Programação Linear

MC558 - Projeto e Análise de Algoritmos II

Santiago Valdés Ravelo https://ic.unicamp.br/~santiago/ ravelo@unicamp.br

"Duality is one of the oldest and most fruitful ideas in Mathematics."

Michael F. Atiyah.

Problema dual

Primal

Considere um programa linear **PRIMAL** de minimização (**PLP**(c, A, b)) composto por dois vetores $c \in \mathbb{Q}^n$ e $b \in \mathbb{Q}^m$, e uma matriz $A \in \mathbb{Q}^{m \times n}$ $(m, n \in \mathbb{N})$, formulado como segue:

min
$$c^t x$$

s.a: $Ax \ge b$
 $x_i \ge 0 \quad \forall 1 \le i \le n$
 $x \in \mathbb{O}^n$

^{*} Restrições da forma $a_i^t \times = b_i$ podem ser escritas como $a_i^t \times \geq b_i$ e $a_i^t \times \leq b_i$, enquanto as da forma $a_i^t \times \geq b_i$ podem ser escritas como $-a_i^t \times \leq -b_i$.

Dual

Dado um programa linear primal de minimização PLP(c, A, b), o programa linear **DUAL** associado PLD(c, A, b) é formulado como segue:

$$\max b^t y$$

s.a:

$$A^{t} \mathbf{y} \le c$$

$$\mathbf{y}_{i} \ge 0 \quad \forall 1 \le i \le m$$

$$\mathbf{y} \in \mathbb{Q}^{m}$$

Exemplo. Almoço

Minimize o total de gorduras em um almoço que consiste em salda e sopa, considerando a seguinte informação nutricional:

	Vitamina A		Gorduras	
AUTS .	80 <i>mcg</i> /100 <i>g</i>		4mg/100g	
***			6mg/100g	

Os requerimentos nutricionais são: pelo menos 450mcg de vitamina A e 2mcg de vitamina B, além de evitar consumir mais de 700g.

Exemple. Almoço Formulação (aula anterior)

min $4x_{salada} + 6x_{sopa}$

s.a:

$$80x_{salada} + 60x_{sopa} \ge 450$$

$$0.4x_{salada} + 0.2x_{sopa} \ge 2$$

$$x_{salada} + x_{sopa} \le 7$$

$$x_{salada}, x_{sopa} \geq 0$$

Exemplo. Almoço Formulação como *PLP*

min $4x_{salada} + 6x_{sopa}$

s.a:

 $80x_{salada} + 60x_{sopa} \ge 450$

 $0.4x_{salada} + 0.2x_{sopa} \ge 2$

 $x_{salada} + x_{sopa} \leq 7$

 $\textbf{x}_{salada}, \textbf{x}_{sopa} \geq 0$

Exemplo. Almoço Formulação como *PLP*

min
$$4x_{salada} + 6x_{sopa}$$

 $s.a:$

$$80x_{salada} + 60x_{sopa} \ge 450$$

$$0.4x_{salada} + 0.2x_{sopa} \ge 2$$

$$x_{salada} + x_{sopa} \le 7$$

$$x_{salada}, x_{sopa} \ge 0$$

min
$$4x_{salada} + 6x_{sopa}$$

 $s.a$:
 $80x_{salada} + 60x_{sopa} \ge 450$
 $0.4x_{salada} + 0.2x_{sopa} \ge 2$
 $-x_{salada} - x_{sopa} \ge -7$
 $x_{salada}, x_{sopa} \ge 0$

Exemplo. Almoço Primal e dual

min $4x_{salada} + 6x_{sopa}$

s.a:

 $80x_{salada} + 60x_{sopa} \ge 450$

 $0.4x_{salada} + 0.2x_{sopa} \ge 2$

 $-x_{salada}-x_{sopa}\geq -7$

 $\textbf{x}_{salada}, \textbf{x}_{sopa} \geq 0$

Exemplo. Almoço Primal e dual

min $4x_{salada} + 6x_{sopa}$

s.a :

 $80x_{salada} + 60x_{sopa} \ge 450$

 $0.4x_{salada} + 0.2x_{sopa} \ge 2$

 $-x_{salada} - x_{sopa} \ge -7$

 $x_{salada}, x_{sopa} \geq 0$

max

 $450\mathbf{y_A} + 6\mathbf{y_B} - 7\mathbf{y_{peso}}$

s.a:

$$80\mathbf{y_A} + 0.4\mathbf{y_B} - \mathbf{y_{peso}} \le 4$$

$$60 x_{\text{A}} + 0.2 y_{\text{B}} - y_{\text{peso}} \leq 6$$

$$y_A,y_B,y_{peso} \geq 0$$

Cada variável é relacionada a um nutriente ou a uma medida e podem ser interpretadas como a quantidade de miligramas de gordura por cada unidade do nutriente/medida no almoço:

Cada variável é relacionada a um nutriente ou a uma medida e podem ser interpretadas como a quantidade de miligramas de gordura por cada unidade do nutriente/medida no almoço:

yA, quantidade de miligramas de gordura por unidade de vitamina A.

Cada variável é relacionada a um nutriente ou a uma medida e podem ser interpretadas como a quantidade de miligramas de gordura por cada unidade do nutriente/medida no almoço:

yA, quantidade de miligramas de gordura por unidade de vitamina A.

y_B, quantidade de miligramas de gordura por unidade de vitamina B.

Cada variável é relacionada a um nutriente ou a uma medida e podem ser interpretadas como a quantidade de miligramas de gordura por cada unidade do nutriente/medida no almoço:

yA, quantidade de miligramas de gordura por unidade de vitamina A.

 y_B , quantidade de miligramas de gordura por unidade de vitamina B.

 $\mathbf{y}_{\mathsf{peso}}$, quantidade de miligramas de gordura por cada $\mathbf{100g}$ de comida.

Cada variável é relacionada a um nutriente ou a uma medida e podem ser interpretadas como a quantidade de miligramas de gordura por cada unidade do nutriente/medida no almoço:

yA, quantidade de miligramas de gordura por unidade de vitamina A.

y_B, quantidade de miligramas de gordura por unidade de vitamina B.

 y_{peso} , quantidade de miligramas de gordura por cada 100g de comida.

O dual procura uma solução onde a quantidade de gordura por nutriente/medida não seja maior que a quantidade de gordura por prato:

Cada variável é relacionada a um nutriente ou a uma medida e podem ser interpretadas como a quantidade de miligramas de gordura por cada unidade do nutriente/medida no almoço:

yA, quantidade de miligramas de gordura por unidade de vitamina A.

y_B, quantidade de miligramas de gordura por unidade de vitamina B.

 y_{peso} , quantidade de miligramas de gordura por cada 100g de comida.

O dual procura uma solução onde a quantidade de gordura por nutriente/medida não seja maior que a quantidade de gordura por prato:

$$80 \textbf{y}_{\textbf{A}} + 0.4 \textbf{y}_{\textbf{B}} - \textbf{y}_{\textbf{peso}} \hspace{2mm} \leq \hspace{2mm} 4$$

$$60x_A + 0.2y_B - y_{peso} \leq 6$$

O dual de PLP(c, A, b) é:

O dual de PLP(c, A, b) é:

$$PLD(b, A^t, c) = PLP(-b, -A^t, -c).$$

O dual de PLP(c, A, b) é:

$$PLD(b, A^t, c) = PLP(-b, -A^t, -c).$$

O dual de PLP(c, A, b) é:

$$\mathsf{PLD}(b,A^t,c) = \mathsf{PLP}(-b,-A^t,-c).$$

$$\mathsf{PLD}(-c,(-A^t)^t,-b) = \mathsf{PLD}(-c,-A,-b)$$

O dual de PLP(c, A, b) é:

$$\mathsf{PLD}(b,A^t,c) = \mathsf{PLP}(-b,-A^t,-c).$$

$$\begin{array}{rcl}
\mathsf{PLD}(-c, (-A^t)^t, -b) & = & \mathsf{PLD}(-c, -A, -b) \\
& = & \mathsf{PLP}(-(-c), -(-A), -(-b))
\end{array}$$

O dual de PLP(c, A, b) é:

$$\mathsf{PLD}(b,A^t,c) = \mathsf{PLP}(-b,-A^t,-c).$$

$$\begin{array}{rcl}
\mathsf{PLD}(-c, (-A^t)^t, -b) & = & \mathsf{PLD}(-c, -A, -b) \\
& = & \mathsf{PLP}(-(-c), -(-A), -(-b)) \\
& = & \mathsf{PLP}(c, A, b).
\end{array}$$

O dual de PLP(c, A, b) é:

$$PLD(b, A^t, c) = PLP(-b, -A^t, -c).$$

O dual de $PLP(-b, -A^t, -c)$ é:

$$\begin{array}{rcl}
\mathsf{PLD}(-c, (-A^t)^t, -b) & = & \mathsf{PLD}(-c, -A, -b) \\
& = & \mathsf{PLP}(-(-c), -(-A), -(-b)) \\
& = & \mathsf{PLP}(c, A, b).
\end{array}$$

Portanto, o dual do dual é o primal.

