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Introduction

uonoNpoU|

= SIMD architectures can exploit significant data-
level parallelism for:

= matrix-oriented scientific computing
= media-oriented image and sound processors

= SIMD is more energy efficient than MIMD
= Only needs to fetch one instruction per data operation
= Makes SIMD attractive for personal mobile devices

= SIMD allows programmer to continue to think
sequentially




SIMD Parallelism

s Vector architectures
s SIMD extensions
s Graphics Processor Units (GPUs)

s For x86 processors:
= Expect two additional cores per chip per year
= SIMD width to double every four years

= Potential speedup from SIMD to be twice that from
MIMD!
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Figure 4.1 Potential speedup via parallelism from MIMD, SIMD, and both MIMD and SIMD over time for x86
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Vector Architectures

= Basic idea:
= Read sets of data elements into “vector registers”
= Operate on those registers
= Disperse the results back into memory
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m Registers are controlled by compiler
= Used to hide memory latency
s Leverage memory bandwidth




VMIPS

s Example architecture: VMIPS
s Loosely based on Cray-1

= Vector registers
» Each register holds a 64-element, 64 bits/element vector
= Register file has 16 read ports and 8 write ports
= Vector functional units
« Fully pipelined
»« Data and control hazards are detected
= Vector load-store unit
« Fully pipelined
= One word per clock cycle after initial latency
= Scalar registers

= 32 general-purpose registers
= 32 floating-point registers

S8.1N108)IY2Jy JOJO8A\




Main memory

VMIPS Archit.

Vector
load/store

| FP add/subtract '—>
FP multiply '—>

For a 64 x 64b register file
64 x 64b elements

128 x 32b elements FP divide '—»
256 x 16b elements —
512 x 8b elements s Integer '—'

Logical '—>

Vector architecture is
attractive both for scientific

and multimedia apps Scalar
registers
Figure 4.2 The basic structure of a vector architecture, VMIPS. This proces s a scalar architecture just like

MIPS. There are also eight 64-element vector registers, and all the functional units are vector functional units.
This chapter defines special vector instructions for both arithmetic and memory accesses. The figure shows vector
units for logical and integer operations so that VMIPS looks like a standard vector processor that usually includes
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Fig 4.3
VMIPS
ISA

VV:
vector — vector

VS:
vector — scalar

ADDVV.D Vi, vz2,v3 Add elements of V2 and V3, then put each result in V1,

ADOVS.D V1,v2,F0 Add FO to each element of V2, then put each result in V1.

SUBVY.D vli,va,v3 Subtract elements of V3 from V2, then put each resultin V1.

SUBVS.D V1,v2,F0 Subtract FO from elements of V2, then put each result in V1.

SuUBsv.oD V1,FC,v2 Subtract elements of V2 from FO, then put each result in V1.

MULVV.D V1,v2,v3 Multiply elements of ¥2 and V3, then put each result in V1. o

MULVS.D Vi,ve,Fo Multiply each element of V2 by FO, then put each result in V1.

DIVVV.D v1i,v2,v3 Divide elements of ¥2 by V3, then put each result in V1.

DIWS.D V1,v2,F0 Divide elements of ¥2 by FO, then put each result in V1.

DIVSV.D V1,F0,V2 Divide FO by elements of V2, then put each result in V1.

Lv V1,Rl Load vector register V1 from memory starting at address R1.

& R1,VI Store vector register V1 into memory starting at address R1.

LVWS V1, (R1,R2) Load V1 from address at R1 with stride in RZ (i.e., R1 + i x R2).

SVWS (R1,R2),V1 Store V1 10 address at R1 with stride in RZ (i.e., R1 + 1 x R2).

LVI V1, (R1+V2) Load V1 with vector whose elements are at R1 +V2(i) (1.e., V2 is an index).

SVI (R14V2),V1 Store V1 to vector whose elements are at R1 + V2(i) (i.e., V2 is an index).

CvI V1,R] Create an index vector by storing the values 0, 1 xR1, 2xR1,...,63 x R1 into V1.

S--Vv.D V1,v2 Compare the elements (EQ, NE, GT, LT, GE, LE) in V1 and V2. If condition is true, puta

S--VS.D V1,FO I in the corresponding bit vector; otherwise put 0, Put resulting bit vector in vector-
mask register (VM). The instruction S--VS .0 performs the same compare but using
scalar value as one operand.

