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a b s t r a c t

This work considers the metric case of the minimum sum-requirement communication
spanning tree problem (SROCT), which is an NP-hard particular case of the minimum
communication spanning tree problem (OCT). Given an undirected graph G = (V , E)
with non-negative lengthsω(e) associated to the edges satisfying the triangular inequality
and non-negative routing weights r(u) associated to nodes u ∈ V , the objective is to
find a spanning tree T of G, that minimizes: 1

2


u∈V


v∈V (r(u)+ r(v)) d(T , u, v), where

d(H, x, y) is the minimum distance between nodes x and y in a graph H ⊆ G. We present
a polynomial approximation scheme for the metric case of the SROCT improving the until
now best existing approximation algorithm for this problem.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In this work we consider a particular case of the minimum communication spanning tree problem (OCT). The OCT was
introduced by Hu in 1974. The problem receives an undirected graph G = (V , E)with non-negative length ω(e) associated
to each edge e ∈ E and non-negative requirement ψ(u, v) between each pair of nodes u, v ∈ V . The objective is to find a
spanning tree T ofGwhichminimizes the total communication cost:C(T ) =


u∈V


v∈V ψ(u, v)d(T , u, v), where d(H, x, y)

denotes the minimum distance between nodes x and y in the sub-graph H of G [3,9].
A particular case of OCT is the minimum routing cost spanning tree problem (MRCT), in which the requirement between

all pair of nodes is equal to one (ψ(u, v) = 1 for all u, v ∈ V ). In [4] it was proved that MRCT is NP-hard (by a reduction
from the 3-exact cover problem (3-EC)). In [12] a PTAS for the MRCT was given. The authors presented a reduction from
the general to the metric case, which implies that MRCT with edge-lengths that satisfy the triangular inequality is also NP-
hard. Also, in [12] an O(log2(n))-approximation was given for OCT applying a result from [1] which was later improved to a
O(log(n))-approximation by [7].

In [10], the minimum product-requirement communication spanning tree problem (PROCT) and the minimum sum-
requirement communication spanning tree problem (SROCT) were introduced. In these problems each vertex u ∈ V
has a non-negative routing weight r(u). For PROCT the requirement is defined as ψ(u, v) =

1
2 r(u)r(v), and for SROCT

ψ(u, v) =
1
2 (r(u)+ r(v)). Both problems are NP-hard. In [10] a 1.577-approximation algorithm for PROCT and a

2-approximation for SROCT are given.
The approximation ratio for PROCT was improved in [11] where a PTAS was given. A particular case of SROCT is the

weighted p-MRCT, where given an integer p, only p nodes of the graphmay have a positive routingweight (i.e. the remaining
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nodes have zeroweight). The particular case inwhich the pnodes have routingweight 1 is called p-MRCT. In [2] itwas proved
that 2-MRCT is NP-hard, also proved in [8], where the authors gave PTASs for 2-MRCT and the metric case of weighted
2-MRCT.

Recently in [6] was introduced the weighted source destination communication spanning tree problem (WSDOCT). This
problem is the particular case of OCT where each vertex u ∈ V has non-negative sending and receiving weights, rs(u) and
rr(u) respectively, and the requirement is defined asψ(u, v) =

1
2 (rs(u)rr(v)+ rr(u)rs(v)). Observe that when rr(u) = 1 for

each u ∈ V we have the SROCT problem and when rs(u) = rr(u) for each u ∈ V we have the PROCT problem. SoWSDOCT is
a generalization of both problems PROCT and SROCT. Also, in [6] PTASs where given for themetric cases of p-MRCT and fixed
parameter of p-WSDOCT, which is the particular case ofWSDOCTwhere only p nodes may have positive sending weight.

To the best of our knowledge, there are no results improving the 2-approximation ratio for SROCTwhich is also the best
known ratio for the metric case of SROCT (denoted by m-SROCT). Observe that this problem is also NP-hard, since MRCT is
a particular case in which r(u) = 1 for all u ∈ V .

In this work we give a PTAS for m-SROCT improving the best previous known result for this problem. The idea of our
algorithm was inspired in the previous PTASs for related problems such as MRCT and PROCT. This paper is organized as
follows. In the next section we present some notation. In Section 3 we show how to obtain an optimal k-star for SROCT in
polynomial time for a fixed integer k. In Section 4 we present a PTAS for the m-SROCT. Finally, in Section 5 the conclusions
and future work are given.

2. Definitions

Unless specified we consider all graphs as undirected graphs. Given a graph G we denote the set of its nodes by VG and
the set of its edges by EG (when G is implicit by context we use V as VG and E as EG).

Definition 2.1. Given a graph G with non-negative lengths associated to its edges, the length of a path in G is defined as
the sum of the lengths of its edges (a path with no edges has length zero). The distance between node x and node y in H
sub-graph of G is the length of a path with minimum length between x and y in H and is denoted by d(H, x, y).

Now we can defineWSDOCT as:

Problem 2.1. WSDOCT—Weighted Source Destination Communication Spanning Tree problem
Input: ⟨G, ω, rs, rr⟩. A graph G, a non-negative length function over the edges of G, ω : E → Q+, a non-negative sending

weight function over the nodes of G, rs : V → Q+, and a non-negative receiving weight function over the nodes of G,
rr : V → Q+.

Output: A spanning tree T of G which minimizes the total weighted routing cost:

C(T ) =


u∈V


v∈V

1
2
(rs(u)rr(v)+ rr(u)rs(v))d(T , u, v)

=


u∈V


v∈V

rs(u)rr(v)d(T , u, v).

Also we define the SROCT as:

Problem 2.2. SROCT—Sum-Requirement Communication Spanning Tree problem
Input: ⟨G, ω, rs⟩. A graph G, a non-negative length function over the edges of G, ω : E → Q+ and a non-negative routing

weight function over the nodes of G, rs : V → Q+.
Output: A spanning tree T of G which minimizes the total weighted routing cost:

C(T ) =


u∈V


v∈V

1
2
(rs(u)+ rs(v))d(T , u, v)

=


u∈V


v∈V

rs(u)d(T , u, v).

Observe that SROCT is the particular case ofWSDOCTwhere rr(u) = 1 for each u ∈ V .

Definition 2.2. Given a graph G, a non-negative sending weight function over the nodes of G, rs : V → Q+ and a non-
negative receiving weight function over the nodes of G, rr : V → Q+, we denote rs(G) =


u∈V rs(u), rr(G) =


u∈V rr(u)

and n(G) = |VG|. When G is implicit by the context we use Rs to denote rs(G), Rr to denote rr(G) and n to denote n(G).
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This paper considers the m-SROCT and m-WSDOCT, the metric cases of SROCT and WSDOCT respectively, which are the
particular cases of the problemswhere the graphG is complete and the length function over the edges satisfies the triangular
inequality. In order to approximate an optimal solution ofm-SROCT orm-WSDOCTwe introduce the concept of a k-star1:

Definition 2.3. Given a graph G and a positive integer k, a k-star of G is a spanning tree of G with no more than k internal
nodes (that is, at least n − k leaves). A core of a k-star T of G is a tree resulting by eliminating n − k leaves from T .

Note that a k-star T can be represented by (τ , S), where τ is a core of T and S = {Su1 , . . . , Suk} is a vector indexed by the
nodes in τ where Sui is the set of leaves adjacent in T to ui ∈ Vτ (1 ≤ i ≤ k).

The problem of finding an optimal k-star form-SROCT can be defined as:

Problem 2.3. Optimum k-star form-SROCT
Input: ⟨G, ω, rs, k⟩. A positive integer k and an instance ofm-SROCT: a complete graph G, a non-negative length function

over the edges of G which satisfies the triangular inequality, ω : E → Q+ and a non-negative routing weight function over
the nodes of G, rs : V → Q+.

Output: A k-star T of Gwhich minimizes the total weighted routing cost:
C(T ) =


u∈V


v∈V rs(u)d(T , u, v).

The next section shows an efficient algorithm to find an optimal k-star form-SROCT.

3. Optimal k-star form-SROCT

First we introduce the notion of configuration of a k-star:

Definition 3.1. Given a k-star T = (τ , S) a configuration of T is (τ , L)where L = {lu1 , . . . , luk} is a vector of integers being
lui = |Sui | (1 ≤ i ≤ k). A configuration (τ , L) is over (k,G), where k is a positive integer and G is a graph, if τ is a tree of G
with k nodes (that is, τ ⊆ G and |Vτ | = k) and


u∈Vτ lu = n − k.

In [12] it was observed that given a complete graph G and a fixed positive integer k, the number of configurations over
(k,G) is polynomial in n, resulting O(kkn2k−1). Then, given an instance ⟨G, ω, r, k⟩ of the optimum k-star for m-SROCT, our
proposal is to enumerate all possible configurations over (k,G), finding an optimal k-star of each configuration, and finally
select the best k-star among them.

We find an optimal k-star for an instance ⟨G, ω, rs, k⟩ of the optimum k-star form-SROCT and a configuration (τ , L) over
(k,G), by reducing the problem to an uncapacitated minimum cost flow problem (UMCF).

Problem 3.1. UMCF—Uncapacitated Minimum Cost Flow problem
Input: ⟨G, ω, r⟩. A directed graph G, a cost function over the arcs ω : E → Q+ and a demand function over the nodes

r : V → Z.
Output: An integer vector indexed by the arcs X = (xe)e∈E which minimizes C(X) =


e∈E ω(e)xe and guarantees for

each node u ∈ V :
e∈δ+(u)

xe −


e∈δ−(u)

xe = r(u),

where e ∈ δ+(w) and e ∈ δ−(v) iff e = ⟨v,w⟩ (∀e ∈ E, v, w ∈ V ).