TEOREMAS DE DUALIDADE

Dualidade fraca

Teorema (dualidade fraca)

Se x é uma solução viável de PLP(c, A, b) e y é uma solução viável de DLP(c, A, b), então:

$$b^t \mathbf{y} \leq c^t \mathbf{x}$$
.

$$A^t \mathbf{y} \leq c$$

$$A^t \mathbf{y} \leq c$$
 $(\mathbf{x} \geq 0)$

$$A^t \mathbf{y} \le c$$
 $(\mathbf{x} \ge 0)$
 $\Rightarrow (A^t \mathbf{y})^t \mathbf{x} \le c^t \mathbf{x}$

$$A^{t}y \le c \qquad (x \ge 0)$$

$$\Rightarrow (A^{t}y)^{t}x \le c^{t}x$$

$$\Rightarrow yAx < c^{t}x$$

$$A^{t}\mathbf{y} \leq c \qquad (\mathbf{x} \geq 0)$$

$$\Rightarrow (A^{t}\mathbf{y})^{t}\mathbf{x} \leq c^{t}\mathbf{x}$$

$$\Rightarrow \mathbf{y}A\mathbf{x} \leq c^{t}\mathbf{x} \qquad (A\mathbf{x} \geq b)$$

$$A^{t}\mathbf{y} \leq c \qquad (\mathbf{x} \geq 0)$$

$$\Rightarrow (A^{t}\mathbf{y})^{t}\mathbf{x} \leq c^{t}\mathbf{x}$$

$$\Rightarrow \mathbf{y}A\mathbf{x} \leq c^{t}\mathbf{x} \qquad (A\mathbf{x} \geq b)$$

$$\Rightarrow \mathbf{y}^{t}b \leq c^{t}\mathbf{x}$$

$$A^{t}\mathbf{y} \leq c \qquad (\mathbf{x} \geq 0)$$

$$\Rightarrow (A^{t}\mathbf{y})^{t}\mathbf{x} \leq c^{t}\mathbf{x}$$

$$\Rightarrow \mathbf{y}A\mathbf{x} \leq c^{t}\mathbf{x} \qquad (A\mathbf{x} \geq b)$$

$$\Rightarrow \mathbf{y}^{t}b \leq c^{t}\mathbf{x}$$

$$\Rightarrow b^{t}\mathbf{y} \leq c^{t}\mathbf{x}.$$

Implicações da dualidade fraca

Se PLP(c, A, b) e DPL(c, A, b) possuem soluções ótimas, então:

Implicações da dualidade fraca

Se PLP(c, A, b) e DPL(c, A, b) possuem soluções ótimas, então:

Dada qualquer solução viável y do dual, o valor b^ty é um LIMITANTE INFERIOR para o valor ótimo do primal.

Implicações da dualidade fraca

Se PLP(c, A, b) e DPL(c, A, b) possuem soluções ótimas, então:

- Dada qualquer solução viável y do dual, o valor b^ty é um LIMITANTE INFERIOR para o valor ótimo do primal.
- Dada qualquer solução viável x do primal, o valor c^t x é um LIMITANTE SUPERIOR para o valor ótimo do dual.

Dualidade forte

Teorema (dualidade forte)

 \mathbf{x}^* é uma solução ótima de PLP(c, A, b) se e somente se \mathbf{y}^* é uma solução ótima de DLP(c, A, b), onde:

$$c^t \mathbf{x}^* = b^t \mathbf{y}^*.$$

Ideia da prova

Provar que se existe uma solução ótima x^* para PLP(c, A, b), então existe uma solução viável y para DLP(c, A, b), tal que: $c^tx^* = b^ty$.

¹A prova pode ser feita através do método Simplex, também uma alternativa pode ser consultando o artigo "A short note on strong duality: without Simplex and without theorems of alternatives" de Somdeb Lahiri (2017).

Ideia da prova

- Provar que se existe uma solução ótima x^* para PLP(c, A, b), então existe uma solução viável y para DLP(c, A, b), tal que: $c^tx^* = b^ty$.
- A dualidade fraca implica que tal y é ótimo de DLP(c, A, b).

¹A prova pode ser feita através do método Simplex, também uma alternativa pode ser consultando o artigo "A short note on strong duality: without Simplex and without theorems of alternatives" de Somdeb Lahiri (2017).

Ideia da prova

- Provar que se existe uma solução ótima x^* para PLP(c, A, b), então existe uma solução viável y para DLP(c, A, b), tal que: $c^tx^* = b^ty$.
- A dualidade fraca implica que tal y é ótimo de DLP(c, A, b).
- Como o dual do dual é o primal, então a outra direção é também válida.

¹A prova pode ser feita através do método Simplex, também uma alternativa pode ser consultando o artigo "A short note on strong duality: without Simplex and without theorems of alternatives" de Somdeb Lahiri (2017).

Dados um programa linear primal e seu dual, existem quatro possibilidades:

O primal e o dual primal são inviáveis.

- O primal e o dual primal são inviáveis.
- O primal é inviável e o dual ilimitado.

- O primal e o dual primal são inviáveis.
- O primal é inviável e o dual ilimitado.
- O primal é ilimitado e o dual inviável.

- O primal e o dual primal são inviáveis.
- O primal é inviável e o dual ilimitado.
- O primal é ilimitado e o dual inviável.
- O primal e o dual são viáveis e o valor de uma solução ótima é o mesmo para os dois.

Folgas complementares

Teorema (folgas complementares)

Dadas uma solução ótima x^* de PLP(c, A, b) e uma solução ótima y^* de DLP(c, A, b), temos:

$$(c - A^t \mathbf{y}^*)^t \mathbf{x}^* = 0 \ e (b - A\mathbf{x}^*)^t \mathbf{y}^* = 0.$$

$$A^t \mathbf{y} \leq c$$

$$A^t \mathbf{y} \leq c$$
 $(\mathbf{x} \geq 0)$

$$A^{t}\mathbf{y} \le c \qquad (\mathbf{x} \ge 0)$$
$$(A^{t}\mathbf{y})^{t}\mathbf{x} \le c^{t}\mathbf{x}$$

$$A^{t}y \leq c$$
 $(x \geq 0)$
 $(A^{t}y)^{t}x \leq c^{t}x$
 $y^{t}Ax \leq c^{t}x$

$$A^{t}y \leq c$$
 $(x \geq 0)$
 $(A^{t}y)^{t}x \leq c^{t}x$
 $y^{t}Ax \leq c^{t}x$ $(Ax \geq b)$

$$A^{t}\mathbf{y} \leq c \qquad (\mathbf{x} \geq 0)$$

$$\Rightarrow (A^{t}\mathbf{y})^{t}\mathbf{x} \leq c^{t}\mathbf{x}$$

$$\Rightarrow \mathbf{y}^{t}A\mathbf{x} \leq c^{t}\mathbf{x} \qquad (A\mathbf{x} \geq b)$$

$$\Rightarrow \mathbf{y}^{t}b \leq \mathbf{y}^{t}A\mathbf{x} \leq c^{t}\mathbf{x}$$

