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KingdominoTM is a board game designed by Bruno Cathala and edited by Blue Orange since 
2016. The goal is to place 2 ×1 dominoes on a grid layout, and get a better score than other 
players. Each 1 × 1 domino cell has a color that must match at least one adjacent cell, and 
an integer number of crowns (possibly none) used to compute the score. We prove that 
even with full knowledge of the future of the game, it is NP-complete to decide whether a 
given score is achievable at KingdominoTM.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

KingdominoTM is a 2-4 players game where players, turn by turn, place 2 × 1 dominoes on a grid layout (each player 
has its own board, independent of others). Each domino has a color on each of its two 1 × 1 cells, and when a player is 
given a domino to place on its board, he or she must do so with a color match along at least one of its edges. Also, if a 
domino can be placed (with at least one possible color match) then it must be placed, and if it cannot be placed then it 
is discarded. Finally, each player starts from a 1 × 1 tower matching any color. The winner of the game is the player that 
has the maximum score among the competitors. The computation of score will be precised in Section 3, it is basically a 
weighted sum of the number of cells in each monochromatic connected components on the player’s board.

The purpose of this article is to prove that, even with full knowledge of the future of the game (i.e. the sequence of 
dominoes he or she will have to place), a player willing to know whether a given score is achievable is faced with an 
NP-complete decision problem.

Section 2 reviews some results around games complexity and domino problems, Section 3 presents our theoretical 
modeling of KingdominoTM , Section 4 illustrates the combinatorial explosion of possibilities, and Section 5 proves the NP-
hardness result.

2. Computational complexity of games with dominoes

KingdominoTM has been studied in [1], where the authors compare different strategies to play the game, via numerical 
simulations.
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Fig. 1. Example of K-tiling by ( 2 2 , 1 2 , 1 1 , 1 3 , 3 1 , 2 3 ), with score 0 + 1 + 4 + 9 + 2 + 0 = 16 (regions are ordered 
from top to bottom, left to right).

Understanding the computational complexity of games has raised some interest in the computer science community, and 
numerous games have been proven to be complete for NP or co-NP. Examples include Minesweeper [2,3], SET [4], Hanabi [5], 
some Nintendo games [6] and Candy Crush [7].

Domino tiling problems are a cornerstone for computer science, from undecidable ones [8–10] to simple puzzles [11–13]. 
Tiling some board with dominoes under constraints has already been seen to be NP-complete, and constructions vary 
according to the model definition [14–17]. The model of [18] is close to KingdominoTM, its construction can be adapted to 
prove that starting from a board with some dominoes already placed, deciding whether it can be completed to achieve at 
least a given score is NP-complete. The challenging part of the present work is to start from nothing else but the tower of 
KingdominoTM.

3. Model and problem statement

In order to apply the theory of computational complexity to KingdominoTM , we will consider a one player model which 
concentrates on an essential aspect of the game: how to maximize one’s score, which is the source of domino choices. Also, 
in the game KingdominoTM there is a fixed set of colors (6) and a fixed multiset of dominoes (48, some dominoes have more 
than one occurrence), but we will abstract these quantities to be any finite (multi)set.

A domino is a 2 × 1 rectangle, with one color among a finite set on each of its two 1 × 1 cells. A domino also has a 
number of crowns on each of its cells, used to compute the score. For convenience we consider colors to be integers, and 
represent a domino as follows: 1 2 for the domino with one cell of color 1 with one crown, and one cell of color 2

with no crown. A tiling is an overlap free placement of dominoes on the Z2 board, with a special cell at position (0, 0)

called the tower. Given a sequence of n dominoes τ = ( c1 c2 , . . . , c2n−1 c2n ) possibly with crowns, a K-tiling by τ is a 
tiling respecting the following constraints defined inductively.

• The tiling with only the tower at position (0, 0) is a K-tiling by ∅ (case n = 0).
• Given a K-tiling by the n − 1 first dominoes of τ , the last domino of colors c2n−1 and c2n can be placed on a pair of 

adjacent positions, if and only if at least one of its two cells is adjacent to a cell of the same color that has already been 
placed, or is adjacent to the tower. It is lost (not placed) if and only if it can be placed nowhere. This gives a K-tiling by 
the n dominoes of τ .

