (VB(X,e.eN)r (VB(X, e.e)) wle) + > 1. (VBX, e, €)) 1 (VB(X, e, €)) w(e)

ecEx ecEy

CX) = Z rs (VB(X, e, ) 1r (VB(X, e, €))) w(e) + Z rs (VB(X, e, €)) 1+ (VB(X, e, &) w(e)

ecE; ecEr

+ Y. n(VB(X.e.e))r (VBX. e e)) w(e)

ecEx—Er

+ Z rs (VB(X, e, ) 1 (VB(X, e, &) w(e).

ecEx—E;

Observe that for every edge e € Ex —E; one of its endpoints is a leaf of X. If we denote by u the leaf endpoint of e € Ex —E-,
then the communication amount over e results:

(Rs - rs(u)) rr(u) + rs(u) (Rr - rr(u)) = Rsrr(u) + Rrrs(u) - 2r5rr(u)
< Ryry(w) + Ryrs(w).
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Since every node u € V;_. is a leaf endpoint of an edge e € Ex — E; and d(X, u, 7) = w(e), then:

CX) < Z rs (VB(X, e, ) 1r (VB(X, e, ))) w(e) + Z rs (VB(X, e, €)) 1 (VB(X, e, €)) w(e)

ecE; ecE;

+ Y Rers(w) + Ry (W) d(X, u, 7).

ueVg_¢
If we define as p(u) the node in 7 adjacent in X tou € Vx_,, thend(X, u, t) = d(X, u, p(u)) and:

C(X) < Y 1 (VB(X, e, e)) 1r (VB(X, e, ) w(e) + Y _ 15 (VB(X, e, ¢)) i (VB(X, e, €;)) w(e)

eckr eckE;

+ > Rers(u) + R (W) d(X, u, p(w)).

ueVg_r

If we define 9(T, S, u, v) as the sum of the lengths of the edges in S which also are in the path between u and v in T, then
d(T,u,v) =d(T,u,S)+d(T,S, u,v) and:

CX) < ) e (VB(X.e.e))rr (VBX. e.¢) w(e) + Y _ s (VB(X. e, e)) i (VB(X. e, €)) w(e)

ecEr ecEr

+ ; (Rys(1) + Ryt (w)) d(T, u, S) + ; (Re15(1) + Ryt () O(T, S, u, p(u)).
ueVg_r uevVe—r

Since V(T, P) = UueVp—{f,l} VB(T, Ep, u) and for every node u € Vg_,, p(u) € V; C Vs, then:

C(X) < Y r(VB(X,e,e)) 1, (VBX, e, ) w(e) + Y _ s (VB(X. e, ¢)) i (VB(X. e, &) w(e)

ecEy eckr
+ D R + R @) (T u, ) + ) > (Rere() + Rty () (T, S, 11, pw)).
ueVg_, PeY ueV(T,P)

Notice that for every P € Y if Ag(P) < Ay (P) then g(P) = 1 and for eachu € V(T, P), p(u) = fp, otherwise g(P) = 0
and for eachu € V(T, P), p(u) = Ip. Then:

C(X) < Y r(VB(X.ee)) 1, (VBX, e ) w(e) + Y _ s (VB(X. e, ¢)) r (VB(X. e, &) w(e)

ecEr eckr
+ Y Rers@) AR @) AT, w,S) + Y > (Rerg(u) + Ryt () g(PY(T, S, u, fi)
ueVg_, PeY ueV(T,P)

+ ) D Rers(u) + R () (1 — g(P)) 3(T, S, u, Ip)

PeY ueV(T,P)

C(X) < Y 1 (VB(X,e,e)) 1, (VBX, e, ) w(e) + Y _ s (VB(X. e, ¢)) i (VB(X. e, &) w(e)

ecE; eckr
+ Y Rers) + Ry ) d(T, 1, S) + R Y (g(PIR(P) + (1 — g(P)RI(P))
ueVg_r Pey
+R Y (gPIR.(P) + (1 — g(P)R(P)) .
PeYy

Now we analyze the edges in 7. For that consider e € E; and let P be the path with endpoints e; and e; in Y. Observe
that r, (VB(X, e, &) = o} + g(P)oll, 1 (VB(X.e,e)) = op + (1—gP))of, 1 (VB(X, e, €)) = oh + g(P)p and
rr (VB(X, e, ¢)) = pp + (1 — g(P)) pp. Then, by the triangular inequality:

rs (VB(X, e, &) 1+ (VB(X, e, €))) w(e) + 15 (VB(X, e, &)) r; (VB(X, e, €;)) w(e)
< (o +&P)ol") (oh + (1= g(P) pF) w(P) + (0 + (1 = g(P) of") (i} +8(P)}) 0(P)

= (olob+abeh) o®) + ((1 = gP)) (ol o + of o} ) +8(P) (0" ph + ah ) ) ().
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Finally, we obtain:

cx) = " (choh+aieh) oP) + Z(l &) (of pff + of' o} ) (P)

:fyzg(P) (o3 pp +crppp)w(P) + > Rers(u) + Rore(w) d(T, u, S)
+RI:E:ZY (g@R.(P)+ (1 - g(P))Ri(z)e)v)Gi R, ; (g(P)RL(P) + (1 — g(P)R.(P))
C(X) < Z (;}:pf, + p{,a,i) w(P) 4+ min { Ag(P), Alf(PE)}
:f;ar D rd(T, u,S) + R Y r(wd(T,u,S). O
uevVg uevg

4.2.2. Lower bound for the communication cost of a spanning tree

The previous proposition gave us an upper bounded k-star of G and now we show a lower bound for the communication
cost of a spanning tree of G. Observe that the combination of these results will help us to obtain a relation between the
communication cost of a spanning tree of G and the k-star we construct to approximate it.