Proposition 3.1. Given an instance I = ⟨G, ω, rs, k⟩ of the optimum k-star for m-SROCT and a configuration c = (τ , L) over
(k,G), the problem of finding an optimal k-star with configuration c for I can be reduced in polynomial time to the UMCF with
instance I ′ =


G′, ω′, r ′


, where:

• VG′ = VG;
• EG′ = {(u, v)|u ∈ VG−τ ∧ v ∈ τ };
• ω′(u, v) = Rsω(u, v)− 2rs(u)ω(u, v)+


w∈Vτ rs(u) (d(τ , v,w)+ ω(u, v)) (lw + 1);

• if u ∈ VG−τ then r ′(u) = −1, otherwise r ′(u) = lu.

The graph G′ is a complete bipartite graph on the same node set VG of G. The bi-partition is given by the nodes in τ and
outside this set. The cost of arc ⟨u, v⟩ is equivalent to the value of assigning u as adjacent of v in a k-star with the given
configuration. We have to consider the cost of sending the routing weight from u to all nodes of τ assuming that each node
w ∈ Vτ receives (lw + 1) times the value rs(u) (considering the transmission to the node w and the leaves adjacent to it);
also, we add the cost of sending the routing weight of the entire graph (Rs − rs(u)) to node u, which must pass by node v.
Finally the demands r ′ are set to ensure assignment between nodes out of τ and nodes in τ .

1 The definition of k-star used in this paper is the same used by [12,10,11], which is different from the usual definition of k-star in graph theory (a tree
with k leaves linked to a single vertex of degree k).



S.V. Ravelo, C.E. Ferreira / Discrete Applied Mathematics 228 (2017) 158–175 161

Proof. Since demands are integers we know that in any feasible solution the values xe will be either zero or one. Moreover,
exactly n − k arcs of G′ will have value 1. This guarantees that every feasible solution S ′ of the flow problem represents an
assignment of leaves outside τ to be adjacent to nodes in τ for a k-star T of Gwith configuration (τ , L). Also, it is easy to see
that any k-star T with configuration (τ , L) provides a feasible solution to the flow problem: connect node u ∈ τ to the lu
leaves adjacent to it in T .

Consider for each u ∈ VG−τ , that p(u) is the node in τ assigned to u in a solution S ′, then:

C(S ′) =


u∈VG−τ

ω′(u, p(u))

C(S ′) =


u∈VG−τ


v∈VG

rs(v)− rs(u)


ω(u, p(u))+


u∈VG−τ


v∈Vτ

rs(u) (d(τ , p(u), v)+ ω(u, p(u)))

+


u∈VG−τ


v∈VG−τ−u

rs(u)d(τ , p(u), p(v))+


u∈VG−τ


v∈VG−τ−u

rs(u) (ω(u, p(u))+ ω(v, p(v)))

C(S ′) =


u∈Vτ


v∈Vτ

rs(v)d(τ , u, v)−


u∈Vτ


v∈Vτ

rs(v)d(τ , u, v)+


u∈VG−τ


v∈VG

rs(v)− rs(u)


ω(u, p(u))

+


u∈VG−τ


v∈Vτ

rs(v)d(τ , p(u), v)− rs(v)d(τ , p(u), v)+


u∈VG−τ


v∈Vτ

rs(u) (d(τ , p(u), v)+ ω(u, p(u)))

+


u∈VG−τ


v∈VG−τ−u

rs(u)d(τ , p(u), p(v))+


u∈VG−τ


v∈VG−τ−u

rs(u) (ω(u, p(u))+ ω(v, p(v)))

C(S ′) =


u∈VG


v∈VG

rs(u)d(T , u, v)−


u∈Vτ


v∈Vτ

rs(v)d(τ , u, v)−


u∈VG−τ


v∈Vτ

rs(v)d(τ , p(u), v)

C(S ′) = C(T )−


u∈Vτ


v∈Vτ

rs(v)d(τ , u, v)−


v∈Vτ


u∈Vτ

rs(v)d(τ , u, v)lu

C(S ′) = C(T )−


u∈Vτ


v∈Vτ

rs(v)d(τ , u, v)(lu + 1)

where


u∈Vτ


v∈Vτ rs(v)d(τ , u, v)(lu + 1) is the same for every solution with the same configuration. Then, an optimal

solution to UMCF with instance I ′ is associated to an optimal k-star with configuration c ofm-SROCTwith instance I .
In order to obtain I ′ from I the cost of each arc in G′ must be calculated. This can be done in O((n − k)k3). Defining the

demands and the graph G′ itself can be done in O((n − k)k + n). Finally, obtaining the k-star T associated to a solution S ′

can be done in O(n − k), while the complexity of calculating C(T ) would be O(k3). So, the reduction above can be done in
O(nk3). �

It is well known thatUMCF can be solved inO(n log(n)(nk+n log(n))) = O(n2 log2(n)) (e.g. [5]). Then, finding an optimal
k-star form-SROCTwith fixed k can be done efficiently.

Lemma 3.1. The optimum k-star for m-SROCT with fixed k can be solved in O(n2k+1 log2(n)).

4. PTAS form-SROCT

In this section we prove that for 0 < δ ≤
1
2 there exists a k-star, with k depending on δ, which is a 1

1−δ -approximation of
m-WSDOCT and its particular casem-SROCT. For that, fromnowon,wewill consider an instance I ofm-WSDOCT. Remember
that n = n(G), Rs = rs(G) and Rr = rr(G).

The idea of the proof is similar to those presented in [12,10,11]. Given 0 < δ ≤
1
2 and a spanning tree T of G, we show

the existence of a set Y of internally disjoint paths whose union results in a sub-tree S of T , such that the communication
cost of each component B ∈ T − S is at most a small fraction of the communication cost of T , which implies that most of
the communication cost of T passes by S. Also, we prove that the size of Y is limited by a function of δ and we show how to
construct a k-star from Y , where the value of k depends on the size of Y . The communication cost of the k-star approximates
the communication cost of T by a factor of 1

1−δ .

4.1. Notation

First, in order to present the results of this section, we need some notation, which generalizes the notation given
in [12,10,11]:

Definition 4.1. Given a spanning tree T of G, a set of edges H of T and a node u of T , VB(T ,H, u) is the set of nodes in the
component of T − H containing the vertex u.
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Fig. 1. Consider the above spanning tree T of a graph Gwith sending weight equals one for all the nodes, where all the edges have unitary weights and P is
the path of T from node fP to lP . Observe that VB(T , EP , fP ) is the set of nodes to the left of fP (including fP ), VB(T , EP , lP ) is the set of nodes to the right of lP
(including lP ), VB(T , EP , u2) is the set of nodes containing u2 and the three nodes above it, VB(T , EP , u3) = {u3}, VB(T , EP , u4) is the set of nodes containing
u4 and the two nodes below it, and VB(T , EP , u5) is the set of nodes containing u5 and the node above it. Then, σ f

P = 9, σ l
P = 5, σm

P = 10, and thus σ s
P = 9

and σ l
P = 5. Also, Rf

s (P) = rs(VB(T , EP , u2))×1+ rs(VB(T , EP , u3))×2+ rs(VB(T , EP , u4))×3+ rs(VB(T , EP , u5))×4 = 4×1+1×2+3×3+2×4 = 23
and Rl

s(P) = rs(VB(T , EP , u2))× 4 + rs(VB(T , EP , u3))× 3 + rs(VB(T , EP , u4))× 2 + rs(VB(T , EP , u5))× 1 = 4 × 4 + 1 × 3 + 3 × 2 + 2 × 1 = 27, which
yields Rs(p) = 23.

Definition 4.2. Given a spanning tree T ofG, a path P = u1, . . . , uh of T , we denote by fP (or f , when P is clear by the context)
the first node of P and lP (or l) the last node. We will use σ to denote sending weights and ρ to denote receiving weights.
We define:

For the sending weights (Fig. 1 gives an example of these notation):

• σ
f
P = rs (VB(T , EP , f )) and σ l

P = rs (VB(T , EP , l)), are the sum of sending weights in the component of T − EP containing
the first node of P and the component containing the last node of P ,

• σm
P = Rs − σ

f
P − σ l

P , is the sum of sending weights of all the nodes in the component of T − EP containing an internal
node of P ,

• Rs(P, v) =
h−1

i=2 rs (VB(T , EP , ui)) d(P, v, ui), is the sum over each internal node ui of P of sending weights in the
component of T − EP containing ui times the distance in P from ui to node v,

• Rf
s(P) = Rs(P, f ), Rl

s(P) = Rs(P, l), represent the sums over each internal node ui of P of the sending weights in the
component of T − EP containing ui times the distance in P from ui to the first node of P and to the last node of P ,

• σmax
P = max{σ f

P , σ
l
P}, σ

min
P = min{σ

f
P , σ

l
P},

• if σ f
P = σmax

P then Rs(P) = Rf
s(P), else Rs(P) = Rl

s(P).

Analogously, for the receiving weights:

• ρ
f
P = rr (VB(T , EP , f )), ρ l

P = rr (VB(T , EP , l)), ρm
P = Rr − ρ

f
P − ρ l

P ,
• Rr(P, v) =

h−1
i=2 rr (VB(T , EP , ui)) d(P, v, ui), R

f
r (P) = Rr(P, f ), Rl

r(P) = Rr(P, l),
• ρmax

P = max{ρ f
P , ρ

l
P}, ρ

min
P = min{ρ

f
P , ρ

l
P},

• if ρ f
P = ρmax

P then Rr(P) = Rf
r (P), else Rr(P) = Rl

r(P).

Now we introduce definitions for separators. A δ-separator is a sub-tree of a spanning tree T of G, whose deletion gives
rise to components that are bounded (in the sending weight, receiving weight or both) by a factor δ of the total value (Rs or
Rr ). Formally:

Definition 4.3. Given 0 < δ ≤
1
2 and a spanning tree T of G, a sub-tree S of T is a δ-σ -separator of T if every component B

of T −S, satisfies rs(B) ≤ δRs. If every component B of T −S, satisfies rr(B) ≤ δRr , S is a δ-ρ-separator of T . If both conditions
apply, S is a δ-σρ-separator of T .

Also, we define δ-σρ-path and δ-σρ-spine:

Definition 4.4. Given 0 < δ ≤
1
2 and a spanning tree T of G, a path P of T is a δ-σρ-path of T if σm

P ≤ δ Rs
6 and ρm

P ≤ δ Rr
6 .