Hence dominoes must be placed in the order given by the sequence τ . Note that the definition of K-tiling does not take 
into consideration the crowns. They are only used to compute the score, as we will explain now.

The score of a K-tiling is the sum, for each monochromatic connected component (called region), of its number of cells 
times the number of crowns it contains. Note that a color may give rise to more than one region, and that a region scores 
no point if it contains no crown. We will say that some cell (resp. domino) must be connected to some region, to mean that 
it (resp. one of its two cells) must belong to this monochromatic connected component.

Definitions are illustrated on Fig. 1. We are ready to state the problem.

K-tiling problem
input: a sequence of dominoes τ and an integer s.
question: is there a K-tiling by τ with score at least s?

Given a tiling where each domino of the sequence τ is identified (a potential solution, aka certificate), one verifies domino 
after domino that it is indeed a K-tiling by τ , and computes the score to verify that it is indeed at least s, in polynomial 
time. Hence K-tiling problem belongs to NP.

Remark that our modeling of KingdominoTM discards the official game rule regarding a bounding box for player’s boards, 
where dominoes must be placed inside a square of size 5 × 5 or 7 × 7 containing the tower.
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Table 1
Number of K-tilings reaching the maximum possible score, for some small sequences of dominoes. Rotations and 
axial symmetries are counted only once, and the positions of crowns are not taken into account (in parenthesis the 
full counts are given).

Dominoes ( 1

1

, 1

1

, 1

1

, 1

1

) ( 1

1

, 2

2

, 3

3

, 4

4

) ( 1

2

, 3

4

, 5

6

, 7

8

)

1st (score 2) 2 (24) 2 (24) 4 (24)
2nd (score 4) 19 (752) 13 (400) 52 (400)
3rd (score 6) 253 (35448) 63 (4032) 504 (4032)
4th (score 8) 3529 (2176064) 141 (18048) 2256 (18048)

4. Counting K-tilings

To give an idea of the combinatorial explosion one faces when playingKingdominoTM or when deciding some K-tiling 
problem instance, we propose in Table 1 to count the number of possible K-tilings for some small sequences of dominoes. 
These exact results were obtained by brute force numerical simulations.

Table 1 may be compared to the number of domino tilings of a 2n × 2n square, appearing in the Online Encyclopedia of 
Integer Sequences under reference A004003 [19]: 1, 2, 36, 6728, 12988816, 258584046368, 53060477521960000, . . .

5. NP-hardness of K-tiling problem

In this section we prove the main result of the article.

Theorem 1. K-tiling problem is NP-hard.

Proof. We make a polynomial time many-one reduction from 4-Partition problem, which is known to be strongly NP-
complete [20]. This is important, since we encode the instance of 4-Partition problem in unary into an instance of K-tiling 
problem (basically, with 28x domino cells for each item of size x).

4-Partition problem
input: n items of integer sizes x1, . . . , xn , and m = n

4 bins of size k,
with n a multiple of four, xi > 0 for all i, and 

∑n
i=1 xi = km.

question: is it possible to pack1 the n items into the m bins,
with exactly four items (whose sizes thus sum to k) per bin?

Given such an instance of 4-Partition problem, we first multiply by 28 all item and bin sizes (for technical reasons to be 
explained later) and consider the equivalent instance with n items of strictly positive integer sizes x1 ← 28x1, . . . , xn ← 28xn

and m bins of size k ← 28k (for convenience we keep the initial notations with x and k). We then construct (in polynomial 
time from a unary encoding) the following sequence of dominoes τ :

1. guardians 1 1 , 2 2 , 3 3 , 4 4 ,

2. square ( 1 1 )18m2−6,

3. contour 1 5 , 5 6 , 6 7 , 7 8 , 8 1 , 8 1 , 8 2 , 8 9 , ( 9 9 )9m−8, 9 10 , 10 11 ,

11 12 , 12 13 , 13 14 , . . . , 3m + 10 3m + 11 , 3m + 11 3m + 12 , 3m + 12 5 ,

4. guide ( 6 7 )18m2+12m ,

5. arms ( 10 11 )
k
4 +2, ( 13 14 )

k
4 +2, ( 16 17 )

k
4 +2, . . . , ( 3m + 10 3m + 11 )

k
4 +2

6. anchors ( 12 3m + 13 )2, ( 15 3m + 13 )2, . . . , ( 3m + 9 3m + 13 )2,

7. items for each xi we have 3m + 13 3m + 13 + i , ( 3m + 13 + i 3m + 13 + i )
xi
2 −1,