Qualquer par (x, y) de soluções viáveis do primal e o dual satisfazem:

$$A^{t}\mathbf{y} \leq c \qquad (\mathbf{x} \geq 0)$$

$$\Rightarrow (A^{t}\mathbf{y})^{t}\mathbf{x} \leq c^{t}\mathbf{x}$$

$$\Rightarrow \mathbf{y}^{t}A\mathbf{x} \leq c^{t}\mathbf{x} \qquad (A\mathbf{x} \geq b)$$

$$\Rightarrow \mathbf{y}^{t}b \leq \mathbf{y}^{t}A\mathbf{x} \leq c^{t}\mathbf{x}$$

Qualquer par (x, y) de soluções viáveis do primal e o dual satisfazem:

$$A^{t}\mathbf{y} \leq c \qquad (\mathbf{x} \geq 0)$$

$$\Rightarrow (A^{t}\mathbf{y})^{t}\mathbf{x} \leq c^{t}\mathbf{x}$$

$$\Rightarrow \mathbf{y}^{t}A\mathbf{x} \leq c^{t}\mathbf{x} \qquad (A\mathbf{x} \geq b)$$

$$\Rightarrow \mathbf{y}^{t}b \leq \mathbf{y}^{t}A\mathbf{x} \leq c^{t}\mathbf{x}$$

$$\mathbf{v}^{*t}b = \mathbf{v}^{*t}A\mathbf{x}^{*} = c^{t}\mathbf{x}^{*}$$

Qualquer par (x, y) de soluções viáveis do primal e o dual satisfazem:

$$A^{t}\mathbf{y} \leq c \qquad (\mathbf{x} \geq 0)$$

$$\Rightarrow (A^{t}\mathbf{y})^{t}\mathbf{x} \leq c^{t}\mathbf{x}$$

$$\Rightarrow \mathbf{y}^{t}A\mathbf{x} \leq c^{t}\mathbf{x} \qquad (A\mathbf{x} \geq b)$$

$$\Rightarrow \mathbf{y}^{t}b \leq \mathbf{y}^{t}A\mathbf{x} \leq c^{t}\mathbf{x}$$

$$\mathbf{y}^{*t}b = \mathbf{y}^{*t}A\mathbf{x}^* = c^t\mathbf{x}^*$$

$$\mathbf{y}^{*t}b - \mathbf{y}^{*t}A\mathbf{x}^* = 0$$

$$0 = c^t\mathbf{x}^* - \mathbf{y}^{*t}A\mathbf{x}^*$$

Qualquer par (x, y) de soluções viáveis do primal e o dual satisfazem:

$$A^{t}\mathbf{y} \leq c \qquad (\mathbf{x} \geq 0)$$

$$\Rightarrow (A^{t}\mathbf{y})^{t}\mathbf{x} \leq c^{t}\mathbf{x}$$

$$\Rightarrow \mathbf{y}^{t}A\mathbf{x} \leq c^{t}\mathbf{x} \qquad (A\mathbf{x} \geq b)$$

$$\Rightarrow \mathbf{y}^{t}b \leq \mathbf{y}^{t}A\mathbf{x} \leq c^{t}\mathbf{x}$$

$$\mathbf{y}^{*t}b = \mathbf{y}^{*t}A\mathbf{x}^{*} = c^{t}\mathbf{x}^{*}$$
 $\mathbf{y}^{*t}b - \mathbf{y}^{*t}A\mathbf{x}^{*} = 0$
 $0 = c^{t}\mathbf{x}^{*} - \mathbf{y}^{*t}A\mathbf{x}^{*}$
 $0 = (c - A^{t}\mathbf{y}^{*})^{t}\mathbf{x}$.

A solução ($x_{salada} = 3, x_{sopa} = 4$) é ótima para o problema do almoço?

$$min 4x_{salada} + 6x_{sopa}$$

s.a:

$$80x_{salada} + 60x_{sopa} \ge 450$$

 $0.4x_{salada} + 0.2x_{sopa} \ge 2$

$$-\mathbf{x}_{salada} - \mathbf{x}_{sopa} \ge -7$$

$$x_{salada}, x_{sopa} \geq 0$$

Dada a solução ($x_{salada} = 3, x_{sopa} = 4$), para testar sua otimalidade, analisamos as restrições e as variáveis duais:

Dada a solução ($x_{salada} = 3, x_{sopa} = 4$), para testar sua otimalidade, analisamos as restrições e as variáveis duais:

$$80\mathbf{x_{salada}} + 60\mathbf{x_{sopa}} \ge 450 \qquad (\mathbf{y_A})$$

$$0.4\mathbf{x_{salada}} + 0.2\mathbf{x_{sopa}} \ge 2 \qquad (\mathbf{y_B})$$

$$-\mathbf{x_{salada}} - \mathbf{x_{sopa}} \ge -7 \qquad (\mathbf{y_{peso}})$$

Dada a solução ($x_{salada} = 3, x_{sopa} = 4$), para testar sua otimalidade, analisamos as restrições e as variáveis duais:

$$80x_{salada} + 60x_{sopa} \ge 450 \qquad (y_A)$$

$$0.4x_{salada} + 0.2x_{sopa} \ge 2 \qquad (y_B)$$

$$-x_{salada} - x_{sopa} \ge -7 \qquad (y_{peso})$$

Substituímos os valores ($x_{salada} = 3, x_{sopa} = 4$) nas restrições:

Dada a solução ($x_{salada} = 3, x_{sopa} = 4$), para testar sua otimalidade, analisamos as restrições e as variáveis duais:

$$80x_{salada} + 60x_{sopa} \ge 450 \qquad (y_A)$$

$$0.4x_{salada} + 0.2x_{sopa} \ge 2 \qquad (y_B)$$

$$-x_{salada} - x_{sopa} \ge -7 \qquad (y_{peso})$$

Substituímos os valores ($x_{salada} = 3, x_{sopa} = 4$) nas restrições:

$$80(3) + 60(4) = 480 > 450 \qquad (y_A = 0)$$
$$0.4(3) + 0.2(4) = 2 \qquad (y_B \ge 0)$$
$$-3 - 4 = -7 \qquad (y_{peso} \ge 0)$$

$$80(3) + 60(4) = 480 > 450$$
 $(y_A = 0)$
 $0.4(3) + 0.2(4) = 2$ $(y_B \ge 0)$
 $-3 - 4 = -7$ $(y_{peso} \ge 0)$

$$80(3) + 60(4) = 480 > 450$$
 $(y_A = 0)$
 $0.4(3) + 0.2(4) = 2$ $(y_B \ge 0)$
 $-3 - 4 = -7$ $(y_{peso} \ge 0)$

Analisamos as restrições duais para ($y_A = 0, y_B, y_{peso}$):

$$80(3) + 60(4) = 480 > 450 (y_A = 0)$$

$$0.4(3) + 0.2(4) = 2 (y_B \ge 0)$$

$$-3 - 4 = -7 (y_{peso} \ge 0)$$

Analisamos as restrições duais para $(y_A = 0, y_B, y_{peso})$:

$$80(0) + 0.4y_B - y_{peso} \le 4$$

 $60(0) + 0.2y_B - y_{peso} \le 6$

$$80(3) + 60(4) = 480 > 450 (yA = 0)$$

$$0.4(3) + 0.2(4) = 2 (yB \ge 0)$$

$$-3 - 4 = -7 (ypeso \ge 0)$$

Analisamos as restrições duais para ($y_A = 0, y_B, y_{peso}$):

$$80(0) + 0.4y_B - y_{peso} \le 4$$

 $60(0) + 0.2y_B - y_{peso} \le 6$

As restrições duais associadas com variáveis primais que não são nulas devem ser satisfeitas na igualdade:

$$80(3) + 60(4) = 480 > 450$$
 $(y_A = 0)$
 $0.4(3) + 0.2(4) = 2$ $(y_B \ge 0)$
 $-3 - 4 = -7$ $(y_{peso} \ge 0)$