Definition 4.5. Given 0 < δ ≤
1
2 and a spanning tree T of G, a set Y = {P1, P2, . . . , Pl} of δ-σρ-paths internally-disjoint of

T is a δ-σρ-spine, if S =
l

i=1 Pi is a minimal δ-σρ-separator of T . ext(Y ) denotes the endpoints set of all paths in Y .

4.2. Approximation lemma

We prove that for any 0 < δ ≤
1
2 , any spanning tree T of G and any δ-σρ-spine Y of T , there exists a |ext(Y )|-star with

communication cost bounded by 1
1−δ C(T ). This lemma, together with Lemma 4.3 is the basis of the main result of this work.

Lemma 4.1. Given 0 < δ ≤
1
2 , a spanning tree T of G and a δ-σρ-spine Y of T , there exists a |ext(Y )|-star X of G satisfying

C(X) ≤
1

1−δ C(T ).
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In order to conclude that lemmawe prove some intermediary results. Given a δ-σρ-spine Y of a spanning tree T of G, we
replace each path of Y by the edge connecting its endpoints and select the best endpoint to be adjacent of the nodes in the
middle of the path. Since the paths of Y are δ-σρ-paths, the amount of communication requirement associated to its middle
nodes is at most a δ

6 part of the total requirement of the tree, also the graph is metric, so this modification increases the total
communication cost of T in at most a δ fraction of its original value. Also, since the union of the paths in Y define a δ-σρ
separator S of T , the communication requirement of each component out of S is at must a δ part of the total communication
requirement of T . Then, by removing the edges of each component out of S, and adding an edge between each node of the
component to the nearest endpoint of Y , we are able to obtain a k-star of G such that its communication cost approximates
the communication cost of T in a (1 + ϵ) factor, with ϵ depending on δ and k equal to the number of endpoints of Y . The
detailed proofs of these claims are given in next sections.

4.2.1. Upper bound for a k-star
First, given a δ-σρ-spine Y of a spanning tree of G, we show how to construct a |ext(Y )|-star of G and also, we give an

upper bound for the communication cost of the star.

Proposition 4.1. Given 0 < δ ≤
1
2 , a spanning tree T of G and a δ-σρ-spine Y of T , there exists a |ext(Y )|-star X of G which

satisfies:

C(X) ≤


P∈Y


σ

f
Pρ

l
P + ρ

f
Pσ

l
P


ω(P)+ min


∆fl(P),∆lf (P)


+ Rr


u∈VG

rs(u)d(T , u, S)+ Rs


u∈VG

rr(u)d(T , u, S)

where∆wz(P) = ω(P)

σm
P ρ

w
P + ρm

P σ
w
P


+ RrRz

s (P)+ RsRz
r (P),w, z ∈ {f , l}, and S =


P∈Y P.

Proof. We are given 0 < δ ≤
1
2 and a δ-σρ-spine Y of a spanning tree T of G. Let S = ∪P∈Y P and define a |ext(Y )|-star X as

follows:

• The core τ of X has the set of nodes that are endpoints of the paths in Y (ext(Y )). Two nodes u, v ∈ τ are adjacent in τ if
in Y there exists a path with endpoints u and v. Since the paths in Y are internally disjoint and their union results in the
tree S, we conclude that τ is a tree over ext(Y ).

• For every node u ∈ τ and for every node v ∈ VB(T , ES, u)− {u}, we also include an edge (u, v) in X .
• Observe that each node u ∈ T not included in X by the previous steps belongs to V − VB(T , ES, fP) − VB(T , ES, lP) for

some path P ∈ Y . Then, we include edge (u, fP) in X if∆fl(P) ≤ ∆lf (P), otherwise we include edge (u, lP) in X .

Formally X is defined:

• VX = VG
• Eτ = {(u, v)|∃P ∈ Y with endpoints u and v}
• EX = Eτ ∪ {(u, v)|u ∈ Vτ ∧ v ∈ VB(T , ES, u)}

∪ {(u, v)|∃P ∈ Y : v ∈ V (T , P) ∧ g(P) = 1 ∧ u = fP}
∪ {(u, v)|∃P ∈ Y : v ∈ V (T , P) ∧ g(P) = 0 ∧ u = lP}
where, if∆fl(P) ≤ ∆lf (P) then g(P) = 1, otherwise g(P) = 0, and V (T , P) =


u∈VP−{f ,l} VB(T , EP , u).

Our construction guarantees X to be a |ext(Y )|-star of G with core τ . Then, we only need to analyze its associated
communication cost. For that, consider ei and ej the endpoints of edge e ∈ EX . Also, notice that we can calculate the
communication cost of a solution X by adding over each edge e ∈ EX the communication amount passing over e times
the length of e:

C(X) =


e∈EX

rs (VB(X, e, ei)) rr

VB(X, e, ej)


ω(e)+


e∈EX

rs

VB(X, e, ej)


rr (VB(X, e, ei)) ω(e)

C(X) =


e∈Eτ

rs (VB(X, e, ei)) rr

VB(X, e, ej)


ω(e)+


e∈Eτ

rs

VB(X, e, ej)


rr (VB(X, e, ei)) ω(e)

+


e∈EX−Eτ

rs (VB(X, e, ei)) rr

VB(X, e, ej)


ω(e)

+


e∈EX−Eτ

rs

VB(X, e, ej)


rr (VB(X, e, ei)) ω(e).

Observe that for every edge e ∈ EX −Eτ one of its endpoints is a leaf of X . If we denote by u the leaf endpoint of e ∈ EX −Eτ ,
then the communication amount over e results:

(Rs − rs(u)) rr(u)+ rs(u) (Rr − rr(u)) = Rsrr(u)+ Rr rs(u)− 2rsrr(u)
≤ Rsrr(u)+ Rr rs(u).
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Since every node u ∈ VG−τ is a leaf endpoint of an edge e ∈ EX − Eτ and d(X, u, τ ) = ω(e), then:

C(X) ≤


e∈Eτ

rs (VB(X, e, ei)) rr

VB(X, e, ej)


ω(e)+


e∈Eτ

rs

VB(X, e, ej)


rr (VB(X, e, ei)) ω(e)

+


u∈VG−τ

(Rr rs(u)+ Rsrr(u)) d(X, u, τ ).

If we define as p(u) the node in τ adjacent in X to u ∈ VX−τ , then d(X, u, τ ) = d(X, u, p(u)) and:

C(X) ≤


e∈Eτ

rs (VB(X, e, ei)) rr

VB(X, e, ej)


ω(e)+


e∈Eτ

rs

VB(X, e, ej)


rr (VB(X, e, ei)) ω(e)

+


u∈VG−τ

(Rr rs(u)+ Rsrr(u)) d(X, u, p(u)).

If we define ∂(T , S, u, v) as the sum of the lengths of the edges in S which also are in the path between u and v in T , then
d(T , u, v) = d(T , u, S)+ ∂(T , S, u, v) and:

C(X) ≤


e∈Eτ

rs (VB(X, e, ei)) rr

VB(X, e, ej)


ω(e)+


e∈Eτ

rs

VB(X, e, ej)


rr (VB(X, e, ei)) ω(e)

+


u∈VG−τ

(Rr rs(u)+ Rsrr(u)) d(T , u, S)+


u∈VG−τ

(Rr rs(u)+ Rsrr(u)) ∂(T , S, u, p(u)).

Since V (T , P) =


u∈VP−{f ,l} VB(T , EP , u) and for every node u ∈ VG−τ , p(u) ∈ Vτ ⊆ VS , then:

C(X) ≤


e∈Eτ

rs (VB(X, e, ei)) rr

VB(X, e, ej)


ω(e)+


e∈Eτ

rs

VB(X, e, ej)


rr (VB(X, e, ei)) ω(e)

+


u∈VG−τ

(Rr rs(u)+ Rsrr(u)) d(T , u, S)+


P∈Y


u∈V (T ,P)

(Rr rs(u)+ Rsrr(u)) ∂(T , S, u, p(u)).

Notice that for every P ∈ Y if ∆fl(P) ≤ ∆lf (P) then g(P) = 1 and for each u ∈ V (T , P), p(u) = fP , otherwise g(P) = 0
and for each u ∈ V (T , P), p(u) = lP . Then:

C(X) ≤


e∈Eτ

rs (VB(X, e, ei)) rr

VB(X, e, ej)


ω(e)+


e∈Eτ

rs

VB(X, e, ej)


rr (VB(X, e, ei)) ω(e)

+


u∈VG−τ

(Rr rs(u)+ Rsrr(u)) d(T , u, S)+


P∈Y


u∈V (T ,P)

(Rr rs(u)+ Rsrr(u)) g(P)∂(T , S, u, fP)

+


P∈Y


u∈V (T ,P)

(Rr rs(u)+ Rsrr(u)) (1 − g(P)) ∂(T , S, u, lP)

C(X) ≤


e∈Eτ

rs (VB(X, e, ei)) rr

VB(X, e, ej)


ω(e)+


e∈Eτ

rs

VB(X, e, ej)


rr (VB(X, e, ei)) ω(e)

+


u∈VG−τ

(Rr rs(u)+ Rsrr(u)) d(T , u, S)+ Rr


P∈Y


g(P)Rf

s(P)+ (1 − g(P))Rl
s(P)


+ Rs


P∈Y


g(P)Rf

r (P)+ (1 − g(P))Rl
r(P)


.