8. zippers 11 3m + 13 + n + 1 , 3m + 13 + n + 1 13 , 14 3m + 13 + n + 2 , 3m + 13 + n + 2 16 , . . . , 3m + 8 4m + 13 + n ,

4m + 13 + n 3m + 10 ,

1 Of course an item cannot be split.
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Fig. 2. Sketch of a K-tiling of score s by τ in the reduction from 4-Partition problem to K-tiling problem. Circled numbers from 1 to 7 allow to follow 
the process of dominoes placement, chronologically. The main idea is to create m = n

4 bins of a given area (hatched on the figure), that can be filled with 
groups of items dominoes (whose quantities/areas correspond to item sizes) if and only if all items can be packed into the m bins (with exactly four items, 
of sum k, per bin).

and the target score s = 72m2 +54m + k
2 (3m +1) +1. This is our instance of K-tiling problem, with the idea of the reduction 

presented on Fig. 2. Let us now prove that there exists a packing of the n items into the m bins of size k with four items 
per bin if and only if there exists a K-tiling by τ with score at least s.

⇒ Suppose there exists a packing of the n items into the m bins of size k with exactly four items per bin, and let X j
be the set of items in bin j. We construct the following K-tiling by τ (see Fig. 3).

1. Place the four guardians dominoes around the tower.

2. Around this create a square of size 6m × 6m with the square dominoes 1 1 , leaving three dents empty on the left 
border of the square at the fifth, twelfth and thirteenth positions from the bottom left corner (the square has area 36m2 , 
minus 9 cells already taken by the guardians dominoes and the tower, minus 3 dents, hence exactly the 18m2 − 6 square
dominoes are required).

3. Make a path clockwise around the square with the contour dominoes in this order, filling the three dents with cells of 
color 1, leaving the cell of color 2 outside, and starting with the first dent at the fifth position above the bottom left 
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Fig. 3. To reduce the height of this figure, original sizes have only been multiplied by 4 instead of 28. A K-tiling by τ with score s (hence solving 
the K-tiling problem instance), from a solution to the 4-Partition problem instance with n = 12, m = 3, k = 120 (originally k = 30), and item sizes 
12, 12, 16, 16, 16, 16, 24, 40, 40, 48, 48, 72 (originally 3, 3, 4, 4, 4, 4, 6, 10, 10, 12, 12, 18): first bag 72 + 16 + 16 + 16, second bag 48 + 48 + 12 + 12, third bag 
40 + 40 + 24 + 16. Domino colors are guardians, square, contour, guide, arms, anchors, items (groups are highlighted), and zippers. The anchor color 3m + 13
(on which groups of item dominoes can match) equals 22 on this example. (For interpretation of the colors in the figure(s), the reader is referred to the 
web version of this article.)
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corner of the square (the contour has length 4(6m + 1), corresponding exactly to the 12m + 4 contour dominoes with 
four dents).

4. Stack all guide dominoes on the left of the 7 6 domino of the border.
5. Stack all arms dominoes, color by color, below the corresponding dominoes of the border. Observe that they match 

exactly one domino over three of the bottom border, creating m + 1 stacks of length k
4 + 2, and therefore m bins of size 

k + 8 in between.
6. Place a pair of anchors dominoes per bin, matching the existing colors, as on Fig. 3.
7. Place items dominoes corresponding to items of X j in bin j, filling k cells of each bin and leaving the last row of four 

cells empty.
8. Close each bin with the corresponding zippers dominoes (anchors dominoes fill four cells, consequently the items domi-

noes leave four cells in each bin, exactly the number of cells required for the zipper dominoes to match colors onto the 
arms on both ends2).

The score of this K-tiling is s, as detailed on Fig. 3.

⇐ This is the challenging part of the proof, where we will argue that the construction of a K-tiling by τ with score 
at least s is compelled to have the structure described above and illustrated on Fig. 3, which corresponds to solving the
4-Partition problem instance. The proofs of some claims are postponed.