Proposition 4.2. Given 0 < § < -, a spanning tree T of G and a §-o p-spine Y of T, then:

M) = Y (phol + shoh + om0l + oo 0(P) + Y (07 = o™ R (P) + (o™ — of™) Ry(P)
Pey PeY

+(1-8) (RS > rd(T,u, ) + R Y r(ud(T, u, 5))

ueVg ueVg

where S = (Jpey P

Proof. We are given0 < § < % and a §-o p-spine Y of a spanning tree T of G, being S = Up¢y P. Then, the communication
cost of T is:

C(T)y =Y rs (VB(T,e,eN)r (VB(T, e, €)) w(e) + Y _ rs (VB(T, e, €)) 1y (VB(T, e, €;)) (e)

ecEr ecEr

C(T) = Y rs(VB(T.e.e)) 1, (VB(T. e ) w(e) + Y 1, (VB(T. e, e))r: (VB(T, e, €)) we)

ecEg ecEg

+ > r(VB(T.e eN)r (VB(T. e e)) w(e)

ecEr—Eg

+ Z rs (VB(T, e, €)) - (VB(T, e, &)) w(e).

ecEr—Eg

Observe that for e € Er_s one of the endpoints, without loss of generality e;, satisfies: r, (VB(T, e, ej)) < SR, and
rs (VB(T, e, €))) < Ry, s0: 1, (VB(T, e, e;)) > (1 — 8)R, and ry (VB(T, e, &) > (1 — 8)n, then:

C(T) = Y rs (VB(T, e, e))r: (VB(T, e ) w(e) + Y _ 1 (VB(T. e, €)) 1y (VB(T. e, &) o(e)

ecEs ecks
+ > (1=8Rw (VB(T,e.ep)wle) + Y (1—8)Rr (VB(T, e, ¢)) (e)
ecEr—Es eckr—Es
C(T) =Y rs (VB(T, e, e))r: (VB(T, e, ) w(e) + Y rs (VB(T. e, €)) 1y (VB(T, e, &) (e)
ecks eckg
+(1-29) (Rs > r@d(T,u,S) + R Y rs(wd(T, u, 5)> .
ueVg ueVe

As every edge e € Es is in exactly one path of Y, we have:

C(T) = Y > r (VB(T, e,e)) 1, (VB(T, e, ¢)) (e)

PeY eeP

+ YD o (VB(T. e.en) 1 (VB(T, e, €)) w(e)

PeY eeP

+(1-=9) (Rs > r@d(T,u, ) + R Y r(wd(T, u, 5)) .

ueVg ueVg
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IfP e YandP = v ... vy, then:
> r(VB(T. e €)1y (VB(T, e, ) w(e) + Y s (VB(T, e, €)1, (VB(T, e, &) w(e)

espP ecP
h—1
= 15 (VB(T, (vy, viy1), v) 1 (VB(T, (v1, Vi41), Vit1)) @(vy, V1)
=1
h—1
+ 1s (VB(T, (v1, vig1), vie1)) 1r (VB(T, (v1, vig1), v1)) @(vr, Vigr).
=1

Notice that foreachl € {1,...,h — 1}:

!
1o (VB(T, (v1, vip1), v) = of + 15 (VB(T, Ep, v3)) .
k=2
h—1
r (VB(T, (v, vig1), vign)) = 0p + Y 1o (VB(T, Ep, 1)) .
k=I14+1

1
re (VB(T, (v, vi41), v)) = ph + Y 17 (VB(T, Ep, 13)) .
k=2

h—1
e (VB(T, (v, vis1), vign)) = pp+ ) 17 (VB(T, Ep, v)) -
k=1+1
Then:
Z rs (VB(T, e, e)) 1 (VB(T, e, ¢)) w(e) + Z rs (VB(T, e, €)) rr (VB(T, e, &) w(e)
eepP eeP

h

1 he1 / h-1
> (0,{/011: + PlfaUli) Zw(vl, 1) + o) Z < Z r: (VB(T, Ep, vk))) o(vy, Vig1)
[

=1 =1 \k=I+1

h—1 I h—1 / h—1
+o} (Z rv (VB(T, Ep, vk») CRIERSY ( > 1o (VB(T, Ep, vk») (v, Vi)