Analisamos as restrições duais para ($y_A = 0, y_B, y_{peso}$):

$$80(0) + 0.4y_B - y_{peso} \le 4$$

 $60(0) + 0.2y_B - y_{peso} \le 6$

As restrições duais associadas com variáveis primais que não são nulas devem ser satisfeitas na igualdade:

$$80(0) + 0.4y_B - y_{peso} = 4$$
 $(x_{salada} = 3 \neq 0)$
 $60(0) + 0.2y_B - y_{peso} = 6$ $(x_{sopa} = 4 \neq 0)$

$$80(0) + 0.4y_B - y_{peso} = 4$$
 $(x_{salada} = 3 \neq 0)$ $60(0) + 0.2y_B - y_{peso} = 6$ $(x_{sopa} = 4 \neq 0)$

$$80(0) + 0.4y_B - y_{peso} = 4$$
 $(x_{salada} = 3 \neq 0)$ $60(0) + 0.2y_B - y_{peso} = 6$ $(x_{sopa} = 4 \neq 0)$

A solução do sistema é ($y_A = 0, y_B = -10, y_{peso} = -8$) que não é viável.

$$80(0) + 0.4y_B - y_{peso} = 4$$
 $(x_{salada} = 3 \neq 0)$
 $60(0) + 0.2y_B - y_{peso} = 6$ $(x_{sopa} = 4 \neq 0)$

A solução do sistema é ($y_A = 0, y_B = -10, y_{peso} = -8$) que não é viável.

Como não há solução viável y do dual associada com (x_{salada} = 3, x_{sopa} = 4), temos que essa solução do primal **NÃO PODE SER ÓTIMA**.

Sobre dualidade

Vamos fazer alguns exercícios?

Exercício 1.

Responda as seguintes questões para cada um dos exercícios da aula anterior: transporte aéreo, barco de carga e comunicação entre servidores:

- a) Apresente uma formulação dual e explique o significado das variáveis.
- Selecione uma solução viável do primal e teste otimalidade via folgas complementares.

Algoritmos para PL

Simplex. George Dantzig

George Bernard Dantzig (8/11/1914-13/5/2005, Estados Unidos)

Pesquisa:

- Programação linear.
- Pesquisa operacional.
- Engenharia industrial.

Prêmios:

- John von Neumann Theory Prize do Institute for Operations Research and the Management Sciences (1975).
- National Medal of Science em Mathematical, Statistical, and Computational Sciences (1975).
- ► Harvey Prize (1985).
- Harold Pender Award (1995).

Simplex. Propriedades

Como as restrições de um programa linear definem um politopo P como região viável, se existe uma solução ótima para o programa linear, então um dos extremos do politopo é ótimo.

Ademais, os extremos do politopo são pontos em que as variáveis não nulas correspondem a colunas linearmente independentes da matriz de restrições. Portanto, se existe um ótimo, então uma solução ótima pode ser obtida considerando uma base da matriz de restrições.

Algoritmo Simplex

Ideia. Começa com uma base B da matriz de restrições A e computa a solução associada (um ponto extremo). A cada iteração, se movimente a um ponto extremo adjacente somente se o valor objetivo pode melhorar. Se existir uma melhora, então esta é obtida aumentando o valor de uma variável $\mathbf{x_i}$ cuja coluna \mathbf{i} está fora de B ($\mathbf{x_i} = 0$). Nesse caso, substituir uma coluna de B por \mathbf{i} .

Complexidade. Para garantir eficiência, o algoritmo mantém uma tabela (*tableau*) que atualiza a cada iteração. Essa tabela permite encontrar a variável x_i e calcular o novo extremo muito rápido. Contudo, no pior caso, o algoritmo precisará enumerar cada extremo, sendo o número de pontos extremos exponencial no número de variáveis do programa linear.

Elipsoides. Leonid Khachiyan

Leonid Genrikhovich Khachiyan (3/5/1952 - 29/4/2005, Rússia)

Pesquisa:

- Programação linear.
- Programação matemática.
- Teoria poliedral.
- Teoria da complexidade e dos grafos.

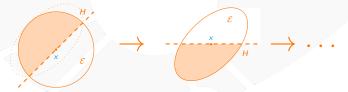
Prêmios:

Fulkerson Prize da American Mathematical Society & Mathematical Programming Society (1982).

Método de elipsoides para problemas convexos

Considere um **ORÁCULO SEPARADOR**, ou seja, uma função que recebe um conjunto convexo S e um ponto x, indicando se $x \in S$ ou retornando um hiperplano que separa x de S.

Para determinar se um conjunto convexo S é viável, começamos com um elipsoide $\mathcal E$ (grande o suficiente) que contenha S e, a cada iteração, perguntamos ao oráculo se o centro do elipsoide x está em S. Se não estiver, considere que H é um hiperplano que separa x de S e atualize $\mathcal E$ para ser o elipsoide de menor volume que contém $\mathcal E\cap H^+$. Para se $x\in S$ ou se o volume de $\mathcal E$ for menor que certo limite.



Método dos elipsoides para PL

Foi provado que o método dos elipsoides aplicado a programação linear requer tempo polinomial para solucionar o problema.

Complexidade. $O(n^6 \times \langle I \rangle)$, onde n é o número de variáveis e $\langle I \rangle$ é o tamanho (em bits) da instância.

Projeções. Narendra Karmarkar

Narendra Krishna Karmarkar (15/11/1955, Índia) Pesquisa:

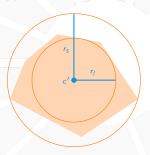
- Programação linear.
- Problemas não-lineares.
- Arquitetura de computadores.

Prêmios:

- Frederick W. Lanchester Prize da Operations Research Society of America (1984).
- Fulkerson Prize da American
 Mathematical Society & Mathematical Programming Society (1988).
- Paris Kanellakis Award da Association for Computing Machinery (2000).

Propriedade

Dados um politopo P e um ponto interior $c \in P$, existe uma transformação para um politopo P' com ponto interior c', tal que o fator entre o raio (r_s) da menor esfera que contém P' com centro em c' e o raio (r_l) da maior esfera contida em P' com centro em c' é O(n).



$$\frac{r_s}{r_l} = O(n)$$

Algoritmo

Ideia. Aplicar repetidamente transformações, cada uma seguida por uma otimização da esfera inscrita, para obter uma sequência de pontos que converge a uma solução ótima em tempo polinomial.

Complexidade. $O(n^{3.5} \times \langle I \rangle)$, onde n é o número de variáveis e $\langle I \rangle$ o tamanho (em bits) da instância.

Resultados mais rápidos

- ▶ $O((m+n)^{1.5} \times n \times L)$. Pravin M. Vaidya. "Speeding-up linear programming using fast matrix optimization". FOCS, 1989.
- ▶ $O\left(\left(nnz(A) + n^2\right) \times \sqrt{n} \times L\right)$. Yin Tat Lee and Aaron Sidford. "Efficient inverse maintenance and faster algorithms for linear programming". FOCS, 2015.
- $O(n^{2.166} \times L)$. Michael B. Cohen, Yin Tat Lee and Zhao Song. "Solving linear programs in the current matrix multiplication time". **STOC**, 2019.
- ▶ $O\left(n^{2.055} \times L\right)$. Shunhua Jiang, Zhao Song, Omri Weinstein and Hengjie Zhang. "Faster dynamic matrix inverse for faster LPs". **ArXiv**, 2020.

Famílias de algoritmos para PL

► Troca de base: Simplex, Geração de colunas, Algoritmos criss-cross.

Métodos de ponto interior: Elipsoides, Projetivos, Multiplicação de matrizes.

Programação linear inteira mista

A industria química **Sem Canudos** desenvolveu uma substancia capaz de eliminar o plástico desperdiçado. A quantidade de moléculas que a substancia consegue reduzir é três vezes o voluma da substancia. Contudo, a reação entre o plástico e a substancia aumenta a distância entre as moléculas de plástico sete vezes, que implica em um aumento de volume proporcional. Como a reação ocorre em tanques de 20000*gal*, o total do volume que a reação pode ocupar deve ser limitado por esse espaço. Ademais, a reação é somente bem sucedida se o volume de plástico não for maior que 2000*gal* a mais do que o volume da substancia. Também, por razões de segurança. a diferença entre 16 vezes o volume de plástico menos 10 vezes o da substancia deve ser de pelo menos 19000*gal*.

