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Chapter 5 

Multiprocessors and 
Thread-Level Parallelism 

Computer Architecture 
A Quantitative Approach, Fifth Edition 
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5.1 Introduction 
!  Importance of multiprocessing 

!  Power wall, ILP wall: power and silicon costs growed faster than 
performance 

!  Growing interest in high-end servers, cloud computing, SaaS 

!  Growth of data-intensive applications, internet, massive data…. 

!  Insight: current desktop performance is acceptable, since data-
compute intensive applications run in the cloud 

!  Improved understanding of how to use multiprocessors 
effectively: servers, natural parallelism in large data sets or large 
number of independent requests 

!  Advantages of replicating a design rather than investing in a 
unique design 
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Introduction 
!  Thread-Level parallelism 

!  Have multiple program counters 
!  Uses MIMD model 
!  Targeted for tightly-coupled shared-memory 

multiprocessors 

!  For n processors, need n threads 

!  Amount of computation assigned to each thread 
= grain size 
!  Threads can be used for data-level parallelism, but 

the overheads may outweigh the benefit 

Introduction 
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Types 
!  Symmetric multiprocessors 

(SMP) 
!  Small number of cores 
!  Share single memory with 

uniform memory latency 
!  Distributed shared memory 

(DSM) 
!  Memory distributed among 

processors 
!  Non-uniform memory access/

latency (NUMA) 
!  Processors connected via 

direct (switched) and non-
direct (multi-hop) 
interconnection networks 

Introduction 
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Challenges of Parallel Processing  
!  Two main problems 

!  Limited parallelism 
!  example: to achieve a speedup of 80 with 100 processors we need 

to have 99.75% of code able to run in parallel !! (see exmpl p349) 

!  Communication costs: 30-50 cycles between separate cores, 
100-500 cycle between separate chips (next slide)  

!  Solutions 
!  Limited parallelism 

!  better algorithms 

!  software systems should maximize hardware occupancy 

!  Communication costs; reducing frequency of remote data access 
!  HW: caching shared data 

!  SW: restructuring data to make more accesses local  
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Example 
!  We want a speedup of 80 with 100 processors 
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Example - Communication 
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Example - Communication 
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Cache Coherence 
!  Processors may see different values through 

their caches: 
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Cache Coherence 
!  Coherence 

!  All reads by any processor must return the most 
recently written value 

!  Writes to the same location by any two processors are 
seen in the same order by all processors 

!  Consistency 
!  When a written value will be returned by a read 
!  If a processor writes location A followed by location B, 

any processor that sees the new value of B must also 
see the new value of A 
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Enforcing Coherence 
!  Coherent caches provide: 

!  Migration:  movement of data 
!  Replication:  multiple copies of data 

!  Cache coherence protocols 
!  Directory based 

!  Sharing status of each block kept in one location 
!  Snooping 

!  Each core tracks sharing status of each block 

C
entralized S

hared-M
em

ory A
rchitectures 



12 Copyright © 2012, Elsevier Inc. All rights reserved. 

Snoopy Coherence Protocols 
!  Write invalidate 

!  On write, invalidate all other copies 
!  Use bus itself to serialize 

!  Write cannot complete until bus access is obtained 

!  Write update 
!  On write, update all copies 
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Snoopy Coherence Protocols 
!  Locating an item when a read miss occurs 

!  In write-back cache, the updated value must be sent 
to the requesting processor 

!  Cache lines marked as shared or exclusive/
modified 
!  Only writes to shared lines need an invalidate 

broadcast 
!  After this, the line is marked as exclusive 
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Snoopy Coherence Protocols 
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Snoopy Coherence Protocols 
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Snoopy Coherence Protocols: 
MSI 

Estado 
(ação 

permitida) 

estímulo que causou mudança de  
estado     
bus xaction resultante    

Miss para um bloco em estado ≠ 
inválido " dado está lá mas wrong 
tag " miss 
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Snoopy Coherence Protocols 

Figure 5.7 Cache coherence state diagram with the state transitions induced by the local 
processor shown in black and by the bus activities shown in gray. Activities on a transition 
are shown in bold.  
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Snoopy Coherence Protocols 
!  Complications for the basic MSI protocol: 

!  Operations are not atomic 
!  E.g. detect miss, acquire bus, receive a response 
!  Creates possibility of deadlock and races 
!  One solution:  processor that sends invalidate can hold bus 

until other processors receive the invalidate 

!  Extensions: 
!  Add exclusive state to indicate clean block in only one 

cache (MESI protocol) 
!  Prevents needing to write invalidate on a write if a block is 

read by a single cache them written by the same cache 
!  Owned state (MOESI) 
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Snoopy Coherence Protocols 

!  Extensions: 
!  Owned state (MOESI) 

!  Indicates that the block is owned by that cache and it is out of 
date in memory 

!  Owner must supply it on a miss and write-back it in 
replacement 

!  MSI/MESI 
!  Share a block in M state forces a write-back 
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Coherence Protocols:  Extensions 

!  Shared memory bus 
and snooping 
bandwidth is 
bottleneck for scaling 
symmetric 
multiprocessors 
!  Duplicating tags 
!  Place directory in 

outermost cache 
!  Use crossbars or point-

to-point networks with 
banked memory 
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Evolution 
!  Bus + snoop + small scale multiprocessing = ok 
!  As number or processors increase 

!  multibus: snoopy? 
!  interconnection network: snoopy? 