1=1 k=2 I=1 \k=Il+1

h—1 1
+ IO}’J Z (Z I's (VB(T, Ep, Uk))> a)(vl’ Ul+1)

=1 \k=2

= (ofoh + ofot) @(P) + G RL(P) + obRL(P) + ALRL(P) + phRL(P).
Since 07w (P) = R.(P) + R.(P) and pTw(P) = R}(P) + RL(P), then we conclude:
Z rs (VB(T, e, e) 1 (VB(T, e, ¢)) w(e) + Z rs (VB(T, e, €)) . (VB(T, e, &) w(e)

ecP eeP
min

< (o,f ph+ phob) @(P) + oI R (P) + o™ (oo (P) = Ri(P)) + pf™Ry(P) + pf™ (0" w(P) — Ry(P))

= (olfp}; + p,{cr,ﬁ + oM pm 4 p,‘,“i"a,'f) w(P) + (a,i“ax — a,i“i“) R/ (P) + (,0,2“ax — p,’,“i“) Rs(P).
Finally, we obtain the lower bound:

C) = Y (shot + rpoh -+ AF"of + 07" o) 0(P) £ 3 (o™ — o) Ry (P) + (7™ ~ ") Rs(P)
Pey Pey

+(1-9) (Rs D r@d(T,u,8) + R Y rs(wd(T, u, 5)) . O

ueVg ueVg

4.2.3. Property of 5-0 p-paths
In order to obtain a relation between the upper bound for a k-star and the lower bound for a spanning tree we need the

following property over each §-o p-path.
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Proposition 4.3. Given0 < § < % a §-o p-path P of a -0 p-spine of a spanning tree T of G, then:

(R + R = of" = o) (hoh + abeh) 0(P) + (o + p}) (0(P) (oof + ol o) + RRL(P) + RRL(P) )

+ (of + b) (@P) (o0} + otoF) + RRLP) + RRL(P))
6+ 56

<

- 6

+ R+ Ro) (05 = o™ Re(P) + (05 — o5 Ri(P))

(R + R) (o,f ph + ahph 4+ ool + O,i"p,ﬂ“i“) w(P)

Before proving that proposition, first we prove the fact that follows.

Fact 4.1. Given a spanning tree T of G and a path P of T:

(O.lgninplr)nax + O_Ignaxpll;nin) < (ng}l’ + Ull’plf°) < (O.;naxplr)nax + O.lgninplr)nin) )

Proof. By definition o™ < o™, then o™ = o"" + & with & > 0, then:
min ,max max ,min max ,max min ,min max min
pp Fop g =op pp +op i pp —E(pp —pp )
e min max . ~Mmin ,max max ,min max ,max min ,min
By definition pp"" < pp'®, then: op™" pp™™ + 0™ pp"" < 0" pp™** + op " pp"".

: [l 1 f min ,max max ,min _max ,max min ,min .
Since o3, pp + 0ppp € {oFN PR 4 G pprin, g N piAx - gin pinint e conclude:

(Ulgninplrjnax _,r_algnaxplrjnin) < (UI{IOL +OII’/OIC) < (o,;naxplr)nax +0]§ninp1r;1in). O

Now, we present a proof for Proposition 4.3.

167

Proof. We are given 0 < § < % a é-o p-spine Y of a spanning tree T of G and a path P € Y. Consider S = Ugey Q, define

¢(P) as:
¢(P) = Ry + Ry — 0" — o) (ag o+ a,',p{,) o(P)
+ (o + ob) (@P) (o8 ch + ol o) + RRLP) + RRAP))

" (a,{ + pfa) (@(P) (05" pp + 0ppp') + RRL(P) + RRL(P)) -

Observe that, in the equation above, the first line is equal to the sum of lines (1) and (2), also the second line is equal to

the sum of lines (3)-(5), and the third line is equal to the sum of lines (6)—(8).
(P) = R+ R) (ol oh + ohof) (P)
+ (=op = o) (boh + obeh) w(P)
+ (ool ol + p,',"a,fp,’,) »(P)
m f 1 m_f I
+ (o,, PpPp + Pp a,m,,) o(P)
+ RsopRL(P) + R0 R.(P) + Ry phRL(P) + Ry phRL(P)
+ (Gpmff,fp}» + p[»”aéplfa) o(P)
m f 1 m_f I
+ (o,, PpPp + Pp a,,op) w(P)

+ RO RL(P) + Reo R, (P) + RophRL(P) + R: ohRL(P).
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¢(P) = Rs+Ry) (a,f,o,’, + G,ﬂp,f)) o(P)
m f 1 m _f _I
+2 (of' shoh + pfiotot) ()
+ RsaR.(P) + R.a}R.(P)
+ RyopRL(P) + Ry phRL(P)
+ R R (P) + RyaLRL(P)
I of [ of
+RpLRL(P) + R, LRL(P).

Notice that, the sum of lines (2), (3) and (6) results zero, and lines (4) and (7) are the same. Then:

(9)
(10)
(11)
(12)
(

13)

Since {of"™, oM™} = {0}, ob}, (PP, P} = {p}. pb}, o' w(P) = RL(P) + RL(P) and p'w(P) = RL(P) + RL(P). Then,

line (9) is equal to (14) and the sum of lines (10)-(13) is equal to the sum of lines (15)-(18) which is also equal to the sum
of lines (20)-(22).