A industria não produz menos que 500*gal* de substancia por cada reação e para cada 1000*gal* de plástico eliminado o lucro é \$50.00, enquanto o custo de produzir 1000*gal* da substancia é \$20.00.

Qual deve ser o volume de plástico e de substancia por cada reação para maximizar o lucro?

x_p, volume (em 1000*gal*) de plástico a ser usado na reação.

 x_p , volume (em 1000gal) de plástico a ser usado na reação.

 x_s , volume (em 1000 gal) de substancia a ser usada na reação.

 x_p , volume (em 1000gal) de plástico a ser usado na reação. x_s , volume (em 1000gal) de substancia a ser usada na reação.

 x_p , volume (em 1000gal) de plástico a ser usado na reação. x_s , volume (em 1000gal) de substancia a ser usada na reação.

$$max 50x_p - 20x_s$$

 x_p , volume (em 1000gal) de plástico a ser usado na reação. x_s , volume (em 1000gal) de substancia a ser usada na reação.

$$\mathsf{max} \qquad 50 \mathsf{x_p} - 20 \mathsf{x_s}$$

s.a :

 x_p , volume (em 1000gal) de plástico a ser usado na reação. x_s , volume (em 1000gal) de substancia a ser usada na reação.

$$\mathsf{max} \qquad 50 \mathsf{x_p} - 20 \mathsf{x_s}$$

$$7x_p - 3x_s \le 20$$

x_p, volume (em 1000*gal*) de plástico a ser usado na reação. x_s, volume (em 1000*gal*) de substancia a ser usada na reação.

$$\mathsf{max} \qquad 50 \textcolor{red}{\mathsf{x_p}} - 20 \textcolor{red}{\mathsf{x_s}}$$

$$7x_p - 3x_s \le 20$$
$$x_p - x_s \le 2$$

$$x_p - x_s \le 2$$

 x_p , volume (em 1000gal) de plástico a ser usado na reação. x_s , volume (em 1000gal) de substancia a ser usada na reação.

$$\mathsf{max} \qquad 50 \textcolor{red}{\mathbf{x_p}} - 20 \textcolor{red}{\mathbf{x_s}}$$

$$7x_p - 3x_s \le 20$$

$$x_p - x_s \le 2$$

$$16x_{p} - 10x_{s} \ge 19$$

 x_p , volume (em 1000gal) de plástico a ser usado na reação. x_s , volume (em 1000gal) de substancia a ser usada na reação.

max
$$50x_p - 20x_s$$
 s.a:

$$7x_{p} - 3x_{s} \le 20$$

$$x_{p} - x_{s} \le 2$$

$$16x_{p} - 10x_{s} \ge 19$$

$$x_{s} \ge 0.5$$

 x_p , volume (em 1000gal) de plástico a ser usado na reação. x_s , volume (em 1000gal) de substancia a ser usada na reação.

$$\mathsf{max} \qquad 50 \mathbf{x_p} - 20 \mathbf{x_s}$$

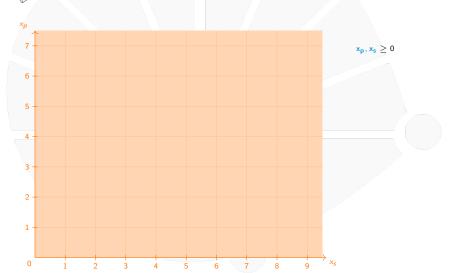
$$7x_{p} - 3x_{s} \le 20$$

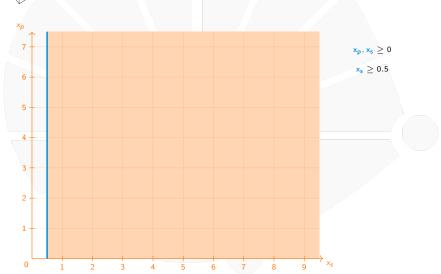
$$x_{p} - x_{s} \le 2$$

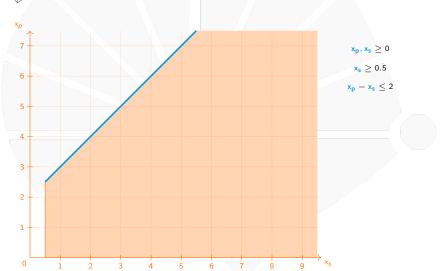
$$16x_{p} - 10x_{s} \ge 19$$

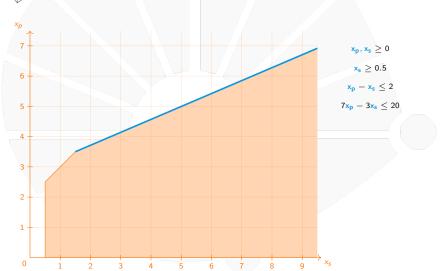
$$x_{s} \ge 0.5$$

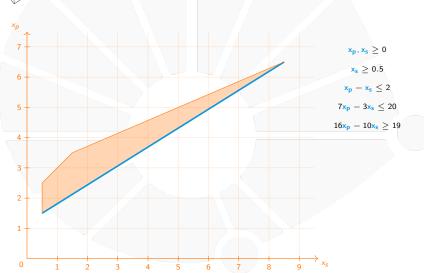
$$x_{s}, x_{p} \ge 0$$

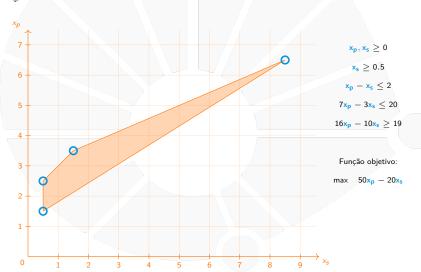


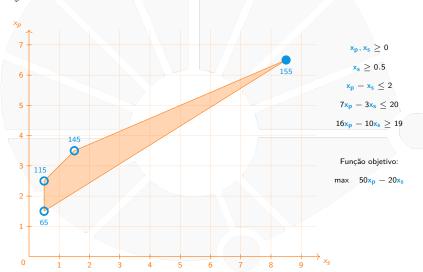






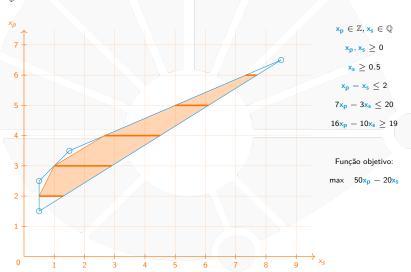






Limpando o planeta. Restrições de integralidade

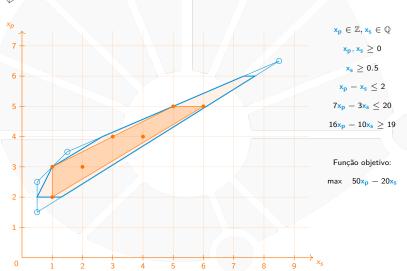
Se o plástico foi previamente processado em blocos de volume 1000gal cada, que não podem ser divididos, então o que acontece com a região viável do problema?



Limpando o planeta. Restrições de integralidade

Se o plástico foi previamente processado em blocos de volume 1000gal cada, que não podem ser divididos, então o que acontece com a região viável do problema?

Que acontece se a substancia é também produzida em contêineres de 1000gal e tampouco pode ser dividida?