POP R1,VM Count the 1s in vector-mask register VM and store count in R1.

CvM Set the vector-mask register to all Is.

MTC1 VLR,RI Move contents of R1 to vector-length register VL.

MFC1 R1,VLR Move the contents of vector-length register VL to R1.

MVTM VM, FO Move contents of F0 to vector-mask register VM.

MVFM * FO, VM Move contents of vector-mask register VM to FO.




VMIPS Instructions

s ADDVV.D: add two vectors
s ADDVS.D: add a scalar to vector
s LV/SV: vector load and vector store from address
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= Example: DAXPY

L.D FO,a ; load scalar a

LV V1,Rx ; load vector X
MULVS.D V2.V1,FO ; vector-scalar multiply
LV V3,Ry : load vector Y
ADDVV V4.2, V3 . add

SV Ry,V4 ; store the result

s Requires 6 instructions vs. almost 600 for MIPS




Vector Execution Time

= EXxecution time depends on three factors:
= Length of operand vectors
= Structural hazards
= Data dependencies
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s VMIPS functional units consume one element
per clock cycle

= Execution time is approximately the vector length

= Convey

s Set of vector instructions that could potentially
execute together




Chimes

= Sequences with read-after-write dependency
hazards can be in the same convey via chaining
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s Chaining

= Allows a vector operation to start as soon as the
individual elements of its vector source operand
become available

s Chime
= Unit of time to execute one convey
= M conveys executes in m chimes
= For vector length of n, requires m x n clock cycles




LV
MULVS.D
LV
ADDVV.D
SV
Convoys:

1 LV
2 LV
3 SV

Example

V1,Rx
V2,V1,FO
V3,Ry
V4 V2,V3
Ry,V4

MULVS.D
ADDVV.D

;load vector X
;vector-scalar multiply
.load vector Y

;add two vectors
;store the sum
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(V1 - chain)
(struct. haz. LV convoys 1, 2)
(struct. haz. LV convoys 2, 3)

3 chimes, 2 FP ops per result, cycles per FLOP = 1.5
For 64 element vectors, requires 64 x 3 = 192 clock cycles




= Assume the same as Cray-1

Challenges

n  Start up time

Latency of vector functional unit
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» Floating-point add => 6 clock cycles

» Floating-point multiply => 7 clock cycles
» Floating-point divide => 20 clock cycles
» Vector load => 12 clock cycles

= Improvements:

> 1 element per clock cycle

Non-64 wide vectors

IF statements in vector code

Memory system optimizations to support vector processors
Multiple dimensional matrices

Sparse matrices

Programming a vector computer




Multiple Lanes

= Element n of vector register A is “hardwired” to element
n of vector register B
= Allows for multiple hardware lanes
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Vector Length Register

s Vector length not known at compile time?
= Use Vector Length Register (VLR)
m Use strip mining for vectors over the maximum length:

low = 0;
VL = (n % MVL); /*find odd-size piece using modulo op % */
for (j = 0; j <= (n/MVL); j=j+1) { [*outer loop*/
for (i = low; i < (low+VL); i=i+1) /*runs for length VL*/
Y[i] = a * X]i] + Y]i] ; /*main operation*/
low = low + VL; /*start of next vector®/
VL = MVL,; /*reset the length to maximum vector length*/
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}
Value of j 0 1 2 3 . . n'MVL
Range of i 0 m (m+MVL) (m+2xMVL) ... cen (n-MVL)
(m-1) (m-1)  (m-1)  (m-1) (n-1)

+MVL  +2xMVL +3xMVL




<
= (9]
Vector Mask Registers g
= Consider: 1
. =)
for (i=0;1<64;i=i+1) 3
if (X[i] = 0) =
v
X[i] = X[i] = Y[if;
s Use vector mask register to “disable” elements:
LV V1,Rx ;load vector X into V1
LV V2,Ry ;load vector Y
L.D FO,#0 :load FP zero into FO
SNEVS.D V1,FO ;sets VM(i) to 1 if V1(i)!'=FO0
SUBVV.D V1,V1,V2 ;subtract under vector mask
SV Rx,V1 ;store the result in X

s GFLOPS rate decreases!