¢(P) = (R +Ry) (a[{p,', + cr,i,o,{) w(P)

+2 (a,ﬁ"p,‘,“axplﬂ“m + p,ﬁ”a,i“axo}ini") o (P)

+ R0 R, (P) + R0 ™Ry (P)

+ Rspp™R; (P) + R, pp™™*Rs(P)

+Reop™ (o' w(P) — Ry(P)) + Rrap™ (pp'e>(P) — Ry(P))

+Reop™ (05w (P) — Ry(P)) + Repp™ (op'w>(P) — Ry(P))
¢(P) = (R, +R;) (0,’;/),’3 - a,ip{;) w(P)

+2 (aﬁp,ﬂ“axpg‘i“ + p,TG,ﬁ“aXG;m“) w(P)

+Rs (07" — o) R (P) + Re (05 — pp™) Ry (P)

+ R (0™ — o) Ry(P) + Ry (pp™ — pp™™) R (P)

+ (Rro,inmalin + Rsag"i“p{," + Rrp,r,“i"o,S" + Rsp,r,“i"p,'f) w(P).

Grouping the first and last terms of line (22), with line (19) we obtain:

¢P) = (R +Ry) (UIJ;,OIIJ + G,ip{,) w(P)
+ (20,[;nplr)naxp11;nin + Zplrjno_lgnaxo_lgnin + Rro,lgnino,lgn + Rsplrjninplzjn) a)(P)
+Rs (05" — 0p ™) Re(P) + Ry (05" — op™) Rs(P)

+ R, (glgnax _ o‘[gﬂin) Rs(P) 4 R (p[r)nax _ plr)nin) R/(P) + Rsﬁlgnmp[;"w(P) + Rrp,gnm(flin

Then, by adding:

Rop™ o' (P) + Rspp o (P) — (Rrop"™" pplax(P) + Rspp o' o(P)) ,

to the line (23) we obtain:

é(P) = R +Ry) (cr,’:,o,', + o,ip,j;) w(P)
+ (Zo,ﬂ"p,r,"axp,r,"i" + 2ol oM g 4 R oMo Rsplr,“i"p';) w(P)
+Rs (0™ — of"™) R(P) + Ry (0™ — pp"™) Ro(P)
+Ry (0™ — U[Em") Rs(P) + Rs (pp™ — plf)“i“) R/(P) — (Rralgninplr)n + RypMingm
+ Re+Ry) (3™ o' + pp™"0p") o(P).

w(P).

) w(P)
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Grouping the first line of the above equation with the last line we obtain:
(P) = R+ R) (ol ph + bl + o™ ol + o) 0(P)
+ (Zglinp[r)naxplr)nin + 2p{,n0’1§mxo’;,mn + Rralgninalzn + Rsplrjninplr)n) a)(P)
+Rs (07" — 5™ R (P) + Ry (0p"™ — pp™") R(P)
+ R (05" — o™ Ri(P) + Rs (05 — pp"™) R (P) — (Rrop™" pf' + Rspp" o) wo(P).
Observe that 67" < 2R, pp' < 2R., Ry > pp'® and R > o™, then:
zo_lzjﬂpll)naxplr)nin + zp;’nalgnaxglljnin + Rro_lgnino_;n + Rsplgninpgl

. . ) . .
(RsplTaxple + Rro,lgnaxo,lgnm) + g (Reralgmn + Rer,O;::nm)

IA

IA
N> Wl Wl

. . 5 . .
(RRrop™ + ReRrop™) + 5 (RRrop™ + RsR- pp™)

A

(RRrop™ + ReRrop™) .

Since plr)nax > plr)nin, o}gnax > O.lgnin'Rs — O.lgnax + Ulgnin + OIT and R = plljnax + p[rjnin + P{:n:

RR-0f™™ + RR, p™™ < RoR,of™™ + ReR, p™™ + Ry (oM (0 — gy 4 pmingm)
+R (U;rlin(plgnax — pminy ¢ Glgninplr)n)
= R (0™ + pi™ + pf!) o™ + (o™ + o™ + o) Ry o}
+ R (plr)nin(o,‘gnax — gminy 4 pITinUI;n) R (O_I;nin(p‘Tax — plim) 4 O,;ninplr)n)
— Rs (O,lgnaxpll;nin + pIr)naXo_lgnin + O,lgninplr)n + pll;nino_lgn)
+R (O,Ignaxp’l;nin + pll;naxalgnin + O_lgninpgl + pll;nin)
= R+ Re) (07™pp"™ + pp"op™ + 07" pp' + o0

< R+ R) (ohoh + phot + o™ o + p"oy ).

The last inequality was given by Fact 4.1. Then:

() = (R +Ry) (of ph + fot + o™ ol + o) 0(P) (24)
s ) .