Now we analyze the edges in τ . For that consider e ∈ Eτ and let P be the path with endpoints ei and ej in Y . Observe
that rs (VB(X, e, ei)) = σ

f
P + g(P)σm

P , rs

VB(X, e, ej)


= σ l

P + (1 − g(P)) σm
P , rr (VB(X, e, ei)) = ρ

f
P + g(P)ρm

P and
rr

VB(X, e, ej)


= ρ l

P + (1 − g(P)) ρm
P . Then, by the triangular inequality:

rs (VB(X, e, ei)) rr

VB(X, e, ej)


ω(e)+ rs


VB(X, e, ej)


rr (VB(X, e, ei)) ω(e)

≤


σ

f
P + g(P)σm

P

 
ρ l
P + (1 − g(P)) ρm

P


ω(P)+


σ l
P + (1 − g(P)) σm

P

 
ρ
f
P + g(P)ρ l

P


ω(P)

=


σ

f
Pρ

l
P + σ l

Pρ
f
P


ω(P)+


(1 − g(P))


σ

f
Pρ

m
P + σm

P ρ
f
P


+ g(P)


σm
P ρ

l
P + σ l

Pρ
m
P


ω(P).
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Finally, we obtain:

C(X) ≤


P∈Y


σ

f
Pρ

l
P + σ l

Pρ
f
P


ω(P)+


P∈Y

(1 − g(P))

σ

f
Pρ

m
P + σm

P ρ
f
P


ω(P)

+


P∈Y

g(P)

σm
P ρ

l
P + σ l

Pρ
m
P


ω(P)+


u∈VG−τ

(Rr rs(u)+ Rsrr(u)) d(T , u, S)

+Rr


P∈Y


g(P)Rf

s(P)+ (1 − g(P))Rl
s(P)


+ Rs


P∈Y


g(P)Rf

r (P)+ (1 − g(P))Rl
r(P)


C(X) ≤


P∈Y


σ

f
Pρ

l
P + ρ

f
Pσ

l
P


ω(P)+ min


∆fl(P),∆lf (P)


+ Rr


u∈VG

rs(u)d(T , u, S)+ Rs


u∈VG

rr(u)d(T , u, S). �

4.2.2. Lower bound for the communication cost of a spanning tree
The previous proposition gave us an upper bounded k-star of G and nowwe show a lower bound for the communication

cost of a spanning tree of G. Observe that the combination of these results will help us to obtain a relation between the
communication cost of a spanning tree of G and the k-star we construct to approximate it.

Proposition 4.2. Given 0 < δ ≤
1
2 , a spanning tree T of G and a δ-σρ-spine Y of T , then:

C(T ) ≥


P∈Y


ρ l
Pσ

f
P + ρ

f
Pσ

l
P + ρmin

P σm
P + σmin

P ρm
P


ω(P)+


P∈Y


σmax
P − σmin

P


Rr(P)+


ρmax
P − ρmin

P


Rs(P)

+ (1 − δ)


Rs


u∈VG

rr(u)d(T , u, S)+ Rr


u∈VG

rs(u)d(T , u, S)


where S =


P∈Y P.

Proof. We are given 0 < δ ≤
1
2 and a δ-σρ-spine Y of a spanning tree T of G, being S = ∪P∈Y P . Then, the communication

cost of T is:

C(T ) =


e∈ET

rs (VB(T , e, ei)) rr

VB(T , e, ej)


ω(e)+


e∈ET

rs

VB(T , e, ej)


rr (VB(T , e, ei)) ω(e)

C(T ) =


e∈ES

rs (VB(T , e, ei)) rr

VB(T , e, ej)


ω(e)+


e∈ES

rs

VB(T , e, ej)


rr (VB(T , e, ei)) ω(e)

+


e∈ET−ES

rs (VB(T , e, ei)) rr

VB(T , e, ej)


ω(e)

+


e∈ET−ES

rs

VB(T , e, ej)


rr (VB(T , e, ei)) ω(e).

Observe that for e ∈ ET−S one of the endpoints, without loss of generality ej, satisfies: rr

VB(T , e, ej)


≤ δRr and

rs

VB(T , e, ej)


≤ δRs, so: rr (VB(T , e, ei)) ≥ (1 − δ)Rr and rs (VB(T , e, ei)) ≥ (1 − δ)n, then:

C(T ) ≥


e∈ES

rs (VB(T , e, ei)) rr

VB(T , e, ej)


ω(e)+


e∈ES

rs

VB(T , e, ej)


rr (VB(T , e, ei)) ω(e)

+


e∈ET−ES

(1 − δ)Rsrr

VB(T , e, ej)


ω(e)+


e∈ET−ES

(1 − δ)Rr rs

VB(T , e, ej)


ω(e)

C(T ) =


e∈ES

rs (VB(T , e, ei)) rr

VB(T , e, ej)


ω(e)+


e∈ES

rs

VB(T , e, ej)


rr (VB(T , e, ei)) ω(e)

+(1 − δ)


Rs


u∈VG

rr(u)d(T , u, S)+ Rr


u∈VG

rs(u)d(T , u, S)


.

As every edge e ∈ ES is in exactly one path of Y , we have:

C(T ) ≥


P∈Y


e∈P

rs (VB(T , e, ei)) rr

VB(T , e, ej)


ω(e)

+


P∈Y


e∈P

rs

VB(T , e, ej)


rr (VB(T , e, ei)) ω(e)

+ (1 − δ)


Rs


u∈VG

rr(u)d(T , u, S)+ Rr


u∈VG

rs(u)d(T , u, S)


.
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If P ∈ Y and P = v1 . . . vh, then:
e∈P

rs (VB(T , e, ei)) rr

VB(T , e, ej)


ω(e)+


e∈P

rs

VB(T , e, ej)


rr (VB(T , e, ei)) ω(e)

=

h−1
l=1

rs (VB(T , (vl, vl+1), vl)) rr (VB(T , (vl, vl+1), vl+1)) ω(vl, vl+1)

+

h−1
l=1

rs (VB(T , (vl, vl+1), vl+1)) rr (VB(T , (vl, vl+1), vl)) ω(vl, vl+1).

Notice that for each l ∈ {1, . . . , h − 1}:

rs (VB(T , (vl, vl+1), vl)) = σ
f
P +

l
k=2

rs (VB(T , EP , vk)) ,

rs (VB(T , (vl, vl+1), vl+1)) = σ l
P +

h−1
k=l+1

rs (VB(T , EP , vk)) ,

rr (VB(T , (vl, vl+1), vl)) = ρ
f
P +

l
k=2

rr (VB(T , EP , vk)) ,

rr (VB(T , (vl, vl+1), vl+1)) = ρ l
P +

h−1
k=l+1

rr (VB(T , EP , vk)) .

Then:
e∈P

rs (VB(T , e, ei)) rr

VB(T , e, ej)


ω(e)+


e∈P

rs

VB(T , e, ej)


rr (VB(T , e, ei)) ω(e)

≥


σ

f
Pρ

l
P + ρ

f
Pσ

l
P

 h−1
l=1

ω(vl, vl+1)+ σ
f
P

h−1
l=1


h−1

k=l+1

rr (VB(T , EP , vk))


ω(vl, vl+1)

+ σ l
P

h−1
l=1


l

k=2

rr (VB(T , EP , vk))


ω(vl, vl+1)+ ρ

f
P

h−1
l=1


h−1

k=l+1

rs (VB(T , EP , vk))


ω(vl, vl+1)

+ ρ l
P

h−1
l=1


l

k=2

rs (VB(T , EP , vk))


ω(vl, vl+1)

=


σ

f
Pρ

l
P + ρ

f
Pσ

l
P


ω(P)+ σ

f
P R

f
r (P)+ σ l

PR
l
r(P)+ ρ

f
PR

f
s(P)+ ρ l

PR
l
s(P).

Since σm
P ω(P) = Rf

s(P)+ Rl
s(P) and ρ

m
P ω(P) = Rf

r (P)+ Rl
r(P), then we conclude:

e∈P

rs (VB(T , e, ei)) rr

VB(T , e, ej)


ω(e)+


e∈P

rs

VB(T , e, ej)


rr (VB(T , e, ei)) ω(e)

≤


σ

f
Pρ

l
P + ρ

f
Pσ

l
P


ω(P)+ σmax

P Rr(P)+ σmin
P


ρm
P ω(P)− Rr(P)


+ ρmax

P Rs(P)+ ρmin
P


σm
P ω(P)− Rs(P)


=


σ

f
Pρ

l
P + ρ

f
Pσ

l
P + σmin

P ρm
P + ρmin

P σm
P


ω(P)+


σmax
P − σmin

P


Rr(P)+


ρmax
P − ρmin

P


Rs(P).

Finally, we obtain the lower bound:

C(T ) ≥


P∈Y


ρ l
Pσ

f
P + ρ

f
Pσ

l
P + ρmin

P σm
P + σmin

P ρm
P


ω(P)+


P∈Y


σmax
P − σmin

P


Rr(P)+


ρmax
P − ρmin

P


Rs(P)

+ (1 − δ)


Rs


u∈VG

rr(u)d(T , u, S)+ Rr


u∈VG

rs(u)d(T , u, S)


. �

4.2.3. Property of δ-σρ-paths
In order to obtain a relation between the upper bound for a k-star and the lower bound for a spanning tree we need the

following property over each δ-σρ-path.
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Proposition 4.3. Given 0 < δ ≤
1
2 a δ-σρ-path P of a δ-σρ-spine of a spanning tree T of G, then:

Rs + Rr − σm
P − ρm

P

 
σ

f
Pρ

l
P + σ l

Pρ
f
P


ω(P)+


σ l
P + ρ l

P

 
ω(P)


σm
P ρ

f
P + σ

f
Pρ

m
P


+ RsRl

r(P)+ RrRl
s(P)


+


σ

f
P + ρ

f
P

 
ω(P)


σm
P ρ

l
P + σ l

Pρ
m
P


+ RsRf

r (P)+ RrRf
s(P)


≤

6 + 5δ
6

(Rs + Rr)

σ

f
Pρ

l
P + σ l

Pρ
f
P + σmin

P ρm
P + σm

P ρ
min
P


ω(P)

+ (Rs + Rr)

σmax
P − σmin

P


Rr(P)+


ρmax
P − ρmin

P


Rs(P)


.

Before proving that proposition, first we prove the fact that follows.

Fact 4.1. Given a spanning tree T of G and a path P of T :
σmin
P ρmax

P + σmax
P ρmin

P


≤


σ

f
Pρ

l
P + σ l

Pρ
f
P


≤

σmax
P ρmax

P + σmin
P ρmin

P


.