Suppose there exists a K-tiling by τ with score s. First notice that s is an upper bound on the score one can obtain 
with a K-tiling by τ , as it is the sum for each color of the number of cells of this color times the number of crowns on 
cells of this color. It must therefore correspond to a K-tiling with one region per color, except for colors 2, 3, 4 and 3m + 13
which have no crown. This will be the main assumption that will guide us as we study the dominoes chronologically. Also 
remark that all dominoes must be placed: at the beginning colors 2, 3, 4 can always match the tower, and afterwards colors 
2, 3m + 13 appear only on dominoes with another color bringing some necessary points to the sum s.

1. There is no choice but to place the four guardians dominoes on the four sides of the tower. As a consequence, we don’t 
have to treat the particular case of the tower anymore.

2. All square dominoes are monochromatic, hence they form one large region of color 1 (remark that they can, and therefore 
must, all be placed). We have now 9 + 2(18m2 − 6) = 36m2 − 3 cells occupied by some dominoes or the tower.

3. For the contour dominoes the three cells of color 1 must be connected to the unique region of color 1 since this color 
will not appear anymore. Contour dominoes must be arranged in a cycle with some possible defects, that we define now. 
The idea is that colors 5 to 8 and 10 to 3m +12 will have a simple path arrangement, whereas color 9 may form a potato 
like connected component in which a path has to be identified. Let a pseudo-cycle be a K-tiling by contour dominoes such 
that, when cells of colors 1 and 2 are discarded:

• colors 5 to 8 and 10 to 3m + 12 form a simple path (starting from the 5 cell of the first contour domino, the 
successor of each cell being either its partner domino cell, or a cell of the next domino, with the successor of the 
color 5 from the last 3m + 12 5 being the first 5 cell), and

• a connected component of color 9 connects two distinguished cells of color 9: the 9 cell of domino 8 9 , to the 

9 cell of domino 9 10 .

The length of a pseudo-cycle is the length of its simple path plus the length of a shortest path (inside the connected 
component of color 9) between the two distinguished cells of color 9.

Claim 1. All contour dominoes must be placed (to reach score s), and they must form a pseudo-cycle, of length at most 4(6m + 1).

The pseudo-cycle is connected to the region of color 1 via three dominoes 1 5 , 8 1 , 8 1 :

• two of them are intended to frame the 6 7 domino,
• and the last one is for parity of cells number, since we have an odd number of occupied cells so far that is intended 

to form a square of even side length.

The pseudo-cycle of contour dominoes may have the region of color 1 either inside its outer face, or inside its inner face 
(in this case the pseudo-cycle surrounds the region of color 1).

4. The guide dominoes enforce that the cycle of contour dominoes surrounds the region of color 1.

2 Note that the pattern of placement sketched on Fig. 3 can be extended to pack each bin with items dominoes corresponding to any four items of sizes 
summing to k, and leaving four cells on the bottom end for the zippers dominoes.
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Claim 2. The guide dominoes must be stacked one after the other in a straight segment, rooted at the analogous contour domino

Claim 3. The pseudo-cycle of contour dominoes must have the region of color 1 inside its inner face.

After this step we have 36m2 − 3 occupied cells surrounded by a cycle of 4(6m + 1) cells with three additional cells 
(with color 1) inside the cycle, hence (6m)2 cells inside the cycle which is just long enough to make a square of side 
6m + 2 around it. However, any other shape would either require a too long path, or leave a too small area inside, as 
stated in the following Claim.

Claim 4. The maximum area inside a cycle of 4(6m + 1) cells contains (6m)2 cells, and is achieve by a square shape of sides 6m + 1.

Intermediate conclusion: at this point we have a square of contour cells with the tower, guardians and square dominoes 
inside, three dents of color 1 inside, one dent of color 2 outside, and a stack of guide dominoes starting from the 
corresponding 6 7 contour domino (the reader can refer to Fig. 3 for an illustration).

We will argue thereafter why the contour is well aligned, with contour dominoes 10 11 to 3m + 10 3m + 11 all on 
the same side of the square.

5. The arm dominoes must create m bins.

Claim 5. The arm dominoes must be placed into m + 1 bicolor stacks of length k
4 + 2 starting from the corresponding contour 

dominoes (separated by four positions), and joined with a pair of zipper dominoes.

This also explains why contour dominoes are well aligned, with the third line of contour dominoes all on the same 
side of the square.
Intermediate conclusion: after these dominoes the K-tiling by τ with score s must have created m bins (with m + 1
arms) of size 4 × ( k

4 + 2). This size explains why the bin size (and consequently all item sizes) of the original 4-Partition 
problem instance is converted to a multiple of 4.