+ SR+ R) (oF0b + ot + o7 of + 0" aF ) () (25)

+ R (05" — o) R-(P) + Ry (0p"™ — pp"™) Re(P) (26)

+ R (05 — o) Ry(P) + Rs (0™ — op™) R (P) — (Rrop™ of' + Rspp™"of") wo(P).

Notice that, the sum of lines (24) and (25) results in the first line of next equation, and line (26) is equal to the sum of
lines (27) and (28).

5P < (249

(Rs+Ro) (h o} + hoto ™o + p"a") (P)
+ R+ Re) (07 = og™) Re(P) + (5™ = o5™") Re(P)) (27)

—Rr (07" — 3™ Re(P) — Ry (05" — pp™™) Rs(P) (28)
+ Ry (05" — 0p™) Ry(P) + Rs (0p™ — o) Re(P) — (Rea3™ pj + Rspp™"o") o (P).
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Since pf'w(P) = R.(P) + RL(P) and 6/"w(P) = R,(P) + RL(P), then pTw(P) > R.(P) and o/"w(P) > Ry(P), s0:

(2+9)
2

+ R + R (05" = ™) R-(P) + (05 — o5"™") Rs(P))

—Re (05™™ — o3™) Ry (P) — Ry (o™ — pp™) Ry(P)

+Re (07" — 0™) R(P) + Rs (05 — o) R (P) — (Reop™" 05" + Rspp"p") o (P)

2+9)
2

+ Ry + R) (0" — og™) Re(P) + (0™ — pp™) Ry(P))

— R0 R, (P) — Rspp™*Rs(P) (29)

+Rrop" R, (P) + Rypp"™Ry(P) (30)

+ R (0" — o™ Ry(P) + Ry (0™ — pp™) Re (P)

— R.oM™ R, (P) — Ry o Ry (P). (31)

$(P) < (Rs +R;) (U,{p{a + p,f,a,i + ofinpm 4 p,r,"inal'f) w(P)

$(P) = (R +Ry) (ohoh + phob + o™ of! + o) w(P)

Notice that the sum of line (30) with line (31) results zero, then:

2+9)
2

+ Ry +Ro) (05" = 5™ R (P) + (05" — pp"™") Ry(P)) — Rrog™ Ry (P) — Rypp*Rs(P)

+R, (Glgnax _ Ulinin) RS(P) +R, (p}r)nax _ ,O};nin) Rr(P)

2+9)
2

+ Rs + R) ((05™™ — ™) Re(P) + (0p™ — pp™) Ro(P))

+ (Rrop™ = Reop™ — Rypp™) Ry(P) + (Rspp™ — Rypp™ — Reop™) R- (P).

¢(P) <

(R +R) (Uﬁ b + phob + ool 4 p,ﬂ“ino,'f) w(P)

¢(P) <

(R, +Ry) (Oﬁ pb + Phop + o + pﬁ"“dﬁ) o(P)

Now we have two symmetric possibilities R.op™* > R;pp™* or R,op™™ < Rspp'®*. The analysis of both cases is similar,
being just necessary to replace R;, o and R;(P), respectively by R,, o and R, (P) (and vice-verse), to transform the result of

max.

one case to the other. Then without loss of generality suppose R0 > Rspp

(Rrop™™ — Reap™ — Rypp™) Re(P) + (Repp™ — Rypp™ — Rrop™™) R, (P)
< (Rrop™ — Reop™ — Ry pp™) Ry(P).

Since pp™* = R, — pi" — pp', o < Ry and o' w(P) > Ry(P):

(Reo™ — Reof™ — Rypp™) Ry(P)
= (R,all,“ax — RrU,’,“in — R (Rr — P;ranm - :012")) Rs(P)
= (R, (0" — R) — R,of™ + Ryp"™ + Rypl') Rs(P)
< (RepP™ + Ropf?) Ry(P) < 2Rs max{pf™, p'}Rs(P)

< 2R, max{pp™, pp'}op w(P).

Now we analyze two cases:

o If pp > pp'™™, then since 07" < 2R and ppt < &R;:

(Rrog™ — Reag™ — Rpp™) Rs(P) + (Rspp™™ — Rspp™ — Rrop™™) Ry (P)
82
< ERSRSRrw(P).

Without loss of generality suppose U,f = o™, then there are two possibilities:

~1f p) = pI"™. Since pff > P = phand o} = o™, if o™ < IR, then pff + ph < 2pf' < R < SR, and
op' +o,£ < 2—3‘5Rs < 8Rs, so the induced sub-tree of S on VB(S, Ep, fp) (i.e.S—J VB(S, Ep, v))is a §-0 p-separator,

veVp—fp
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implying that S is not minimal, which is a contradiction. Then, a;“i“ > %Rs:
(Rrop™ — Reag™ — R pp™) Rs(P) + (Rspp™™ — Rspp™ — Rrop™™) Ry (P)

<82RRR (P)<52RRR (P)_‘S Ok )RR (P)
— ) — oP) === 1)
_18 SINSINT — 6 SINSINT 3 2 S SINT

S ) S ) .
< SOPRRw(P) = SR (P + o + pff) wo(P)