Proof. By definition σmin
P ≤ σmax

P , then σmax
P = σmin

P + ξ with ξ ≥ 0, then:

σmin
P ρmax

P + σmax
P ρmin

P = σmax
P ρmax

P + σmin
P ρmin

P − ξ(ρmax
P − ρmin

P ).

By definition ρmin
P ≤ ρmax

P , then: σmin
P ρmax

P + σmax
P ρmin

P ≤ σmax
P ρmax

P + σmin
P ρmin

P .
Since σ f

Pρ
l
P + σ l

Pρ
f
P ∈


σmin
P ρmax

P + σmax
P ρmin

P , σmax
P ρmax

P + σmin
P ρmin

P


, we conclude:

σmin
P ρmax

P + σmax
P ρmin

P


≤


σ

f
Pρ

l
P + σ l

Pρ
f
P


≤

σmax
P ρmax

P + σmin
P ρmin

P


. �

Now, we present a proof for Proposition 4.3.

Proof. We are given 0 < δ ≤
1
2 , a δ-σρ-spine Y of a spanning tree T of G and a path P ∈ Y . Consider S = ∪Q∈Y Q , define

φ(P) as:

φ(P) =

Rs + Rr − σm

P − ρm
P

 
σ

f
Pρ

l
P + σ l

Pρ
f
P


ω(P)

+

σ l
P + ρ l

P

 
ω(P)


σm
P ρ

f
P + σ

f
Pρ

m
P


+ RsRl

r(P)+ RrRl
s(P)


+


σ

f
P + ρ

f
P

 
ω(P)


σm
P ρ

l
P + σ l

Pρ
m
P


+ RsRf

r (P)+ RrRf
s(P)


.

Observe that, in the equation above, the first line is equal to the sum of lines (1) and (2), also the second line is equal to
the sum of lines (3)–(5), and the third line is equal to the sum of lines (6)–(8).

φ(P) = (Rs + Rr)

σ

f
Pρ

l
P + σ l

Pρ
f
P


ω(P) (1)

+

−σm

P − ρm
P

 
σ

f
Pρ

l
P + σ l

Pρ
f
P


ω(P) (2)

+


σm
P σ

l
Pρ

f
P + ρm

P σ
f
Pρ

l
P


ω(P) (3)

+


σm
P ρ

f
Pρ

l
P + ρm

P σ
f
Pσ

l
P


ω(P) (4)

+ Rsσ
l
PR

l
r(P)+ Rrσ

l
PR

l
s(P)+ Rsρ

l
PR

l
r(P)+ Rrρ

l
PR

l
s(P) (5)

+


σm
P σ

f
Pρ

l
P + ρm

P σ
l
Pρ

f
P


ω(P) (6)

+


σm
P ρ

f
Pρ

l
P + ρm

P σ
f
Pσ

l
P


ω(P) (7)

+ Rsσ
f
P R

f
r (P)+ Rrσ

f
P R

f
s(P)+ Rsρ

f
PR

f
r (P)+ Rrρ

f
PR

f
s(P). (8)
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Notice that, the sum of lines (2), (3) and (6) results zero, and lines (4) and (7) are the same. Then:

φ(P) = (Rs + Rr)

σ

f
Pρ

l
P + σ l

Pρ
f
P


ω(P)

+ 2

σm
P ρ

f
Pρ

l
P + ρm

P σ
f
Pσ

l
P


ω(P) (9)

+ Rsσ
l
PR

l
r(P)+ Rrσ

l
PR

l
s(P) (10)

+ Rsρ
l
PR

l
r(P)+ Rrρ

l
PR

l
s(P) (11)

+ Rsσ
f
P R

f
r (P)+ Rrσ

f
P R

f
s(P) (12)

+ Rsρ
f
PR

f
r (P)+ Rrρ

f
PR

f
s(P). (13)

Since {σmax
P , σmin

P } = {σ
f
P , σ

l
P}, {ρ

max
P , ρmin

P } = {ρ
f
P , ρ

l
P}, σ

m
P ω(P) = Rf

s(P) + Rl
s(P) and ρ

m
P ω(P) = Rf

r (P) + Rl
r(P). Then,

line (9) is equal to (14) and the sum of lines (10)–(13) is equal to the sum of lines (15)–(18) which is also equal to the sum
of lines (20)–(22).

φ(P) = (Rs + Rr)

σ

f
Pρ

l
P + σ l

Pρ
f
P


ω(P)

+ 2

σm
P ρ

max
P ρmin

P + ρm
P σ

max
P σmin

P


ω(P) (14)

+ Rsσ
max
P Rr(P)+ Rrσ

max
P Rs(P) (15)

+ Rsρ
max
P Rr(P)+ Rrρ

max
P Rs(P) (16)

+ Rrσ
min
P


σm
P ω(P)− Rs(P)


+ Rrσ

min
P


ρm
P ω(P)− Rs(P)


(17)

+ Rrρ
min
P


σm
P ω(P)− Rs(P)


+ Rrρ

min
P


ρm
P ω(P)− Rs(P)


(18)

φ(P) = (Rs + Rr)

σ

f
Pρ

l
P + σ l

Pρ
f
P


ω(P)

+ 2

σm
P ρ

max
P ρmin

P + ρm
P σ

max
P σmin

P


ω(P) (19)

+ Rs

σmax
P − σmin

P


Rr(P)+ Rr


ρmax
P − ρmin

P


Rs(P) (20)

+ Rr

σmax
P − σmin

P


Rs(P)+ Rs


ρmax
P − ρmin

P


Rr(P) (21)

+

Rrσ

min
P σm

P + Rsσ
min
P ρm

P + Rrρ
min
P σm

P + Rsρ
min
P ρm

P


ω(P). (22)

Grouping the first and last terms of line (22), with line (19) we obtain:

φ(P) = (Rs + Rr)

σ

f
Pρ

l
P + σ l

Pρ
f
P


ω(P)

+

2σm

P ρ
max
P ρmin

P + 2ρm
P σ

max
P σmin

P + Rrσ
min
P σm

P + Rsρ
min
P ρm

P


ω(P)

+ Rs

σmax
P − σmax

P


Rr(P)+ Rr


ρmax
P − ρmin

P


Rs(P)

+ Rr

σmax
P − σmin

P


Rs(P)+ Rs


ρmax
P − ρmin

P


Rr(P)+ Rsσ

min
P ρm

P ω(P)+ Rrρ
min
P σm

P ω(P). (23)

Then, by adding:

Rrσ
min
P ρm

P ω(P)+ Rsρ
min
P σm

P ω(P)−

Rrσ

min
P ρm

P ω(P)+ Rsρ
min
P σm

P ω(P)

,

to the line (23) we obtain:

φ(P) = (Rs + Rr)

σ

f
Pρ

l
P + σ l

Pρ
f
P


ω(P)

+

2σm

P ρ
max
P ρmin

P + 2ρm
P σ

max
P σmin

P + Rrσ
min
P σm

P + Rsρ
min
P ρm

P


ω(P)

+ Rs

σmax
P − σmin

P


Rr(P)+ Rr


ρmax
P − ρmin

P


Rs(P)

+ Rr

σmax
P − σmin

P


Rs(P)+ Rs


ρmax
P − ρmin

P


Rr(P)−


Rrσ

min
P ρm

P + Rsρ
min
P σm

P


ω(P)

+ (Rs + Rr)

σmin
P ρm

P + ρmin
P σm

P


ω(P).
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Grouping the first line of the above equation with the last line we obtain:

φ(P) = (Rs + Rr)

σ

f
Pρ

l
P + σ l

Pρ
f
P + σmin

P ρm
P + ρmin

P σm
P


ω(P)

+

2σm

P ρ
max
P ρmin

P + 2ρm
P σ

max
P σmin

P + Rrσ
min
P σm

P + Rsρ
min
P ρm

P


ω(P)

+ Rs

σmax
P − σmin

P


Rr(P)+ Rr


ρmax
P − ρmin

P


Rs(P)

+ Rr

σmax
P − σmin

P


Rs(P)+ Rs


ρmax
P − ρmin

P


Rr(P)−


Rrσ

min
P ρm

P + Rsρ
min
P σm

P


ω(P).

Observe that σm
P ≤

δ
6Rs, ρm

P ≤
δ
6Rr , Rr ≥ ρmax

P and Rs ≥ σmax
P , then:

2σm
P ρ

max
P ρmin

P + 2ρm
P σ

max
P σmin

P + Rrσ
min
P σm

P + Rsρ
min
P ρm

P

≤
δ

3


Rsρ

max
P ρmin

P + Rrσ
max
P σmin

P


+
δ

6


RsRrσ

min
P + RsRrρ

min
P


≤
δ

3


RsRrρ

min
P + RsRrσ

min
P


+
δ

6


RsRrσ

min
P + RsRrρ

min
P


≤
δ

2


RsRrρ

min
P + RsRrσ

min
P


.

Since ρmax
P ≥ ρmin

P , σmax
P ≥ σmin

P , Rs = σmax
P + σmin

P + σm
P and Rr = ρmax

P + ρmin
P + ρm

P :

RsRrσ
min
P + RsRrρ

min
P ≤ RsRrσ

min
P + RsRrρ

min
P + Rs


ρmin
P (σmax

P − σmin
P )+ ρmin

P σm
P


+ Rr


σmin
P (ρmax

P − ρmin
P )+ σmin

P ρm
P


= Rs


ρmax
P + ρmin

P + ρm
P


σmin
P +


σmax
P + σmin

P + σm
P


Rrρ

i
P

+ Rs

ρmin
P (σmax

P − σmin
P )+ ρmin

P σm
P


+ Rr


σmin
P (ρmax

P − ρmin
P )+ σmin

P ρm
P


= Rs


σmax
P ρmin

P + ρmax
P σmin

P + σmin
P ρm

P + ρmin
P σm

P


+ Rr


σmax
P ρmin

P + ρmax
P σmin

P + σmin
P ρm

P + ρmin
P


= (Rs + Rr)


σmax
P ρmin

P + ρmin
P σmax

P + σmin
P ρm

P + ρmin
P σm

P


≤ (Rs + Rr)


σ

f
Pρ

l
P + ρ

f
Pσ

l
P + σmin

P ρm
P + ρmin

P σm
P


.