Programação linear inteira mista

$$min c^t \mathbf{x} + d^t \mathbf{y}$$

s.a:

$$A\mathbf{x} + B\mathbf{y} \geq b$$

$$\mathbf{x} \in \mathbb{Q}^{n_1}_+, \mathbf{y} \in \mathbb{Z}^{n_2}_+$$

Programação linear inteira pura

 $c^t \mathbf{x}$ min s.a:

 $Ax \ge b$ $x \in \mathbb{Z}_+^n$

Programação linear binária (ou 0-1)

min $c^t \mathbf{x}$

s.a:

 $Ax \geq b$

 $\mathbf{x} \in \{0,1\}_+^n$

$$\min c^t \mathbf{x} \equiv \max -c^t \mathbf{x}$$

$$\min c^t \mathbf{x} \equiv \max -c^t \mathbf{x}$$

$$A\mathbf{x} \ge b \equiv -A\mathbf{x} \le -b$$

$$\min c^{t}x \equiv \max -c^{t}x$$

$$Ax \ge b \equiv -Ax \le -b$$

$$Ax = b \equiv \begin{cases} Ax \le b \\ Ax \ge b \end{cases}$$

$$\begin{array}{ll} \min \ c^t \mathbf{x} & \equiv \ \max \ -c^t \mathbf{x} \\ A\mathbf{x} \geq b & \equiv \ -A\mathbf{x} \leq -b \\ A\mathbf{x} = b & \equiv \ \begin{cases} A\mathbf{x} \leq b \\ A\mathbf{x} \geq b \end{cases} \\ \mathbf{x_i} \in \mathbb{Z} & \equiv \ \begin{cases} \mathbf{x_i'}, \mathbf{x_i''} \in \mathbb{Z}_+ \\ \mathbf{x_i} = \mathbf{x_i'} - \mathbf{x_i''} \end{cases} \end{array}$$

Melhora consideravelmente a capacidade de modelar:

► Maior flexibilidade na modelagem.

- ► Maior flexibilidade na modelagem.
- Modelos mais realistas.

- ► Maior flexibilidade na modelagem.
- Modelos mais realistas.
- Permite modelar restrições lógicas.

- ► Maior flexibilidade na modelagem.
- Modelos mais realistas.
- Permite modelar restrições lógicas.
- Capaz de modelar funções não lineares.

Desvantagens

► Maior dificuldade para modelar.

Desvantagens

► Maior dificuldade para modelar.

Pode ser muito mais difícil de solucionar.

Uso de resolvedores em Python

Programas comerciais

Programas livres

GLPK (GNU Linear Programming Kit)

Linguagem de programação muito intuitiva e fácil para programar.

- Linguagem de programação muito intuitiva e fácil para programar.
- Popularidade e constante crescimento na comunidade:

- Linguagem de programação muito intuitiva e fácil para programar.
- Popularidade e constante crescimento na comunidade:
 - ▶ 1^{ra} no índice TIOBE \square .

- Linguagem de programação muito intuitiva e fácil para programar.
- Popularidade e constante crescimento na comunidade:
 - ▶ 1^{ra} no índice TIOBE \square .
 - $ightharpoonup 2^{da}$ no GitHub ightharpoonup 7.

- Linguagem de programação muito intuitiva e fácil para programar.
- Popularidade e constante crescimento na comunidade:
 - ▶ 1^{ra} no índice TIOBE 🗹
 - $ightharpoonup 2^{da}$ no GitHub ightharpoonup 2.
- Interface comum para diferentes resolvedores de programação linear inteira e mista(e.g., PuLP/DipPy):

- Linguagem de programação muito intuitiva e fácil para programar.
- Popularidade e constante crescimento na comunidade:
 - ▶ 1^{ra} no índice TIOBE 🗹
 - $ightharpoonup 2^{da}$ no GitHub ightharpoonup 2.
- Interface comum para diferentes resolvedores de programação linear inteira e mista(e.g., PuLP/DipPy):
 - Simplifica a codificação de um modelo.

- Linguagem de programação muito intuitiva e fácil para programar.
- Popularidade e constante crescimento na comunidade:
 - ▶ 1^{ra} no índice TIOBE 🗹
 - ▶ 2^{da} no GitHub 🗹
- Interface comum para diferentes resolvedores de programação linear inteira e mista(e.g., PuLP/DipPy):
 - Simplifica a codificação de um modelo.
 - Facilita chamados aos resolvedores durante a execução de algoritmos ou aplicações.

Pulp. Descrição

PuLP é um modelador de programas lineares escrito em Python e permite integrar diferentes resolvedores.

Pulp. Descrição

PuLP é um modelador de programas lineares escrito em Python e permite integrar diferentes resolvedores.

As principais classes para codificar formulações são **LpProblem**, **LpVariable**, **LpConstraint** e **LpConstraintVar**.

As interfaces para os resolvedores são dadas pelas classes **LpSolver** e **LpSolver_CMD**.

Acesse a documentação aqui 🗹

Importando PuLP com suas classes e funções: from pulp import *

Importando PuLP com suas classes e funções: from pulp import *

Definindo as variáveis:

Importando PuLP com suas classes e funções: from pulp import *

Definindo as variáveis:

minhaVariavel = LpVariable(nome, lowBound = None, upBound = None, cat = 'Continuous', e = None)

Importando PuLP com suas classes e funções: from pulp import *

Definindo as variáveis:

- minhaVariavel = LpVariable(nome, lowBound = None, upBound = None, cat = 'Continuous', e = None)
- minhaVariavel = LpVariable.dicts(nome, índices, lowBound = None, upBound = None, cat = 0)

Importando PuLP com suas classes e funções: from pulp import *

Definindo as variáveis:

- minhaVariavel = LpVariable(nome, lowBound = None, upBound = None, cat = 'Continuous', e = None)
- minhaVariavel = LpVariable.dicts(nome, índices, lowBound = None, upBound = None, cat = 0)

Definindo o problema:

Importando PuLP com suas classes e funções: from pulp import *

Definindo as variáveis:

- minhaVariavel = LpVariable(nome, lowBound = None, upBound = None, cat = 'Continuous', e = None)
- minhaVariavel = LpVariable.dicts(nome, índices, lowBound = None, upBound = None, cat = 0)

Definindo o problema:

meuProblema = LpProblem(nome, LpMinimize)

Importando PuLP com suas classes e funções: from pulp import *

Definindo as variáveis:

- minhaVariavel = LpVariable(nome, lowBound = None, upBound = None, cat = 'Continuous', e = None)
- minhaVariavel = LpVariable.dicts(nome, índices, lowBound = None, upBound = None, cat = 0)

Definindo o problema:

- meuProblema = LpProblem(nome, LpMinimize)
- meuProblema = LpProblem(nome, LpMaximize)

Importando PuLP com suas classes e funções: from pulp import *

Definindo as variáveis:

- minhaVariavel = LpVariable(nome, lowBound = None, upBound = None, cat = 'Continuous', e = None)
- minhaVariavel = LpVariable.dicts(nome, índices, lowBound = None, upBound = None, cat = 0)

Definindo o problema:

- meuProblema = LpProblem(nome, LpMinimize)
- meuProblema = LpProblem(nome, LpMaximize)

Definindo a função objetivo: meuProblema += expressão, nome

Importando PuLP com suas classes e funções: from pulp import *

Definindo as variáveis:

- minhaVariavel = LpVariable(nome, lowBound = None, upBound = None, cat = 'Continuous', e = None)
- minhaVariavel = LpVariable.dicts(nome, índices, lowBound = None, upBound = None, cat = 0)

Definindo o problema:

- meuProblema = LpProblem(nome, LpMinimize)
- meuProblema = LpProblem(nome, LpMaximize)

Definindo a função objetivo: meuProblema += expressão, nome

Definindo as restrições:

Importando PuLP com suas classes e funções: from pulp import *

Definindo as variáveis:

- minhaVariavel = LpVariable(nome, lowBound = None, upBound = None, cat = 'Continuous', e = None)
- minhaVariavel = LpVariable.dicts(nome, índices, lowBound = None, upBound = None, cat = 0)

Definindo o problema:

- meuProblema = LpProblem(nome, LpMinimize)
- meuProblema = LpProblem(nome, LpMaximize)

Definindo a função objetivo: meuProblema += expressão, nome

Definindo as restrições:

► meuProblema += expressão <= valor

Codificando formulações

Importando PuLP com suas classes e funções: from pulp import *

Definindo as variáveis:

- minhaVariavel = LpVariable(nome, lowBound = None, upBound = None, cat = 'Continuous', e = None)
- minhaVariavel = LpVariable.dicts(nome, índices, lowBound = None, upBound = None, cat = 0)

Definindo o problema:

- meuProblema = LpProblem(nome, LpMinimize)
- meuProblema = LpProblem(nome, LpMaximize)