) . . . .
< §Rs (O_lgnmplr)nax + Ulgnaxplr:nm + Ulgmnp;n + pII:mHO'IT) CL)(P)

8 . _
< SR (oh b+ oboh + oo + p) w(P).
- If pb = p™*, then, since 207" > R. — o' = Rr — R, > }—;_R, and 26" > Ry — of" > Ry — 2R, > LR
(Rralgnax - Rralgnm - Rsp‘gnax) Rs(P) + (Rsplr)nax - Rsp;)nm - RrUg"aX) R:(P)
82 821
= ERsRerw(P) = ?gRsRerw(P)

- 82 121RRR @)
- = w
— 3 576 SINSINT

82 /11 11 8
-3 <ﬂR‘> (ﬂlb) Rw(P) = = pp ™oy "R (P)

Rs (pmax max min _min min__m min m) a)(P)

p Op t+Pp Op tpp Op +Op Pp

Wl Wl o

Ry (p,’»on{ + phop + ppoy + o pp! ) o(P).

o If p* < ppin:

(Rrop™ — Rea™ — Rypop™) Re(P) + (Repp™ — Rypp™ — Ry ™) Ry (P)
< 2R;pf™ o w (P).

: m Sp .
Since op" < ERS.

(Rrop™ — Reog™ — Rspp™) Ro(P) + (Rspp™ — Repp™ — Ryo™™) Ry (P)

IA

s s .
gRs,o,f."‘“st(P) = §R5p§”” (o™ + o™ + of') @(P)

IA

5Rs (plrjnino,‘;nax+plr)naxo_l§nin+p11;nino_lt)n+o_lgninp;1) a)(P)

S 4 4
=3k (pzfﬂ/» + phop + ppoy + Gé‘"“p?) o(P).

A

So, in any case:

(Rrgll)mx - Rralgnin - RSPIIme) Rs(P) + (Rsp;nax - Rsp}r)nin - Rra;nax) R (P)
< é R. + R pf l 1 _f min__m min _m P
= 3( s + Re) ( ppop + ppop + pp 0p +0p pp ) 0(P).

Concluding:

6454
6
+ Ry +R) (05" — o™ R(P) + (05 — pp"™) Ry(P)) . D

9(P) < =7 R -R) (0 op + 00 + 0™ pf! 070" ) w(P)

4.2.4. Proof of Lemma 4.1

Now we demonstrate Lemma 4.1, which states that if we are given a §-o p-spine Y of a spanning tree T, then we can
construct a star whose core lies on ext(Y), such that its communication cost is bounded by ]]T(SC (T).
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Proof. Let S = | Jp.y P be the minimal §-o p-separator associated with Y and X the [ext(Y)|-star of G given by
Proposition 4.1, then:

o<y (o,{p,ﬂ + p,f,a,i) w(P)+ Y min {An(P), Ay (P))

Pey Pey
+R Y rd(T,u,S) + R Y 1 (wd(T, u, )
ueVg ueVg

Ri+R —pp' —ap" ( ¢ fol ;
o=y o IS p— (o,,p,,+p,,a,,) (P) + min {Ag(P), Ay (P)}
pey 7S T P P

+Re Y rsd(T,u,S) +Rs ) 1y (wd(T, u, ).
ueVg ueVg
Since the minimum between two numbers is less than or equal to their weighted median, we have:

R+ R —pp' —0p ¢ r 1 f i
CX) < (0 + U)wP
<>_;RS+Rr_p,Pﬂ_U[T »0p + 003 ) @ (P)

ol + pl ol + of
S e
pey Op + Pp +0p + 0p op+pp+0p +0p
+Re Y (T u.$) + Ry Y rrd(T, u, ).

ueVg ueVg

Ay (P)

Since every path P satisfies R; + R, — o} — o} = a,{ + a,’, + p{, + p,l), and every P € Y is a §-o0 p-path, then by applying
Proposition 4.3 we conclude:

(&22) (R + R (P) 4 .
}: 6 S r ol f 1
0= £ R+ R —pp — oy (UPPP +pPaP+al‘,‘“‘“pg1+pl§“‘“gl’,71)

Rs + R max min Rs + R, )
+ o —ap ") R (P) + pMmX _ pmin) p(p)
§R3+Rr_p[)n—o'lgn(ln P ) T ;R5+Rr_pg1_al;n(P P )s
+R Y rd(T, 1, 8) + R Y r(wd(T, u,S).
ueVg uevVg

Notice that any §-o p-path satisfies: pj' + o' < 2R+ 2R, = $(Rs + R,), then:

(&22) Ry + R)w(P) . _
CX) < 2 : 6 s r (O‘f I fUl o min ,m mlno,m)
*) Pey Ry + R, — %(Rs +R;) PP PPOP pPp Ppop

