
MO615 – Exercises                2s2012 
 
Question 1 (Dataflow Analysis): In most production compilers, optimization is done using 
intermediate code that consists of simple 3-address instructions like the following: 
 
 r5 = r3 + r7 
 r6 = r5 * 8 
 
Some of the instructions in the intermediate code may be dead code because the results of the 
instructions are never used later in the program. An important optimization in compilers is dead-code 
elimination, where we remove such instructions to save space and execution time. 
 
(a) What data flow analysis should be used to discover which instructions are dead code? Describe the 
appropriate dataflow problem to use and explain how to use its results to identify dead instruction(s). 
 
(b) After performing the data flow analysis in part (a) and removing the dead code that it identifies, will 
there be any dead code in the remaining instructions? If so, why, and what needs to be done to remove 
them? If not, why not? 
 
Question 2 (Dataflow Analysis): To deal with security issues, several programming languages have a 
notion of “tainted” data. The idea is that any value read from the outside environment is marked as 
being tainted, i.e., potentially dangerous. The results of any operations that use tainted data are also 
marked tainted. There is also a way of marking a value as “not-tainted”, presumably to be used only 
after verifying that it is “safe”, whatever that may mean. For this problem, assume that the available 
operations in our intermediate language are: 
 
 x = y � z  binary operation: x is tainted if either y or z or both are tainted 
 x = y   assignment: x is tainted if y is tainted 
 x = read()  input: result x is tainted 
 x = clean(y)  clean: assign y to x, but mark x as not tainted 
 
Now we would like to use dataflow analysis on this low-level code to discover tainted variables. A 
variable that might contain a tainted value is marked as tainted. Only if we know that the value is 
guaranteed not to be tainted do we mark it so. To discover tainted variables we define the following 
sets for each basic block b: 
 
 IN

[b]
 =  set of all possibly tainted variables on entry to block b 

 OUT
[b]

 =  set of all possibly tainted variable on exit from block b 
 GEN

[b]
 =  set of all variables marked tainted in block b and not cleaned before exit 

 CLEAN
[b]

=  set of all variables cleaned in block b and not later tainted before exit 
 
The sets GEN

[b]
 and CLEAN

[b]
 can be computed once based on the static contents of each block b. The 

IN
[b]

 and OUT
[b]

 sets need to be computed iteratively during the analysis. 
 
(a) Give appropriate dataflow equations for the IN and OUT sets for a block b in terms of the IN, OUT, 
GEN, and CLEAN sets. As usual, these equations will involve some combination of local information 



about the block itself as well as information about the block’s predecessors and successors. 
 
(b)  Now consider the following flowgraph: 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Complete the following table using iterative dataflow analysis to identify the tainted variables in the IN 
and OUT sets for each block in the above graph. You should first fill in the GEN and CLEAN entries 
for each block, then iteratively solve for IN and OUT. Choose whichever direction (forward or 
backward) you wish to solve the equations. You should assume that there are no tainted variables in the 
IN set for block B1. 
 

Block GEN CLEAN IN 1 OUT 1 IN 2 OUT 2 IN 3 OUT 3 
B1  

 
       

B2  
 

       

B3  
 

       

B4  
 

       

B5  
 

       

 
 
 
Question 3 (Dataflow Analysis) The dataflow problem for reaching definitions can be defined as 
follows: 
 
 GEN

[b]
  = { set containing definition d from block b, if any } 

 KILL
[b]

 = { all other definitions that assign to a variable that is defined in b } 



 IN
[b]

      = �
p�pred[b]

 OUT
[p]

 

 OUT
[b]

  = GEN
[b]

 � (IN
[b]

 – KILL
[b]

) 
 
Compute the reaching definitions for the nodes in the following flowgraph. You should first fill in 
GEN and KILL in the table below for each block, then iteratively solve for the IN and OUT sets. 
Choose whichever direction to solve for IN and OUT that you wish (forward or backward). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Block GEN CLEAN IN 1 OUT 1 IN 2 OUT 2 IN 3 OUT 3 
B1  

 
       

B2  
 

       

B3  
 

       

B4  
 

       

B5  
 

       

 
 
Question 4 (Dataflow Analysis) An optimization technique called “code hoisting” moves expressions 
to the earliest point beyond which they would always be evaluated. An expression that is always 
evaluated beyond a given point is called very busy at that point. Once it is known at which points an 
expression is very busy, the evaluation of that expression can be moved to the earliest of those points. 
Determining these point is a backwards dataflow problem. 
 
(a) Give the general dataflow equations to determine the points at which an expression is very busy 
 
(b) Consider the following CFG. Give the KILL and GEN for the expression x * x 



 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(c) Solve the dataflow equations for the expression x * x. What optimization becomes possible? 
 