Definindo a função objetivo: meuProblema += expressão, nome

Definindo as restrições:

- ► meuProblema += expressão <= valor
- ► meuProblema += expressão == valor

Codificando formulações

Importando PuLP com suas classes e funções: from pulp import *

Definindo as variáveis:

- minhaVariavel = LpVariable(nome, lowBound = None, upBound = None, cat = 'Continuous', e = None)
- minhaVariavel = LpVariable.dicts(nome, índices, lowBound = None, upBound = None, cat = 0)

Definindo o problema:

- meuProblema = LpProblem(nome, LpMinimize)
- meuProblema = LpProblem(nome, LpMaximize)

Definindo a função objetivo: meuProblema += expressão, nome

Definindo as restrições:

- ► meuProblema += expressão <= valor
- ► meuProblema += expressão == valor
- ► meuProblema += expressão >= valor

Considere o seguinte problema:

Considere o seguinte problema:

$$\mathsf{max} \qquad 3\mathbf{x} + 2\mathbf{y}$$

Considere o seguinte problema:

$$\max \quad 3\mathbf{x} + 2\mathbf{y}$$

Considere o seguinte problema:

$$\max \quad 3\mathbf{x} + 2\mathbf{y}$$

$$x - y + z = 1$$

Considere o seguinte problema:

$$\max \quad 3\mathbf{x} + 2\mathbf{y}$$

s.a :

$$x - y + z = 1$$

$$x + 2y \le 14$$

Considere o seguinte problema:

$$\max \quad 3\mathbf{x} + 2\mathbf{y}$$

s.a :

$$x - y + z = 1$$

$$x + 2y \le 14$$

$$4x + y \le 20$$

Considere o seguinte problema:

$$\max \quad 3\mathbf{x} + 2\mathbf{y}$$

s.a :

$$x - y + z = 1$$

$$x + 2y \le 14$$

$$4x + y \le 20$$

$$\mathbf{x},\mathbf{y}\in\mathbb{Z}_+,\mathbf{z}\in\mathbb{Q}_+$$


```
\begin{array}{ll} \max & 3x + 2y \\ s.a: & \\ & x - y + z = 1 \\ & x + 2y \leq 14 \\ & 4x + y \leq 20 \\ & x, y \in \mathbb{Z}_+, z \in \mathbb{Q}_+ \end{array}
```

```
from pulp import *
    x = LpVariable("x", lowBound = 0, cat = 'Integer')
    y = LpVariable("y", lowBound = 0, cat = 'Integer')
    z = LpVariable("z", lowBound = 0)
    problema = LpProblem("ProblemaSimples",

→ LpMaximize)

    problema += 3 * x + 2 * y, "objetivo"
10
11
    problema += x - y + z == 1
12
    problema += x + 2 * y <= 14
13
    problema += 4 * x + y <= 20
14
15
```


Instância: conjunto de objetos O, função de lucro $\nu:O\to\mathbb{Q}_+$, função de pesos $\omega:O\to\mathbb{Q}_+$, peso máximo $W\in\mathbb{Q}_+$.

Instância: conjunto de objetos O, função de lucro $\nu:O\to\mathbb{Q}_+$, função de pesos $\omega:O\to\mathbb{Q}_+$, peso máximo $W\in\mathbb{Q}_+$.

Formulação:

Instância: conjunto de objetos O, função de lucro $\nu:O\to\mathbb{Q}_+$, função de pesos $\omega:O\to\mathbb{Q}_+$, peso máximo $W\in\mathbb{Q}_+$.

Formulação:

max
$$\sum \iota$$

$$\sum_{o \in O} \nu(o) \mathbf{x_o}$$

Instância: conjunto de objetos O, função de lucro $\nu:O\to\mathbb{Q}_+$, função de pesos $\omega:O\to\mathbb{Q}_+$, peso máximo $W\in\mathbb{Q}_+$.

Formulação:

$$\max \sum_{o \in O} \nu(o) \mathbf{x_o}$$

Instância: conjunto de objetos O, função de lucro $\nu:O\to\mathbb{Q}_+$, função de pesos $\omega:O\to\mathbb{Q}_+$, peso máximo $W\in\mathbb{Q}_+$.

Formulação:

$$\max \sum_{o \in O} \nu(o) \mathbf{x_o}$$

$$\sum_{\mathbf{c} \in \mathcal{O}} \omega(\mathbf{c}) \mathbf{x_o} \leq W$$

Instância: conjunto de objetos O, função de lucro $\nu: O \to \mathbb{Q}_+$, função de pesos $\omega: O \to \mathbb{Q}_+$, peso máximo $W \in \mathbb{Q}_+$.

Formulação:

$$\max \sum_{o \in O} \nu(o) \mathbf{x_o}$$

$$\sum_{o \in O} \omega(o) \mathbf{x_o} \le W$$
$$\mathbf{x_o} \in \{0, 1\}, \forall o \in O$$

$$\mathbf{x_o} \in \{0,1\}, \forall o \in C$$

Exemplo. Mochila binária

Instância: conjunto de objetos O, função de lucro $\nu:O\to\mathbb{Q}_+$, função de pesos $\omega:O\to\mathbb{Q}_+$, vetor de pesos máximos $W\in\mathbb{Q}_+^m$.

Instância: conjunto de objetos O, função de lucro $\nu:O\to\mathbb{Q}_+$, função de pesos $\omega:O\to\mathbb{Q}_+$, vetor de pesos máximos $W\in\mathbb{Q}_+^m$.

Formulação:

Instância: conjunto de objetos O, função de lucro $\nu: O \to \mathbb{Q}_+$, função de pesos $\omega: O \to \mathbb{Q}_+$, vetor de pesos máximos $W \in \mathbb{Q}_+^m$.

Formulação:

$$\max \sum_{o \in O} \sum_{i=1}^{m} \nu(o) \mathbf{x}_{oi}$$

Instância: conjunto de objetos O, função de lucro $\nu:O\to\mathbb{Q}_+$, função de pesos $\omega:O\to\mathbb{Q}_+$, vetor de pesos máximos $W\in\mathbb{Q}_+^m$.

Formulação:

$$\max \sum_{o \in O} \sum_{i=1}^{m} \nu(o) \mathbf{x_{oi}}$$

Instância: conjunto de objetos O, função de lucro $\nu:O\to\mathbb{Q}_+$, função de pesos $\omega:O\to\mathbb{Q}_+$, vetor de pesos máximos $W\in\mathbb{Q}_+^m$.

Formulação:

$$\max \sum_{o \in O} \sum_{i=1}^{m} \nu(o) \mathbf{x_{oi}}$$

$$\sum_{o} \omega(o) \mathbf{x}_{oi} \leq W_i \quad \forall 1 \leq i \leq m$$

Instância: conjunto de objetos O, função de lucro $\nu: O \to \mathbb{Q}_+$, função de pesos $\omega: O \to \mathbb{Q}_+$, vetor de pesos máximos $W \in \mathbb{Q}_+^m$.

Formulação:

$$\max \sum_{o \in O} \sum_{i=1}^{m} \nu(o) \mathbf{x}_{oi}$$

$$s.a: \sum_{o \in O} \omega(o) \mathbf{x}_{oi} \leq W_i \quad \forall 1 \leq i \leq m$$

$$\sum_{i=1}^{m} \mathbf{x}_{oi} \leq 1 \quad \forall o \in O$$

Instância: conjunto de objetos O, função de lucro $\nu: O \to \mathbb{Q}_+$, função de pesos $\omega: O \to \mathbb{Q}_+$, vetor de pesos máximos $W \in \mathbb{Q}_+^m$.