Rs + Ry max min Rs + Ry i
+ o G R (P) + pmax _ pmm R(P)
;R5+Rr—%(Rs+Rr)(’° PR ;RﬁRr—%(RﬁRr)(” PR
+R Y rs@d(T, u,8) + R Y r(wd(T, u, S)
ueVg ueVg
6+ 58 . )
- S S o o+ 45 o)
Pey
6 . )
+ 55 2 (OF™ = o) R P) + (o™ = o) R(P)
— © pey
(1-9)
+ 5 (R 2 n@dT ) +R Y S r@d(T,u,5) ).
ueVg ueVg
. _ 5582 _ . - .
Since &5 = (EGJ“_SS’S))(T_;)) = (g_f)(ffs) < (6_3)(f_5) = 1 and ;5 < & < -1 by applying Proposition 4.2 we obtain:

CX) < 5C(M. O

4.3. Existence of bounded §-o p-spine

In the next lemma we show that there exists a §-o p-spine Y of T such that |ext(Y)| is bounded by a function of §.
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Lemma4.2. Given 0 < 8 < 1 and a spanning tree T of G, there exists a 8- p-spine Y of T satisfying |ext(Y)| <

s([eP-n[e ).

Proof. Consider a minimal §-p-separator S, of T and a minimal §-o -separator S, of T.If S, and S, have at least one node
in common, then define S’ = S, U S, and obviously S’ is a §-0 p-separator. If S, and S, have no nodes in common, then
since both are trees, S, must be included in a component of T — S,,. Since S, is a §-p-separator of T, every component of
T — S, has weight bounded by R, so the path P in T connecting S, to S, satisfies pp' < &R;. Analogously, P also satisfies
op' < 6R;. Then, P can be divided into 6 paths each one with sending weight bounded by 5% and another 6 paths each one
with receiving weight bounded by ‘%. Since each division uses 5 internal nodes, in the worst case, using 10 internal nodes
we obtain a division of P in §-o p-paths, and S’ =S, U S, U P is a §-0 p-separator.

Next section shows a modification of a proof of [12,10,11], such that it guarantees the existence of Y/; and Y, sets of

internally-disjoint §-o p-paths, satisfying Upey; P = Sp, Upey, P = S, and |ext(Y/’)) , !ext(Y(;)| < [%—|2 - 11 (§—| + 1.
For each path P € Y; if P contains internal nodes in ext (Y. ), divide P on those nodes to create new internally-disjoint
8-0 p-paths and put those new paths in Y, otherwise add P to Y,,. Analogously, define Y, from Y, and ext(Y//,). Observe that

no path of Y, U'Y, has an internal node in ext (Y, ) U ext(Y,), also Y, and Y, are sets of internally-disjoint §-o p-paths such
that Upeyp P = Sp, Upey, P =S, and:

t(Y,UYy)| <2 67’ 11 6 1
S E(H R

Notice that, since S, U S,, is acyclic, each path of Y, internally-intersects at most one path in Y, and vice-versa.

If there are two paths P, € Y, and P, € Y, whose internal-intersection is not empty and their end-points do not
belong to their intersection, then no other path of Y, intersects any path of Y,, and by removing from P, the internal
nodes of the intersection we add at most two new extremal points (the end-points of the intersection). Then Y’ =
(Ys = Ps) UY, U (P, — (P; NP,)) is a set of internally-disjoint §-o p-paths which satisfies Upey P = S’ and:

2
lext(Y)| <2 ((6—‘ —11 [6_‘ + 1) +2.
8 P

Otherwise, if no path of Y, intersects any path of Y, then, as seen before, there exists a path P connecting S, to S, that
can be divided in at most 11 §-o p-paths, and the union of those paths with Y,, and Y, results in a set Y’ of internally-disjoint
8-0 p-paths such that Upcyr P = S’ and:

2
lext(Y))| <2 ({6-‘ —11 [GW + 1) +10.
) 8

The last possibility is that at least one path of Y, internally-intersects a path of Y, and each not-empty intersection
between a path of Y,, and a path of Y, contains at least one endpoint. Then, remove from each path in Y, the internal nodes
of the intersection with each path in Y, (notice that a path of Y,, at most internally-intersects one path in Y, ). In this case
the number of new extremal points will be at most |Y/ | and the set Y’ defined by the union of Y,, with the modified Y, is a
set of internally-disjoint §-o p-paths that satisfies Upcy: P = S and:

2
|ext(Y/)| 53(’76—‘ - 11 ’76—‘ +1>.
1) 1)

Since, for0 < § < 1: ([g—|2 -1+ 1) > 122 — 11(12) + 1 = 13 > 10, then we always can obtain a set Y’ of
internally-disjoint §-o p-paths which satisfies Upcys P = S’ and:

) 67 6
|ext(Y)|§3(’78—‘ —11[8}”).

If S’ is a minimal §-o p-separator, then Y = Y’ is a §-o p-spine. Otherwise, exists a minimal §-o p-separator S C S" and
by deleting from each path in Y’ the elements that are not contained in S we obtain a §-o p-spine Y of T satisfying:

lext(Y)| <3 §2—11 9 +1 O
- 8 8 '
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4.3.1. On the existence of bounded §-o -spine and §-p-spine
First we prove a result obtained in [12,10,11]:

Fact4.2. Given0 < § < % and a minimal §-p-separator (- -separator) S of a spanning tree T of G, if u is a leaf of S, then
1 (VB(T, Es, u)) > SRy (15 (VB(T, Es, u)) > dR;).