6. Each pair of anchors dominoes must be placed so that each color already present in the contour (from 12 to 3m + 9) 
form one region because these are the last dominoes with these colors. So there is a pair of anchor dominoes at the rear 
of each bin. Remark that color 3m + 13 has no crown hence it can be split into multiple regions. The purpose of this 
color is to be an anchor inside each bin, intended for groups of items dominoes to match.

7. For each item xi we have a group of items dominoes, where the first domino of color 3m + 13 allows to match a bin 
anchor, and then all other dominoes of the group will form one region from this anchored domino (with the unique 
color 3m + 13 + i for each i), for a total of xi cells.

Claim 6. For each bin, at most four groups of items dominoes can match its anchors.

Intermediate conclusion: As all n groups of items dominoes must be placed on the board to reach score s, we must have 
exactly four groups of items dominoes in each of the m = n

4 bins (corresponding to the values of four items from the
4-Partition problem instance).

8. The zippers dominoes have the purpose of closing bins, with one pair of zippers matching the colors of each bin’s 
arms. They must join the two arms of each bin with a path of length four (because of the unique pair of cell colors 
3m + 13 +n + 1 to 4m + 13 +n). However this is possible if and only if no items dominoes exceed a volume of 4 × ( k

4 + 1)

inside the bin (leaving the last row of four positions of each bin for the zipper), i.e. each bin contains four groups of 
items dominoes for a sum of at most k cells (anchors already occupy four cells). Observe that when they contain a total 
of at most k

2 dominoes, it is always possible to place four groups of items dominoes in a bin and leave the last row for a 
pair of zippers dominoes (as on the example of Fig. 3).

Conclusion: to reach score s with a K-tiling by τ , a player must close the zipper on top of each of the m bins and therefore 
trap inside each of them four items of sum at most k, for a total of 4m = n items, therefore solving the 4-Partition problem
instance. �

We now present the proofs of the different Claims, and recall their statements.

Claim 1. All contour dominoes must be placed (to reach score s), and they must form a pseudo-cycle, of length at most 4(6m + 1).

Proof of Claim 1. For the simple path part, by induction on contour dominoes with some cell of color 5 to 8 or 10 to 
3m + 12, we have two simple paths concatenated by the last 3m + 12 5 domino:
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Fig. 4. Contour dominoes must form a pseudo-cycle, with a connected component of color 9 (dashed, containing the 9m − 8 9 9 dominoes) including 
a (shortest) path of length at most 2(9m − 8), connecting the two extremities of a simple path containing all other cells (excluding cells of color 1 and 2). 
Domino by domino, the length of the simple path is therefore 1 + 2 + 2 + 2 + 1 + 1 + 1 + 2 plus 2 + 2(3m + 1) + 4, giving a total length of the pseudo-cycle 
upper bounded by 4(6m + 1).

• either there is no occurrence of a color after the contour dominoes hence it must directly form one region (case of 
dominoes with color3 8, and color 5 in the last contour domino which concatenates the two simple paths; e.g. when 
placing domino 3m + 12 5 its cell of color 5 must match the existing region),

• or there is no other placed occurrence of one of its colors apart from the previous contour domino (case of all other 
contour dominoes; e.g. when placing domino 6 7 its cell of color 6 must match domino 5 6 ),

• or, for the 10 11 domino, we create the second simple path.

For the connected component of color 9 the argument is straightforward, since the group of 9 9 dominoes must form 
one region, and be connected to the two remaining cells of color 9, in order to have a unique connected component of color 
9. For the length calculation, see Fig. 4. �
Claim 2. The guide dominoes must be stacked one after the other in a straight segment, rooted at the analogous contour domino

Proof of Claim 2. Guide dominoes are the last occurrences of colors 6 and 7, hence each of these colors must end up 
forming one region. The basic idea behind this proof is that when a 6 7 domino is not correctly stacked it creates two 

regions of a color, which has to be reconnected via 6 7 dominoes, which necessarily creates two regions of the other 

color, which has to be reconnected via 6 7 dominoes, which necessarily creates two regions of the other color, etc, 
hence the two colors cannot simultaneously end up forming one region.