 
Question 5 (Instruction Scheduling): Suppose we have a compiler that generate code to the program 
below, where A and B are two floating-point arrays: 
 
 innerprod := 0; 
 for (i = 1; i <= n; i++) { 
  innerprod := A[i] * B[i] + innerprod; 
 } 
 
The generated code, after local optimizations and “nops” inserted to solve latency times in the target 
machine, might be like this: 
 

(a)   innerprod := 0 
(b)  i := 1 
(c)     loop:  t1 := 4 * i 
   nop 
   nop 
(d)  t 2 := t1 (A) 
(e)   t 4 := t1 (B) 
   nop 
(f)   t 5 := t 2 * t4 
   nop 
   nop 
(g)  innerprod := t5 + innerprod 
(h)  i := i + 1 
(i)   if i <= n goto loop 
   *nop 
   *nop 
   *nop 

 
The loop body (7 instr.) takes 15 cycles to execute, i.e., less than 50% of the potential performance.  
There is some parallelism between instructions, e.g. innerprod := t 5 + innerprod and i := i + 1.   But 



there are many “bubbles” in the pipeline where the processor is stalled waiting for a previous 
instruction to complete. 
 
(a) Draw a precedence graph showing the dependencies between these instructions. Label each node 
(instruction) in the graph with both the instruction letter (a-i) and its latency – the number of cycles 
between the beginning of that instruction and the end of the graph 
 
(b) Rewrite the instructions in the order they would be chosen by forward list scheduling (i.e., choosing 
at each step an instruction that is not dependent on any other instruction that has not yet been issued). If 
there is a tie at any step for which instruction would best be scheduled next, pick one of them 
arbitrarily.  
 
(c) How many cycles are required by the new schedule you created in part (b)? 
 
Question 6 (SSA): Convert the program below to SSA form. Show your work after each stage. 
 

1. Add a start node containing initializations of all registers. 
2. Draw the dominator tree. 
3. Calculate dominance frontiers. 
4. Insert φ-functions and rename temporaries to create SSA. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Question 7 (SSA): Here is a simple program that reads two numbers and prints their greatest common 
divisor as long as both numbers are positive. 
 
  x = read(); 
  y = read(); 
  while (x != y) { 
   if (x > y) { 
    x = x - y; 
   } else { /* y > x */ 
    y = y - x; 
   } 
  } 
  print(x); 



Draw a control flow graph for this program (nodes = basic blocks, edges = possible control flow), using 
Static Single Assignment (SSA) form. You should include φ-functions where needed to merge different 
versions of the same variable. You should only include necessary φ-functions and not have extraneous 
ones scattered everywhere. 
Hint: it might be easiest to sketch the flow graph first without converting it into SSA, then add the 
needed variable version numbers and φ-functions to get the final answer. 
 
 
Question 8 (Optimization): What happens if you perform constant propagation followed by constant 
folding after the loop-invariant code motion in loop below? 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
Question 9 (Loop-Invariant Code Motion): 
 
 An instruction is loop-invariant if, for each operand: 
 

1. The operand is constant, OR 
2. All definitions of that operand that reach the instruction are 

outside the loop, OR 
3. There is exactly one in-loop definition of the operand that reaches the instruction, and that 

definition is loop invariant. 
 
(a) How do we determine #2? 
  
 
(b)  For each loop-invariant instruction i: x=y+z in basic block B, we check that it satisfies the 
conditions: 
 

I. B dominates all exits of the loop 
II. x is not defined anywhere else in the loop 
III. B dominates all uses of x in the loop 

            (i.e. all uses of x in the loop can be reached only by i) 
 
 
Now, for each CFG below, show why are these conditions necessary? 



 
(I)   B dominates all exits of the loop 
 

      
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
(II)  x is not defined anywhere else in the loop 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
(III)  B dominates all uses of x in the 
loop 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
Question 10 (Optimization) You’re the professor for a compiler construction class, and you have to 
write a final exam question on code optimization. Create a small code example for the exam which 
reduces to: 
 
 return 100 
 
after the following optimizations are applied (only once) in this order: 
 

1. Common Subexpression Elimination 
2. Copy Propagation 
3. Dead Code Elimination 
4. Constant Folding 
5. Constant Propagation 
6. Constant Folding 
7. Constant Propagation 
8. Dead Code Elimination 
 

Create the answer key by showing the code before and after each optimization step. Each optimization 
should have some real impact (i.e.: your initial program should not just be return 100!!). Hint: work 
backwards. 
 
 
 