Proof. If n(S) = 1, then u is the only element in S and trivially we have: r, (VB(T,Es,u)) = R- > 1R, > &R,

2
(ry (VB(T, Es, u)) = Ry > 3Rs > 8R;). Otherwise, n(S) > 1, suppose that:

rr (VB(T, Es, u)) <8R (rs (VB(T, Es, u)) < 4R),

evidently S — u is still a §-p-separator (§-o -separator) that is because B = VB(T, Es, u) is the only component of T — (S — u)
thatis notin T — S and B satisfies the required conditions of §-p-separator (§-o-separator). O

Now we prove a result needed in Lemma 4.2:

Proposition 4.4. Given 0 < § < % and a minimal §-p-separator S (§-o -separator) of a spanning tree T of G, there exists a set
of internally-disjoint 8-o p-paths Y of T satisfying |ext(Y)| < [g]z —11[ 2]+ 1and Upey P = S.

Proof. Consider the sets of nodes Uy, U, and U-,, where U; contains the leaves of S, U, the nodes with degree two in S and
U., the nodes with degree greater than two in S. Since S is a tree |U;| > |U.;| + 2, then the set U = U; U U., satisfies
Ul <2|Uq| + 2.

We say that u, v € U are neighbors in U if for any w € U — {u, v}, w do not belong to the path between u and v in T.
Then we define Y; as:

Y: = {P|P is a path in T between two neighbors of U} .

We classify a path P € Y; as p-heavy (o-heavy) if ppt > 8%' (of > 8%), then we can divide a p-heavy (o -heavy) path
6o
e
of P which will be endpoints of the sub-paths generated by the division).

Since S is a minimal §-p-separator (8-o-separator) of T each leaf u of S satisfies r. (VB(T,Es,u)) > &R,
(rs (VB(T, Es, u)) > 38R;) (proved by Fact 4.2). Then:

> pp <R (1—8Us)) (Zo,’,“ <Rs(1—8|U1|)>-

PeY; PeYq

P into non-p-heavy (non-o -heavy) sub-paths using {%-‘ -1 (’V -‘ — 1) nodes for the division (that is, internal nodes

Denote by Us the set of all nodes used to divide all p-heavy (o -heavy) paths of Y; into non-p-heavy (non-o -heavy) paths,

then:
6op 6 6
Us| < -1 —R. (1=68|U4)) < | =|—6]Uq].
'3'—203&1 )<8Rrr( |1|>_m |Us |

PeYq

Denote by Y, the set of paths obtained by dividing all p-heavy (o -heavy) paths of Y; into non-p-heavy (non-o -heavy)
paths, then:

6 6
lext(Y2)| =U +Us < 2|Us| =2+ [8_‘ —6|Ui| =< [8_‘ —10.

Now we can divide every o-heavy (p-heavy) path in Y, into non-o-heavy (non-p-heavy) paths, in order to obtain a set
Y of §-o0 p-paths. For that, let U4 be the set of all nodes used in the division of the o -heavy (p-heavy) paths in Y,:

|U4|5%{%}—15%[?}—15|Y2|([ﬂ—1)

where |Y,| = |ext(Yy)| — 1, then:

672 6
lext ()| = lext(Yz)| + |Ua| < M 11 M Y

Finally, observe that by construction the paths in Y are internally-disjoint. O
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4.4. PTAS for m-SROCT
Using lemmata 4.1 and 4.2 we can state the following proposition:

Proposition 4.5. Given 0 < § < 1 and a spanning tree T of G, there exists a (3 ([g-|z —11[8]+ 1)>-star X of G, such that
CX) < 75C(D).

Let T* be an optimal spanning tree for m-WSDOCT over G, by Proposition 4.5 forany 0 < § < % there exists a

(3 ([§—|2 -1+ 1))—starx of G such that C(X) < 1C(T*). Since an optimal (3 ([%12 118+ 1))—star X*
of G guarantees C(X*) < C(X), then C(X*) < T5C(T*).

Lemma 4.3. Given 0 < § < 2 an optimal (3 ([%12 —-11[8]+ 1))- star of G is a 15 -approximation for m-WSDOCT.

The results of lemmata 3.1 and 4.3 complete the necessary tools for providing the PTAS:

. 5 o ([T g
Theorem 4.1. There exists a PTAS for m-SROCT, such that a (1 + 176)-approx1matlon can be found in O n

logz(n)> time complexity where 0 < § < 1.

5. Conclusions

In this work we present a PTAS for m-SROCT an NP-hard particular case of OCT. The best previously known result for
m-SROCT was a 2-approximation algorithm due to [ 10]. Many questions remain open regarding OCT and related problems.
One could improve the approximation ratio for m-WSDOCT, SROCT or other particular cases of OCT. In future works we will
attempt to answer this question for some of these problems.
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