To formalize this intuition, we introduce some definitions. Let the free outside region denote the infinite set of grid cells 
with no domino on them (free cells), which are connected together. Given a K-tiling by some prefix of τ until some guide
dominoes (between 1 and 18m2 + 12m), let the home-region of color c ∈ {6, 7} be the region of the cell of color c from the 

6 7 contour domino.
We say that a cell of color c ∈ {6, 7} is zigzag-separated from its home-region when:

• it does not belong to its home-region, and
• there does not exist a straight segment4 of free cells and cells of color c, connecting it to its home-region.

We say that a cell of color c ∈ {6, 7} is alternating-zigzag-separated from its home-region when, for c̄ = 13 − c:

• it does not belong to its home-region, and

• any continuation of the K-tiling (placement of more 6 7 guide dominoes) connecting it to its home-region would 
leave a cell of color c̄ zigzag-separated from the home-region of color c̄.

Let us now argue that, given a K-tiling by some prefix of τ until some guide dominoes (between 1 and 18m2 + 12m):

3 The use of colors 1 and 2, though already present, changes nothing to this argument.
4 A straight segment being a set of cells of the form {(x, y), (x, y) + e, (x, y) + 2e, . . . , (x, y) + ze} for some x, y ∈ Z, z ∈ N and e ∈

{(0, 1), (1, 0), (0, −1), (−1, 0)}.
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Fig. 5. Top: up to rotation, symmetry and swap of colors, five possible ways to not correctly stack a guide domino; in the two first cases a cell of color 7

(bold) is zigzag-separated from its home-region (hatched); and in the three other cases, if 6 7 guide dominoes are placed so that a straight segment 
(gray) connects the cell of color 7 (bold) to its home-region (hatched), then there would necessarily exists a cell of color 6 (black) zigzag-separated from 
its home-region. Hence in any case there exists a zigzag-separated cell. Bottom: up to rotation and symmetry, possible stack positions are highlighted, 
depending on the placement of contour dominoes. For any stack position and number of correctly stacked dominoes, the argument on the top holds.

Fig. 6. In order to reconnect a zigzag-separated cell p of color c ∈ {6, 7} to its home-region, a zigzag-separated cell p̄ of color c̄ = 13 − c is created. Indeed, 
any path (gray) of cells of color c ∈ {6, 7} connecting cell p to its home-region acts as a barrier, and it contains some turn (dashed) which, due to the 
use of 6 7 guide dominoes, necessarily leaves at least one cell p̄ of color c̄ zigzag-separated from the home-region of color c̄. As a consequence, 
zigzag-separated cell p is alternating-zigzag-separated.

a. if a cell of color c ∈ {6, 7} is zigzag-separated, then it is alternating-zigzag-separated,
b. if a guide domino is not correctly stacked as stated in the Claim, then a cell of color c ∈ {6, 7} is zigzag-separated.

The combination of Items b. (base case) and a. (induction) allows to conclude that it would be impossible to end up having 
one region of each color, since there would always exist a cell disconnected from its home-region. As a consequence, in 
order to reach score s, the Claim must hold.

Item b. follows a simple case disjunction presented on Fig. 5, and Item a. holds since in order to have one region of each 
color and reach score s, it is necessary to connect the zigzag-separated cell p to its home-region. However, since this path 
is not a straight segment, it contains some turn which leaves a cell p̄ of color c̄ zigzag-separated from the home-region of 
color c̄ (the path connecting p to the home-region of color c separates p̄ from the home-region of color c̄, see Fig. 6). �
Claim 3. The pseudo-cycle of contour dominoes must have the region of color 1 inside its inner face.

Proof of Claim 3. Observe that if the pseudo-cycle of contour dominoes (Claim 1) has the region of color 1 on its outer face, 
then the 18m2 + 12m stacked 6 7 guide dominoes (Claim 2) would have been placed inside the pseudo-cycle (at most 
4(6m+1)

2 of them) or inside the region of color 1 (at most 18m2 − 6 of them), but they are too numerous so it would be 
impossible to have simultaneously a unique region for colors 6 and 7 (see Fig. 7). �
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Fig. 7. If the pseudo-cycle of contour dominoes has the region of color 1 on its outer face, then one cannot stack all the 18m2 + 12m 6 7 dominoes 
(the region of 1 contains 2(18m2 − 6) cells, and the contour contains 4(m + 1) cells).