Formulação:

 $x_{0i} \in \{0,1\}, \forall o \in O, 1 < i < m$

max
$$\sum_{o \in O} \sum_{i=1}^{m} \nu(o) \mathbf{x}_{oi}$$
s.a:
$$\sum_{o \in O} \omega(o) \mathbf{x}_{oi} \leq W_i \quad \forall 1 \leq i \leq m$$

$$\sum_{i=1}^{m} \mathbf{x}_{oi} \leq 1 \quad \forall o \in O$$


```
from pulp import *
 1 2 3
    def mochilaMultipla(lucros, pesos, W):
        x = LpVariable_dicts("x", [(o, i) for o in range(len(lucros)) for i in range(len(W))].

→ lowBound = 0, upBound = 1, cat='Integer')

 5
 6
7
        problema = LpProblem("MochilaMultipla", LpMaximize)
        problema += lpSum(lucros[o] * x[o, i] for o in range(len(lucros)) for i in
       9
10
        for i in range(len(W)):
11
            problema += lpSum(pesos[o] * x[o, i] for o in range(len(lucros))) <= W[i]
12
13
        for o in range(len(W)):
14
            problema += lpSum(x[o, i] for i in range(len(W))) <= 1
15
16
```


A função list_solvers() retorna os resolvedores disponíveis:

e.g., ['GLPK_CMD', 'PYGLPK', 'CPLEX_CMD', 'CPLEX_PY', 'GUROBI', 'GUROBI_CMD', 'XPRESS', 'COIN_CMD', 'SCIP_CMD']

A função list_solvers() retorna os resolvedores disponíveis:

e.g., ['GLPK_CMD', 'PYGLPK', 'CPLEX_CMD', 'CPLEX_PY', 'GUROBI', 'GUROBI_CMD', 'XPRESS', 'COIN_CMD', 'SCIP_CMD']

Definindo o resolvedor:

A função list_solvers() retorna os resolvedores disponíveis:

e.g., ['GLPK_CMD', 'PYGLPK', CPLEX_CMD', 'CPLEX_PY', 'GUROBI', 'GUROBI_CMD', 'XPRESS', 'COIN_CMD', 'SCIP_CMD']

Definindo o resolvedor:

• e.g., solver = GUROBI(parameters).

A função list_solvers() retorna os resolvedores disponíveis:

e.g., ['GLPK_CMD', 'PYGLPK', 'CPLEX_CMD', 'CPLEX_PY', 'GUROBI', 'GUROBI_CMD', 'XPRESS', 'COIN_CMD', 'SCIP_CMD']

Definindo o resolvedor:

- e.g., solver = GUROBI(parameters).
- Alguns parâmetros podem ser incluídos: timeLimit in seconds, Cuts, Heuristics e Presolve para indicar, respectivamente, se serão usados: geração de cortes padrão, heurísticas do resolvedor e preprocessamento.

A função list_solvers() retorna os resolvedores disponíveis:

e.g., ['GLPK_CMD', 'PYGLPK', CPLEX_CMD', 'CPLEX_PY', 'GUROBI', 'GUROBI_CMD', 'XPRESS', 'COIN_CMD', 'SCIP_CMD']

Definindo o resolvedor:

- e.g., solver = GUROBI(parameters).
- Alguns parâmetros podem ser incluídos: timeLimit in seconds, Cuts, Heuristics e Presolve para indicar, respectivamente, se serão usados: geração de cortes padrão, heurísticas do resolvedor e preprocessamento.

Solucionando o problema:

A função list_solvers() retorna os resolvedores disponíveis:

e.g., ['GLPK_CMD', 'PYGLPK', 'CPLEX_CMD', 'CPLEX_PY', 'GUROBI', 'GUROBI_CMD', 'XPRESS', 'COIN_CMD', 'SCIP_CMD']

Definindo o resolvedor:

- e.g., solver = GUROBI(parameters).
- Alguns parâmetros podem ser incluídos: timeLimit in seconds, Cuts, Heuristics e Presolve para indicar, respectivamente, se serão usados: geração de cortes padrão, heurísticas do resolvedor e preprocessamento.

Solucionando o problema:

meuProblema.solve(solver)

A função list_solvers() retorna os resolvedores disponíveis:

e.g., ['GLPK_CMD', 'PYGLPK', CPLEX_CMD', 'CPLEX_PY', 'GUROBI', 'GUROBI_CMD', 'XPRESS', 'COIN_CMD', 'SCIP_CMD']

Definindo o resolvedor:

- e.g., solver = GUROBI(parameters).
- Alguns parâmetros podem ser incluídos: timeLimit in seconds, Cuts, Heuristics e Presolve para indicar, respectivamente, se serão usados: geração de cortes padrão, heurísticas do resolvedor e preprocessamento.

Solucionando o problema:

- ► meuProblema.solve(solver)
- solver.buildSolverModel(meuProblema), solver.callSolver(meuProblema) e solver.findSolutionValues(meuProblema)

A função list_solvers() retorna os resolvedores disponíveis:

e.g., ['GLPK_CMD', 'PYGLPK', 'CPLEX_CMD', 'CPLEX_PY', 'GUROBI', 'GUROBI_CMD', 'XPRESS', 'COIN_CMD', 'SCIP_CMD']

Definindo o resolvedor:

- e.g., solver = GUROBI(parameters).
- Alguns parâmetros podem ser incluídos: timeLimit in seconds, Cuts, Heuristics e Presolve para indicar, respectivamente, se serão usados: geração de cortes padrão, heurísticas do resolvedor e preprocessamento.

Solucionando o problema:

- meuProblema.solve(solver)
- solver.buildSolverModel(meuProblema), solver.callSolver(meuProblema) e solver.findSolutionValues(meuProblema)

Obtendo o valor da solução: value(meuProblema.objective).

A função list_solvers() retorna os resolvedores disponíveis:

e.g., ['GLPK_CMD', 'PYGLPK', CPLEX_CMD', 'CPLEX_PY', 'GUROBI', 'GUROBI_CMD', 'XPRESS', 'COIN_CMD', 'SCIP_CMD']

Definindo o resolvedor:

- e.g., solver = GUROBI(parameters).
- Alguns parâmetros podem ser incluídos: timeLimit in seconds, Cuts, Heuristics e Presolve para indicar, respectivamente, se serão usados: geração de cortes padrão, heurísticas do resolvedor e preprocessamento.

Solucionando o problema:

- meuProblema.solve(solver)
- solver.buildSolverModel(meuProblema), solver.callSolver(meuProblema) e solver.findSolutionValues(meuProblema)

Obtendo o valor da solução: value(meuProblema.objective).

As variáveis são elementos de meuProblema.variables() cada um com os atributos name e varValue.


```
from pulp import *
2 3 4 5 6 7 8 9 10
     x = LpVariable("x", lowBound = 0, cat = 'Integer')
     y = LpVariable("y", lowBound = 0, cat = 'Integer')
     z = LpVariable("z", lowBound = 0)
     problema = LpProblem("Problema", objetivo)
     problema += 3 * x + 2 * y, "objetivo"
11
12
13
14
     problema += x - y + z == 1
     problema += x + 2 * y <= 14
     problema += 4 * x + y <= 20
15
     problema.solve(GUROBI_CMD())
16
17
     print('Valor otimo: ' + str(value(problema.objective)))
18
     print('Solução otima: ')
19
     for variavel in problema.variables():
20
         print(' ' + variavel.name + " = " + str(variavel.varValue))
21
```


1 2 3

56789

10

11 12

13 14

15

16

17 18

19

20

21

22 23

Exemplo. Mochila binária

```
from pulp import *
def mochila(lucros, pesos, W):
    x = LpVariable.dicts("x", [o for o in range(len(lucros))], lowBound = 0, upBound = 1,

    cat='Integer')

    problema = LpProblem("MochilaBinaria", LpMaximize)
    problema += lpSum(lucros[o] * x[o] for o in range(len(lucros))), "lucro"
    problema += lpSum(pesos[o] * x[o] for o in range(len(lucros))) <= W</pre>
    solver = GUROBI(timeLimit = 3600)
    solver.buildSolverModel(problema)
    solver.callSolver(problema)
    solver.findSolutionValues(problema)
    print('Valor otimo: ' + str(value(problema.objective)))
    print('Solucao otima: ')
    for variavel in problema.variables():
                   ' + variavel.name + " = " + str(variavel.varValue))
        print('
```

Programação Linear

MC558 - Projeto e Análise de Algoritmos II

Santiago Valdés Ravelo https://ic.unicamp.br/~santiago/ ravelo@unicamp.br