!  Snoopy demands broadcast, ok with bus 
!  also possible in interconnection network " traffic, latency, write 

serialization 
!  All solutions but single bus lack its easy “bus order” " 

write serialization 
!  Races? 
!  Directory is more appropriate for implementing cache 

coherence protocols in large scale multiprocessors 
!  (see history, devil in details, textbook) 
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Performance 
!  Coherence influences cache miss rate 

!  Coherence misses 
!  True sharing misses 

!  Write to shared block (transmission of invalidation) 
!  Read an invalidated block 

!  False sharing misses 
!  Read an unmodified word in an invalidated block 
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Performance Study:  OLTP L3 
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Directory Protocols 
!  Directory keeps track of every block 

!  Which caches have each block 
!  Dirty status of each block 

!  Implement in shared L3 cache 
!  Keep bit vector of size = # cores for each block in L3 
!  Not scalable beyond shared L3 

!  Implement in a distributed fashion: 
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Directory Protocols 
!  For each block, maintain state: 

!  Shared 
!  One or more nodes have the block cached, value in memory 

is up-to-date 
!  Set of node IDs 

!  Uncached 
!  Modified 

!  Exactly one node has a copy of the cache block, value in 
memory is out-of-date 

!  Owner node ID 

!  Directory maintains block states and sends 
invalidation messages 
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Directory Protocols 
!  For uncached block: 

!  Read miss 
!  Requesting node is sent the requested data and is made the 

only sharing node, block is now shared 
!  Write miss 

!  The requesting node is sent the requested data and becomes 
the sharing node, block is now exclusive 

!  For shared block: 
!  Read miss 

!  The requesting node is sent the requested data from 
memory, node is added to sharing set 

!  Write miss 
!  The requesting node is sent the value, all nodes in the 

sharing set are sent invalidate messages, sharing set only 
contains requesting node, block is now exclusive 
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Directory Protocols 
!  For modified block: 

!  Read miss 
!  The owner is sent a data fetch message, block becomes 

shared, owner sends data to the directory, data written 
back to memory, sharers set contains old owner and 
requestor 

!  Data write back 
!  Block becomes uncached, sharer set is empty 

!  Write miss 
!  Message is sent to old owner to invalidate and send the 

value to the directory, requestor becomes new owner, 
block remains exclusive 

D
istributed S

hared M
em

ory and D
irectory-B

ased C
oherence 



32 Copyright © 2012, Elsevier Inc. All rights reserved. 

Messages 
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Synchronization 
!  Basic building blocks: 

!  Atomic exchange 
!  Swaps register with memory location 

!  Test-and-set 
!  Sets under condition 

!  Fetch-and-increment 
!  Reads original value from memory and increments it in memory 

!  Requires memory read and write in uninterruptable instruction 

!  load linked/store conditional 
!  If the contents of the memory location specified by the load linked 

are changed before the store conditional to the same address, the 
store conditional fails 

S
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Synchronization 
!  Basic building blocks: 

!  Atomic exchange 
!  Swaps register with memory location 
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Synchronization 
!  Basic building blocks: 

!  Fetch-and-increment 
!  Reads original value from memory and increments it in memory 

S
ynchronization 
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Implementing Locks 
!  Spin lock 

!  If no coherence: 
   DADDUI  R2,R0,#1 

lockit:   EXCH   R2,0(R1)  ;atomic exchange 
   BNEZ   R2,lockit  ;already locked? 

!  If coherence: 
lockit:   LD   R2,0(R1)  ;load of lock 

   BNEZ   R2,lockit  ;not available-spin 
   DADDUI  R2,R0,#1  ;load locked value 
   EXCH   R2,0(R1)  ;swap 
   BNEZ   R2,lockit  ;branch if lock wasn’t 0 
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Implementing Locks 
!  Advantage of this scheme:  reduces memory 

traffic 
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Implementing Locks 
!  In summary: 

!  Step 1: P0 starts with the lock 

!  Step 2: P0 unlocks the lock 

!  Steps 3 to 5: P1 and P2 race to see which reads the unlocked value 

!  Steps 6,7: P2 wins an enters the critical section 

!  Steps 7,8: P1’s attempt fails, spins again 
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Models of Memory Consistency 
M

odels of M
em

ory C
onsistency:  A

n Introduction 

Processor 1: 
A=0 
… 
A=1 
if (B==0) … 

Processor 2: 
B=0 
… 
B=1 
if (A==0) … 

!  Should be impossible for both if-statements to be 
evaluated as true 
!  Delayed write invalidate? 

!  Sequential consistency: 
!  Result of execution should be the same as long as: 

!  Accesses on each processor were kept in order 
!  Accesses on different processors were arbitrarily interleaved 
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Models of Memory Consistency 
M

odels of M
em

ory C
onsistency:  A

n Introduction 

!  Sequential consistency (Lamport 1979): 

!  the result of any execution is the same as if the 
operations of all the processors were executed in 
some sequential order, and the operations of each 
individual processor appear in this sequence in the 
order specified by its program  
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Implementing Locks 
!  To implement, delay completion of all memory 

accesses until all invalidations caused by the 
access are completed 
!  Reduces performance! 

!  Alternatives: 
!  Program-enforced synchronization to force write on 

processor to occur before read on the other processor 
!  Requires synchronization object for A and another for B 

!  “Unlock” after write 
!  “Lock” after read 
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Relaxed Consistency Models 
!  Rules: 

!  X → Y 
!  Operation X must complete before operation Y is done 
!  Sequential consistency requires: 

!  R → W, R → R, W → R, W → W 

!  Relax W → R 
!  “Total store ordering” 

!  Relax W → W 
!  “Partial store order” 

!  Relax R → W and R → R 
!  “Weak ordering” and “release consistency” 
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Relaxed Consistency Models 
!  Consistency model is multiprocessor specific 

!  Programmers will often implement explicit 
synchronization 

!  Speculation gives much of the performance 
advantage of relaxed models with sequential 
consistency 
!  Basic idea:  if an invalidation arrives for a result that 

has not been committed, use speculation recovery 
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