Claim 4. The maximum area inside a cycle of 4(6m + 1) cells contains (6m)2 cells, and is achieve by a square shape of sides 6m + 1.

Proof of Claim 4. First remark that it is enough to consider rectangular shapes, because any L-shape cropping some part of 
the inside area can be reversed to include this area instead of excluding it (hence increasing strictly the area inside the 
cycle). Then we have a rectangle of sides a and b (from 2 to 2(6m + 1)), such that 2(a + b) = 4(6m + 1) is fixed, and we 
want to maximize its area, i.e. the product ab. It follows that b = 2(6m + 1) − a and we want to maximize a(2(6m + 1) − a), 
a quadradic equation whose derivative reaches zero at a = 6m + 1, hence the area is maximum for a square shape of sides 
6m + 1, containing (6m)2 cells. �
Claim 5. The arm dominoes must be placed into m +1 bicolor stacks of length k

4 +2 starting from the corresponding contour dominoes 
(separated by four positions), and joined with a pair of zipper dominoes.

Proof of Claim 5. For each group of k
4 + 2 arm dominoes the argument is analogous to the proof of Claim 2, with two 

differences.

• For the base case, possible stack positions (Fig. 5 for guide dominoes) are more restricted, due to the established square 
shape of contour dominoes (Claims 1 and 4) surrounding square dominoes (Claim 3).

• There is one extra cell of colors 11, 13, 14, 16, . . . , 3m + 8, 3m + 10 after arm dominoes, in zippers dominoes.

We now present how to adapt the argumentation structure from the proof of Claim 2, in order to take into account these 
two differences.

First, we can already notice that each pair of zippers dominoes contain a unique color (between 3m + 13 + n + 1 and 
4m + 13 +n), hence in order to have one region of each color and reach score s they must form paths of length four, whose 
ends are connected to the regions of the respective colors (between 11 and 3m + 10).

Contrary to the four base cases presented on Fig. 5 (bottom), only the two first cases are now possible, as presented on 
Fig. 8, which also considers all ways to not correctly stack a first arm domino. It shows that there is only one case where an 
extra zippers cell may be useful, and that it leads to the impossibility to reach score s. As a consequence, the first domino 
of each arm must be correctly stacked.

The induction is identical to the proof of Claim 2: one can observe on Figs. 5 (top) and 6 that an extra zippers cell of 
color 6 or 7 is not enough to get one region of each color. As a consequence, for any couple of colors 3p + 10, 3p + 11

with 0 ≤ p ≤ m, the sequence of k
4 + 2 3p + 10 3p + 11 arm dominoes must also be arranged as a stack starting from the 

corresponding contour dominoes.
The remark first made about zippers corresponds to the second part of the Claim. �

Claim 6. For each bin, at most four groups of items dominoes can match its anchors.

Proof of Claim 6. Each item has size at least 28 and therefore corresponds to at least 14 dominoes, however after placing a 
pair of anchors dominoes and four of these minimum size groups of 14 items dominoes in any possible way, no anchor cell 
of color 3m + 13 is available for a fifth group of items dominoes (see details on Fig. 9). This argument explains why all item 
and bin sizes of the original 4-Partition problem instance have been multiplied by 28 (and not simply by 4): so that each 
group of items dominoes is large enough to enforce that at most four per bin can match the anchor. �
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Fig. 8. Presentation of the base case for Claim 5. Top and middle: given that contour dominoes form a square surrounding square dominoes (Claims 1, 3
and 4), there are only two cases to consider for the positioning of arm dominoes. The first six configurations (left) present, up to rotation, symmetry and 
swap of colors, all placements of the first dominoe in the first case for some arm domino of colors a, b with a ∈ {10, 13, 16, . . . , 3m + 10} and b = a + 1. 
One can see that an extra zippers cell of color b may be useful to get one region of each color a and b only in one configuration (shown in the bottom 
part). For the others, four marked “KO” require more arm dominoes, and one marked “OK” corresponds to a correctly stacked arm domino. The second case 
is presented on the last configuration (right), any placement of a first arm domino other than the intended one leads to an impossibility by a reasoning 
analogous to the first cases (note that in this second case there is no color symmetry). Bottom: when a first arm domino is not correctly stacked but we 
can get one region of each color a and b using the extra zippers cell of color b (left), the couple of zippers dominoes (via color z = 3m + 13 + n + a−7

3
appearing only in this couple) must be connected to color d = c + 1, with c = b + 1, on the other end (middle). This is possible only with an arm domino 
of the next group (e = d + 1) also not correctly stacked (right, with the same “shift” of the stack of arm dominoes, sketched). However, this prevents the 
two anchors dominoes containing cells of color c to match contour dominoes of color c, hence these two anchors dominoes are lost and score s cannot be 
reached.