The last inequality was given by Fact 4.1. Then:

φ(P) ≤ (Rs + Rr)

σ

f
Pρ

l
P + ρ

f
Pσ

l
P + σmin

P ρm
P + ρmin

P σm
P


ω(P) (24)

+
δ

2
(Rs + Rr)


σ

f
Pρ

l
P + ρ

f
Pσ

l
P + σmin

P ρm
P + ρmin

P σm
P


ω(P) (25)

+ Rs

σmax
P − σmin

P


Rr(P)+ Rr


ρmax
P − ρmin

P


Rs(P) (26)

+ Rr

σmax
P − σmin

P


Rs(P)+ Rs


ρmax
P − ρmin

P


Rr(P)−


Rrσ

min
P ρm

P + Rsρ
min
P σm

P


ω(P).

Notice that, the sum of lines (24) and (25) results in the first line of next equation, and line (26) is equal to the sum of
lines (27) and (28).

φ(P) ≤
(2 + δ)

2
(Rs + Rr)


σ

f
Pρ

l
P + ρ

f
Pσ

l
Pσ

min
P ρm

P + ρmin
P σm

P


ω(P)

+ (Rs + Rr)

σmax
P − σmin

P


Rr(P)+


ρmax
P − ρmin

P


Rs(P)


(27)

− Rr

σmax
P − σmin

P


Rr(P)− Rs


ρmax
P − ρmin

P


Rs(P) (28)

+ Rr

σmax
P − σmin

P


Rs(P)+ Rs


ρmax
P − ρmin

P


Rr(P)−


Rrσ

min
P ρm

P + Rsρ
min
P σm

P


ω(P).
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Since ρm
P ω(P) = Rf

r (P)+ Rl
r(P) and σ

m
P ω(P) = Rf

s(P)+ Rl
s(P), then ρ

m
P ω(P) ≥ Rr(P) and σm

P ω(P) ≥ Rs(P), so:

φ(P) ≤
(2 + δ)

2
(Rs + Rr)


σ

f
Pρ

l
P + ρ

f
Pσ

l
P + σmin

P ρm
P + ρmin

P σm
P


ω(P)

+ (Rs + Rr)

σmax
P − σmin

P


Rr(P)+


ρmax
P − ρmin

P


Rs(P)


− Rr


σmax
P − σmin

P


Rr(P)− Rs


ρmax
P − ρmin

P


Rs(P)

+ Rr

σmax
P − σmin

P


Rs(P)+ Rs


ρmax
P − ρmin

P


Rr(P)−


Rrσ

min
P ρm

P + Rsρ
min
P σm

P


ω(P)

φ(P) ≤
(2 + δ)

2
(Rs + Rr)


σ

f
Pρ

l
P + ρ

f
Pσ

l
P + σmin

P ρm
P + ρmin

P σm
P


ω(P)

+ (Rs + Rr)

σmax
P − σmin

P


Rr(P)+


ρmax
P − ρmin

P


Rs(P)


− Rrσ

max
P Rr(P)− Rsρ

max
P Rs(P) (29)

+ Rrσ
min
P Rr(P)+ Rsρ

min
P Rs(P) (30)

+ Rr

σmax
P − σmin

P


Rs(P)+ Rs


ρmax
P − ρmin

P


Rr(P)

− Rrσ
min
P Rr(P)− Rsρ

min
P Rs(P). (31)

Notice that the sum of line (30) with line (31) results zero, then:

φ(P) ≤
(2 + δ)

2
(Rs + Rr)


σ

f
Pρ

l
P + ρ

f
Pσ

l
P + σmin

P ρm
P + ρmin

P σm
P


ω(P)

+ (Rs + Rr)

σmax
P − σmin

P


Rr(P)+


ρmax
P − ρmin

P


Rs(P)


− Rrσ

max
P Rr(P)− Rsρ

max
P Rs(P)

+ Rr

σmax
P − σmin

P


Rs(P)+ Rs


ρmax
P − ρmin

P


Rr(P)

φ(P) ≤
(2 + δ)

2
(Rs + Rr)


σ

f
Pρ

l
P + ρ

f
Pσ

l
P + σmin

P ρm
P + ρmin

P σm
P


ω(P)

+ (Rs + Rs)

σmax
P − σmin

P


Rr(P)+


ρmax
P − ρmin

P


Rs(P)


+

Rrσ

max
P − Rrσ

min
P − Rsρ

max
P


Rs(P)+


Rsρ

max
P − Rsρ

min
P − Rrσ

max
P


Rr(P).

Now we have two symmetric possibilities Rrσ
max
P ≥ Rsρ

max
P or Rrσ

max
P ≤ Rsρ

max
P . The analysis of both cases is similar,

being just necessary to replace Rs, σ and Rs(P), respectively by Rr , ρ and Rr(P) (and vice-verse), to transform the result of
one case to the other. Then without loss of generality suppose Rrσ

max
P ≥ Rsρ

max
P :

Rrσ
max
P − Rrσ

min
P − Rsρ

max
P


Rs(P)+


Rrρ

max
P − Rsρ

min
P − Rrσ

max
P


Rr(P)

≤

Rrσ

max
P − Rrσ

min
P − Rsρ

max
P


Rs(P).

Since ρmax
P = Rr − ρmin

P − ρm
P , σmax

P ≤ Rs and σm
P ω(P) ≥ Rs(P):

Rrσ
max
P − Rrσ

min
P − Rsρ

max
P


Rs(P)

=

Rrσ

max
P − Rrσ

min
P − Rs


Rr − ρmin

P − ρm
P


Rs(P)

=

Rr

σmax
P − Rs


− Rrσ

min
P + Rsρ

min
P + Rsρ

m
P


Rs(P)

≤

Rsρ

min
P + Rsρ

m
P


Rs(P) ≤ 2Rs max{ρmin

P , ρm
P }Rs(P)

≤ 2Rs max{ρmin
P , ρm

P }σm
P ω(P).

Now we analyze two cases:

• If ρm
P > ρmin

P , then since σm
P ≤

δ
6Rs and ρm

P ≤
δ
6Rr :

Rrσ
max
P − Rrσ

min
P − Rsρ

max
P


Rs(P)+


Rsρ

max
P − Rsρ

min
P − Rrσ

max
P


Rr(P)

≤
δ2

18
RsRsRrω(P).

Without loss of generality suppose σ f
P = σmax

P , then there are two possibilities:

– If ρ f
P = ρmax

P . Since ρm
P > ρmin

P = ρ l
P and σ l

P = σmin
P , if σmin

P ≤
δ
2Rs, then ρm

P + ρ l
P ≤ 2ρm

P ≤
δ
3Rr < δRr and

σm
P +σ l

P ≤
2δ
3 Rs < δRs, so the induced sub-tree of S on VB(S, EP , fP) (i.e. S−


v∈VP−fP

VB(S, EP , v)) is a δ-σρ-separator,
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implying that S is not minimal, which is a contradiction. Then, σmin
P > δ

2Rs:
Rrσ

max
P − Rrσ

min
P − Rsρ

max
P


Rs(P)+


Rsρ

max
P − Rsρ

min
P − Rrσ

max
P


Rr(P)

≤
δ2

18
RsRsRrω(P) ≤

δ2

6
RsRsRrω(P) =

δ

3


δ

2
Rs


RsRrω(P)

≤
δ

3
σmin
P RsRrω(P) =

δ

3
Rsσ

min
P


ρmax
P + ρmin

P + ρm
P


ω(P)

≤
δ

3
Rs

σmin
P ρmax

P + σmax
P ρmin

P + σmin
P ρm

P + ρmin
P σm

P


ω(P)

≤
δ

3
Rs


σ

f
Pρ

l
P + σ l

Pρ
f
P + σmin

P ρm
P + ρmin

P σm
P


ω(P).

– If ρ l
P = ρmax

P , then, since 2ρmax
P ≥ Rr − ρm

P ≥ Rr −
δ
6Rr ≥

11
12Rr and 2σmax

P ≥ Rs − σm
P ≥ Rs −

δ
6Rs ≥

11
12Rs:

Rrσ
max
P − Rrσ

min
P − Rsρ

max
P


Rs(P)+


Rsρ

max
P − Rsρ

min
P − Rrσ

max
P


Rr(P)

≤
δ2

18
RsRsRrω(P) =

δ2

3
1
6
RsRsRrω(P)

≤
δ2

3
121
576

RsRsRrω(P)

=
δ2

3


11
24

Rs


11
24

Rr


Rsω(P) ≤

δ2

3
ρmax
P σmax

P Rsω(P)

≤
δ

3
Rs

ρmax
P σmax

P + ρmin
P σmin

P + ρmin
P σm

P + σmin
P ρm

P


ω(P)

=
δ

3
Rs


ρ l
Pσ

f
P + ρ

f
Pσ

l
P + ρmin

P σm
P + σmin

P ρm
P


ω(P).

• If ρm
P ≤ ρmin

P :
Rrσ

max
P − Rrσ

min
P − Rsρ

max
P


Rs(P)+


Rsρ

max
P − Rsρ

min
P − Rrσ

max
P


Rr(P)

≤ 2Rsρ
min
P σm

P ω(P).

Since σm
P ≤

δ
6Rs:

Rrσ
max
P − Rrσ

min
P − Rsρ

max
P


Rs(P)+


Rsρ

max
P − Rsρ

min
P − Rrσ

max
P


Rr(P)

≤
δ

3
Rsρ

min
P Rsω(P) =

δ

3
Rsρ

min
P


σmax
P + σmin

P + σm
P


ω(P)

≤
δ

3
Rs

ρmin
P σmax

P + ρmax
P σmin

P + ρmin
P σm

P + σmin
P ρm

P


ω(P)

≤
δ

3
Rs


ρ
f
Pσ

l
P + ρ l

Pσ
f
P + ρmin

P σm
P + σmin

P ρm
P


ω(P).