Fig. 9. Up to axial symmetry, seven different ways to place a pair of anchors in a bin (colors of the first bin are taken as an example). After placing the first 
group of at least 14 items dominoes, at least one position on the eighth row of the bin (dashed) is occupied (one can simply count available positions); 
after placing the second group, at least a second position of the eighth row is occupied; after the third group a third one; and after the fourth group 
the eighth row of the bin is full of items dominoes. However, after these four groups of items dominoes, cells of anchor color 3m + 13 cannot exceed the 
seventh row (the third row after the pair of anchors dominoes, plus one for each group of items dominoes), consequently no more group of items dominoes 
can match an anchor color and take place inside the bin.

6. Conclusion

Theorem 1 establishes that KingdominoTM shares the feature of many fun games: it requires to solve instances of an NP-
complete problem. Finding efficient moves is therefore5 a computationally hard task, and players may feel glad to encounter 
good solutions.

As we have seen in Section 4, the number of possible K-tilings may grow rapidly. The main difficulty in designing of 
the NP-hardness reduction to the K-tiling problem, has been to find an initial sequence of dominoes which imposes a 
rigid structure (with very few possible K-tiling reaching a maximum score), and still allows to be continued in order to 
implement some strong NP-complete problem (given by the instance from the reduction).

Our modeling of the game KingdominoTM abstracts various aspects of the game (as board games are finite, this is nec-
essary), and our construction in Theorem 1 is frugal in terms of crowns, but it is opulent in terms of colors (we have not 
tried to diminish the usage of colors). An open question is whether the K-tiling problem is still NP-hard if the number of 
colors is bounded?

5 Unless P = NP.
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It would also be interesting to integrate the multi player notion of strategy to the abstract modeling of the game. This 
somewhat involved process in the official KingdominoTM rules may be simplified as follows. Given,

• k K-tilings K1, . . . , Kk by some sequences of dominoes τ1, . . . , τk , and
• an unordered set of dominoes τ ,

the k players

1. construct k sequences of dominoes τ ′
1, . . . , τ ′

k by picking one domino at a time from τ (turn by turn, until τ ′
1, . . . , τ

′
k form 

a partition of τ ), and then
2. each player Pi plays its sequence τ ′

i from Ki .

We ask whether player i ∈ {1, . . . , k} has a winning strategy.
Remark that this modeling also discard two rules of the official KingdominoTM game. First, at the domino picking stage, 

the order in which players pick dominoes is fixed, and does not depend on the previously picked dominoes as in the official 
game. Second, the game is separated in two stages: a domino picking stage where players construct their τ ′

i until τ is 
empty, and then a domino placement stage where players place their τ ′

i , whereas in the official game these alternate. Also 
note that the strategy part of this multi player game is on the first stage only, the second stage only consists for each player 
Pi to maximize its score given Ki and τ ′

i .
For any k this problem is solvable in polynomial-space (PSPACE), because one can enumerate all possible game plays 

(all sequences of dominoes choices τ ′
1, . . . , τ ′

k , and for each of them the best achievable score of each player) and discover 
whether player Pi has a winning strategy or not (the existence of a winning strategy corresponds to the satisfiability of a 
quantified propositional formula).

Note that, similarly to other multi players games, starting from empty boards (only the tower for each player, i.e. τ1 =
· · · = τk = ∅), a strategy stealing argument would lead to the conclusion that the first player always has a winning strategy.6

As a consequence, adding non-empty starting boards K1, . . . , Kk is necessary, and hopefully makes a hardness proof easier 
to construct. However players’ boards are independent of each other, in the sense that each player plays its sequence of 
dominoes only on its own board, which makes the setting a bit different from PSPACE-hardness results encountered in the 
literature about multi players games, such as Hex [21,22], Checkers [23], Go [24] and other two players games with perfect 
information [25].
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