So, in any case:
Rrσ

max
P − Rrσ

min
P − Rsρ

max
P


Rs(P)+


Rsρ

max
P − Rsρ

min
P − Rrσ

max
P


Rr(P)

≤
δ

3
(Rs + Rr)


ρ
f
Pσ

l
P + ρ l

Pσ
f
P + ρmin

P σm
P + σmin

P ρm
P


ω(P).

Concluding:

φ(P) ≤
6 + 5δ

6
(Rs + Rr)


σ

f
Pρ

l
P + σ l

Pρ
f
P + σmin

P ρm
P + σm

P ρ
min
P


ω(P)

+ (Rs + Rr)

σmax
P − σmin

P


Rr(P)+


ρmax
P − ρmin

P


Rs(P)


. �

4.2.4. Proof of Lemma 4.1
Now we demonstrate Lemma 4.1, which states that if we are given a δ-σρ-spine Y of a spanning tree T , then we can

construct a star whose core lies on ext(Y ), such that its communication cost is bounded by 1
1−δ C(T ).
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Proof. Let S =


P∈Y P be the minimal δ-σρ-separator associated with Y and X the |ext(Y )|-star of G given by
Proposition 4.1, then:

C(X) ≤


P∈Y


σ

f
Pρ

l
P + ρ

f
Pσ

l
P


ω(P)+


P∈Y

min

∆fl(P),∆lf (P)


+ Rr


u∈VG

rs(u)d(T , u, S)+ Rs


u∈VG

rr(u)d(T , u, S)

C(X) ≤


P∈Y

Rs + Rr − ρm
P − σm

P

Rs + Rr − ρm
P − σm

P


σ

f
Pρ

l
P + ρ

f
Pσ

l
P


ω(P)+ min


∆fl(P),∆lf (P)


+ Rr


u∈VG

rs(u)d(T , u, S)+ Rs


u∈VG

rr(u)d(T , u, S).

Since the minimum between two numbers is less than or equal to their weighted median, we have:

C(X) ≤


P∈Y

Rs + Rr − ρm
P − σm

P

Rs + Rr − ρm
P − σm

P


σ

f
Pρ

l
P + ρ

f
Pσ

l
P


ω(P)

+


P∈Y

σ l
P + ρ l

P

σ l
P + ρ l

P + σ
f
P + ρ

f
P

∆fl(P)+
σ

f
P + ρ

f
P

σ l
P + ρ l

P + σ
f
P + ρ

f
P

∆lf (P)

+ Rr


u∈VG

rs(u)d(T , u, S)+ Rs


u∈VG

rr(u)d(T , u, S).

Since every path P satisfies Rs + Rr − σm
P − σm

P = σ
f
P + σ l

P + ρ
f
P + ρ l

P , and every P ∈ Y is a δ-σρ-path, then by applying
Proposition 4.3 we conclude:

C(X) ≤


P∈Y

 6+5δ
6


(Rs + Rr)ω(P)

Rs + Rr − ρm
P − σm

P


σ

f
Pρ

l
P + ρ

f
Pσ

l
P + σmin

P ρm
P + ρmin

P σm
P


+


P∈Y

Rs + Rr

Rs + Rr − ρm
P − σm

P


σmax
P − σmin

P


Rr(P)+


P∈Y

Rs + Rr

Rs + Rr − ρm
P − σm

P


ρmax
P − ρmin

P


Rs(P)

+ Rr


u∈VG

rs(u)d(T , u, S)+ Rs


u∈VG

rr(u)d(T , u, S).

Notice that any δ-σρ-path satisfies: ρm
P + σm

P ≤
δ
6Rs +

δ
6Rr =

δ
6 (Rs + Rr), then:

C(X) ≤


P∈Y

 6+5δ
6


(Rs + Rr)ω(P)

Rs + Rr −
δ
6 (Rs + Rr)


σ

f
Pρ

l
P + ρ

f
Pσ

l
P + σmin

P ρm
P + ρmin

P σm
P


+


P∈Y

Rs + Rr

Rs + Rr −
δ
6 (Rs + Rr)


σmax
P − σmin

P


Rr(P)+


P∈Y

Rs + Rr

Rs + Rr −
δ
6 (Rs + Rr)


ρmax
P − ρmin

P


Rs(P)

+ Rr


u∈VG

rs(u)d(T , u, S)+ Rs


u∈VG

rr(u)d(T , u, S)

=
6 + 5δ
6 − δ


P∈Y


σ

f
Pρ

l
P + ρ

f
Pσ

l
P + σmin

P ρm
P + ρmin

P σm
P


ω(P)

+
6

6 − δ


P∈Y


σmax
P − σmin

P


Rr(P)+


ρmax
P − ρmin

P


Rs(P)


+
(1 − δ)

1 − δ


Rr


u∈VG

rs(u)d(T , u, S)+ Rs


u∈VG

rr(u)d(T , u, S)


.

Since 6+5δ
6−δ =

(6+5δ)(1−δ)
(6−δ)(1−δ) =

6−δ−5δ2
(6−δ)(1−δ) <

6−δ
(6−δ)(1−δ) =

1
1−δ and

6
6−δ <

6+5δ
6−δ <

1
1−δ , by applying Proposition 4.2 we obtain:

C(X) ≤
1

1−δ C(T ). �

4.3. Existence of bounded δ-σρ-spine

In the next lemma we show that there exists a δ-σρ-spine Y of T such that |ext(Y )| is bounded by a function of δ.
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Lemma 4.2. Given 0 < δ ≤
1
2 and a spanning tree T of G, there exists a δ-σρ-spine Y of T satisfying |ext(Y )| ≤

3
 6

δ

2
− 11

 6
δ


+ 1


.

Proof. Consider a minimal δ-ρ-separator Sρ of T and a minimal δ-σ -separator Sσ of T . If Sρ and Sσ have at least one node
in common, then define S ′

= Sρ ∪ Sσ and obviously S ′ is a δ-σρ-separator. If Sρ and Sσ have no nodes in common, then
since both are trees, Sσ must be included in a component of T − Sρ . Since Sρ is a δ-ρ-separator of T , every component of
T − Sρ has weight bounded by δRr , so the path P in T connecting Sρ to Sσ satisfies ρm

P < δRr . Analogously, P also satisfies
σm
P < δRs. Then, P can be divided into 6 paths each one with sending weight bounded by δRs

6 and another 6 paths each one
with receiving weight bounded by δRr

6 . Since each division uses 5 internal nodes, in the worst case, using 10 internal nodes
we obtain a division of P in δ-σρ-paths, and S ′

= Sρ ∪ Sσ ∪ P is a δ-σρ-separator.
Next section shows a modification of a proof of [12,10,11], such that it guarantees the existence of Y ′

ρ and Y ′
σ sets of

internally-disjoint δ-σρ-paths, satisfying ∪P∈Y ′
ρ
P = Sρ , ∪P∈Y ′

σ
P = Sσ and

ext(Y ′
ρ)
 , ext(Y ′

σ )
 ≤

 6
δ

2
− 11

 6
δ


+ 1.

For each path P ∈ Y ′
ρ if P contains internal nodes in ext(Y ′

σ ), divide P on those nodes to create new internally-disjoint
δ-σρ-paths and put those new paths in Yρ , otherwise add P to Yρ . Analogously, define Yσ from Y ′

σ and ext(Y ′
ρ). Observe that

no path of Yσ ∪ Yρ has an internal node in ext(Yσ ) ∪ ext(Yρ), also Yσ and Yρ are sets of internally-disjoint δ-σρ-paths such
that ∪P∈Yρ P = Sρ , ∪P∈Yσ P = Sσ and:

ext(Yρ ∪ Yσ )
 ≤ 2


6
δ

2

− 11

6
δ


+ 1


.

Notice that, since Sσ ∪ Sρ is acyclic, each path of Yρ internally-intersects at most one path in Yσ and vice-versa.
If there are two paths Pσ ∈ Yσ and Pρ ∈ Yρ whose internal-intersection is not empty and their end-points do not

belong to their intersection, then no other path of Yσ intersects any path of Yρ , and by removing from Pσ the internal
nodes of the intersection we add at most two new extremal points (the end-points of the intersection). Then Y ′

=

(Yσ − Pσ ) ∪ Yρ ∪

Pσ −


Pσ ∩ Pρ


is a set of internally-disjoint δ-σρ-paths which satisfies ∪P∈Y ′ P = S ′ and:

ext(Y ′)
 ≤ 2


6
δ

2

− 11

6
δ


+ 1


+ 2.

Otherwise, if no path of Yσ intersects any path of Yρ then, as seen before, there exists a path P connecting Sσ to Sρ that
can be divided in at most 11 δ-σρ-paths, and the union of those paths with Yσ and Yρ results in a set Y ′ of internally-disjoint
δ-σρ-paths such that ∪P∈Y ′ P = S ′ and:

ext(Y ′)
 ≤ 2


6
δ

2

− 11

6
δ


+ 1


+ 10.

The last possibility is that at least one path of Yσ internally-intersects a path of Yρ and each not-empty intersection
between a path of Yσ and a path of Yρ contains at least one endpoint. Then, remove from each path in Yσ the internal nodes
of the intersection with each path in Yρ (notice that a path of Yσ at most internally-intersects one path in Yρ). In this case
the number of new extremal points will be at most |Y ′

σ | and the set Y ′ defined by the union of Yρ with the modified Yσ is a
set of internally-disjoint δ-σρ-paths that satisfies ∪P∈Y ′ P = S ′ and:

ext(Y ′)
 ≤ 3


6
δ

2

− 11

6
δ


+ 1


.

Since, for 0 < δ ≤
1
2 :
 6

δ

2
− 11

 6
δ


+ 1


≥ 122

− 11(12) + 1 = 13 > 10, then we always can obtain a set Y ′ of

internally-disjoint δ-σρ-paths which satisfies ∪P∈Y ′ P = S ′ and:

ext(Y ′)
 ≤ 3


6
δ

2

− 11

6
δ


+ 1


.

If S ′ is a minimal δ-σρ-separator, then Y = Y ′ is a δ-σρ-spine. Otherwise, exists a minimal δ-σρ-separator S ⊂ S ′ and
by deleting from each path in Y ′ the elements that are not contained in S we obtain a δ-σρ-spine Y of T satisfying:

|ext(Y )| ≤ 3


6
δ

2

− 11

6
δ


+ 1


. �
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4.3.1. On the existence of bounded δ-σ -spine and δ-ρ-spine
First we prove a result obtained in [12,10,11]:

Fact 4.2. Given 0 < δ ≤
1
2 and a minimal δ-ρ-separator (δ-σ -separator) S of a spanning tree T of G, if u is a leaf of S, then

rr (VB(T , ES, u)) > δRr (rs (VB(T , ES, u)) > δRs).

Proof. If n(S) = 1, then u is the only element in S and trivially we have: rr (VB(T , ES, u)) = Rr > 1
2Rr ≥ δRr

rs (VB(T , ES, u)) = Rs >
1
2Rs ≥ δRs


. Otherwise, n(S) > 1, suppose that:

rr (VB(T , ES, u)) ≤ δRr (rs (VB(T , ES, u)) ≤ δRs) ,

evidently S −u is still a δ-ρ-separator (δ-σ -separator) that is because B = VB(T , ES, u) is the only component of T − (S −u)
that is not in T − S and B satisfies the required conditions of δ-ρ-separator (δ-σ -separator). �

Now we prove a result needed in Lemma 4.2:

Proposition 4.4. Given 0 < δ ≤
1
2 and a minimal δ-ρ-separator S (δ-σ -separator) of a spanning tree T of G, there exists a set

of internally-disjoint δ-σρ-paths Y of T satisfying |ext(Y )| ≤
 6
δ

2
− 11

 6
δ


+ 1 and ∪P∈Y P = S.

Proof. Consider the sets of nodes U1, U2 and U>2, where U1 contains the leaves of S, U2 the nodes with degree two in S and
U>2 the nodes with degree greater than two in S. Since S is a tree |U1| ≥ |U>2| + 2, then the set U = U1 ∪ U>2 satisfies
|U| ≤ 2 |U1| + 2.

We say that u, v ∈ U are neighbors in U if for any w ∈ U − {u, v}, w do not belong to the path between u and v in T .
Then we define Y1 as:

Y1 = {P|P is a path in T between two neighbors of U} .

We classify a path P ∈ Y1 as ρ-heavy (σ -heavy) if ρm
P > δ Rr

6 (σm
P > δ Rs

6 ), then we can divide a ρ-heavy (σ -heavy) path

P into non-ρ-heavy (non-σ -heavy) sub-paths using


6ρmP
δRr


− 1


6σm

P
δRs


− 1


nodes for the division (that is, internal nodes

of P which will be endpoints of the sub-paths generated by the division).
Since S is a minimal δ-ρ-separator (δ-σ -separator) of T each leaf u of S satisfies rr (VB(T , ES, u)) > δRr

(rs (VB(T , ES, u)) > δRs) (proved by Fact 4.2). Then:


P∈Y1

ρm
P < Rr (1 − δ |U1|)


P∈Y1

σm
P < Rs (1 − δ |U1|)


.

Denote byU3 the set of all nodes used to divide all ρ-heavy (σ -heavy) paths of Y1 into non-ρ-heavy (non-σ -heavy) paths,
then:

|U3| ≤


P∈Y1


6ρm

P

δRr


− 1


<

6
δRr

Rr (1 − δ |U1|) ≤


6
δ


− 6 |U1| .

Denote by Y2 the set of paths obtained by dividing all ρ-heavy (σ -heavy) paths of Y1 into non-ρ-heavy (non-σ -heavy)
paths, then:

|ext(Y2)| = U + U3 ≤ 2 |U1| − 2 +


6
δ


− 6 |U1| ≤


6
δ


− 10.

Now we can divide every σ -heavy (ρ-heavy) path in Y2 into non-σ -heavy (non-ρ-heavy) paths, in order to obtain a set
Y of δ-σρ-paths. For that, let U4 be the set of all nodes used in the division of the σ -heavy (ρ-heavy) paths in Y2:

|U4| ≤


P∈Y2


6σm

P

δRs


− 1 ≤


P∈Y2


6
δ


− 1 ≤ |Y2|


6
δ


− 1


where |Y2| = |ext(Y2)| − 1, then:

|ext(Y )| = |ext(Y2)| + |U4| ≤


6
δ

2

− 11

6
δ


+ 1.

Finally, observe that by construction the paths in Y are internally-disjoint. �
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4.4. PTAS for m-SROCT

Using lemmata 4.1 and 4.2 we can state the following proposition:

Proposition 4.5. Given 0 < δ ≤
1
2 and a spanning tree T of G, there exists a


3
 6

δ

2
− 11

 6
δ


+ 1


-star X of G, such that

C(X) ≤
1

1−δ C(T ).

Let T ∗ be an optimal spanning tree for m-WSDOCT over G, by Proposition 4.5 for any 0 < δ ≤
1
2 , there exists a

3
 6

δ

2
− 11

 6
δ


+ 1


-star X of G such that C(X) ≤

1
1−δ C(T

∗). Since an optimal

3
 6

δ

2
− 11

 6
δ


+ 1


-star X∗

of G guarantees C(X∗) ≤ C(X), then C(X∗) ≤
1

1−δ C(T
∗).

Lemma 4.3. Given 0 < δ ≤
1
2 an optimal


3
 6

δ

2
− 11

 6
δ


+ 1


- star of G is a 1

1−δ -approximation for m-WSDOCT.

The results of lemmata 3.1 and 4.3 complete the necessary tools for providing the PTAS:

Theorem 4.1. There exists a PTAS for m-SROCT, such that a

1 +

δ
1−δ


-approximation can be found in O


n
6


6
δ

2
−11


6
δ


+1


+1

log2(n)


time complexity where 0 < δ ≤
1
2 .

5. Conclusions

In this work we present a PTAS for m-SROCT an NP-hard particular case of OCT. The best previously known result for
m-SROCTwas a 2-approximation algorithm due to [10]. Many questions remain open regarding OCT and related problems.
One could improve the approximation ratio form-WSDOCT, SROCT or other particular cases of OCT. In future works we will
attempt to answer this question for some of these problems.

References

[1] Y. Bartal, Probabilistic approximation of metric spaces and its algorithmic applications, in: Proceedings of the 37th Annual IEEE Symposium on
Foundations of Computer Science, 1996, pp. 184–1963.

[2] A.M. Farley, P. Fragopoulou, D. Krumme, A. Proskurowski, D. Richards, Multi-source spanning tree problems, J. Interconnect. Netw. 1 (1) (2000) 61–71.
[3] T.C. Hu, Optimum communication spanning trees, SIAM J. Comput. 3 (3) (1974) 188–195.
[4] D.S. Johnson, J.K. Lenstra, A.H.G. Rinnooy Kan, The complexity of the network design problem, Networks 8 (1978) 279–285.
[5] B.J. Orlin, A faster strongly polynomial minimum cost flow algorithm, Oper. Res. 41 (2) (1993) 338–350.
[6] S.V. Ravelo, C.E. Ferreira, Ptas’s for some metric p-source communication spanning tree problems, WALCOM 2015.
[7] K. Talwar, J. Fakcharoenphol, S. Rao, A tight bound on approximating arbitrary metrics by tree metrics, in: Proceedings of the 35th Annual ACM

Symposium on Theory of Computing, 2003, pp. 448–455.
[8] B.Y. Wu, A polynomial time approximation scheme for the two-source minimum routing cost spanning trees, J. Algorithms 44 (2002) 359–378.
[9] B.Y. Wu, K.M. Chao, Spanning Trees and Optimization Problems, Chapman & Hall / CRC, ISBN: 1584884363, 2004.

[10] B.Y. Wu, K.M. Chao, C.Y. Tang, Approximation algorithms for some optimum communication spanning tree problems, Discrete Appl. Math. 102 (2000)
245–266.

[11] B.Y. Wu, K.M. Chao, C.Y. Tang, A polynomial time approximation scheme for optimal product-requirement communication spanning trees,
J. Algorithms 36 (2000) 182–204.

[12] B.Y. Wu, G. Lancia, V. Bafna, K.M. Chao, R. Ravi, C.Y. Tang, A polynomial time approximation scheme for minimum routing cost spanning trees, SIAM
J. Comput. 29 (3) (2000) 761–778.

http://refhub.elsevier.com/S0166-218X(16)30437-1/sbref2
http://refhub.elsevier.com/S0166-218X(16)30437-1/sbref3
http://refhub.elsevier.com/S0166-218X(16)30437-1/sbref4
http://refhub.elsevier.com/S0166-218X(16)30437-1/sbref5
http://refhub.elsevier.com/S0166-218X(16)30437-1/sbref8
http://refhub.elsevier.com/S0166-218X(16)30437-1/sbref9
http://refhub.elsevier.com/S0166-218X(16)30437-1/sbref10
http://refhub.elsevier.com/S0166-218X(16)30437-1/sbref11
http://refhub.elsevier.com/S0166-218X(16)30437-1/sbref12

	A PTAS for the metric case of the minimum sum-requirement communication spanning tree problem
	Introduction
	Definitions
	Optimal  k -star for  m -SROCT
	PTAS for  m -SROCT
	Notation
	Approximation lemma
	Upper bound for a  k -star
	Lower bound for the communication cost of a spanning tree
	Property of  δ- σ ρ-paths
	Proof of Lemma 4.1

	Existence of bounded  δ- σ ρ-spine
	On the existence of bounded  δ- σ-spine and  δ- ρ-spine

	PTAS for  m -SROCT

	Conclusions
	References