= additional instructions executed
anyway (when vect mask reg is used)




Memory Banks

= Memory system must be designed to support high
bandwidth for vector loads and stores

m Spread accesses across multiple banks
= Control bank addresses independently
= Load or store non sequential words
= Support multiple vector processors sharing the same memory
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s Example:
= 32 processors, each generating 4 loads and 2 stores/cycle
= Processor cycle time is 2.167 ns, SRAM cycle time is 15 ns
= How many memory banks needed?




# of memory banks of Cray T90

Example

Answer

The largest configuration of a Cray T90 (Cray T932) has 32 processors, each
capable of generating 4 loads and 2 stores per clock cycle. The processor clock
cycle is 2.167 ns, while the cycle time of the SRAMs used in the memory system
is 15 ns. Calculate the minimum number of memory banks required to allow all
processors to run at full memory bandwidth.

The maximum number of memory references each cycle is 192: 32 processors
times 6 references per processor. Each SRAM bank is busy for 15/2.167 = 6.92
clock cycles, which we round up to 7 processor clock cycles. Therefore, we
require a minimum of 192 X 7 = 1344 memory banks!

The Cray T932 actually has 1024 memory banks, so the early models could not
sustain full bandwidth to all processors simultaneously. A subsequent memory
upgrade replaced the 15 ns asynchronous SRAMs with pipelined synchronous
SRAMs that more than halved the memory cycle time, thereby providing suffi-
cient bandwidth.




for (i = 0; i < 100; i=i+1)
for (j = 0;j <100; j=j+1) {
Ali][j] = 0.0;
for (k = 0; k < 100; k=k+1)
AlIN] = ALIG] + BIi[K] * DIK]LO];

<

n D
Stride e
>

=

= Consider: =
=

S

&

m  Must vectorize multiplication of rows of B with columns of D
m Use non-unit stride

= Bank conflict (stall) occurs when the same bank is hit faster than
bank busy time:

= #banks / LCM(stride,#banks) < bank busy time




Exmpl p 279

Example

Answer

Suppose we have 8 memory banks with a bank busy time of 6 clocks and a total
memory latency of 12 cycles. How long will it take to complete a 64-element
vector load with a stride of 1?7 With a stride of 32?

Since the number of banks is larger than the bank busy time, for a stride of 1 the
load will take 12 + 64 = 76 clock cycles, or 1.2 clock cycles per element. The
worst possible stride is a value that is a multiple of the number of memory banks,
as in this case with a stride of 32 and 8 memory banks. Every access to memory
(after the first one) will collide with the previous access and will have to wait for
the 6-clock-cycle bank busy time. The total time will be 12 + 1 + 6 * 63 = 391
clock cycles, or 6.1 clock cycles per element.




Gather-Scatter: Sparse Matrices

Sparse vectors are usually stored in compacted form

s Consider:
for (i=0;i<n;i=i+1)
ALKl = AIKIi] + CIM[i]];

= Where K and M designate non-zero elements of A and C

$9.4N32931Yyd4Yy 10}I9A

= K and M: same size

= Must be able to
= gather: index vector allows loading to a dense vector

= Scatter: store back in memory in the expanded form (not compacted)

s HW support to Gather-Scatter: present in all modern vector
processors. In VMIPS:

» LVI (Load Vector Indexed — Gather)
= SVI (Store Vector Indexed — Scatter)




Gather-Scatter: Sparse Matrices

| for (i=0;i<n;i=i+1)
= Ra, Rc, Rk, Rm: ALK[i] = AIK[i]] + C[MIi];

= starting vector addresses

s Use index vector:

$9.4N32931Yyd4Yy 10}I9A

LV VK, Rk load K

LVI Va, (Ra+Vk) load A[K[]]
LV Vm, Rm ‘load M

LVI Ve, (Rc+Vm) load C[M[]]
ADDVV.D Va, Va, Vc ‘add them

SVI (Ra+Vk), Va ;store A[K[]]




Programming Vec. Architectures

s Compilers can provide feedback to programmers
s Programmers can provide hints to compiler
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Operations executed  Operations executed

Benchmark in vector mode, in vector mode, Speedup from
name compiler-optimized  with programmer aid hint optimization
BDNA 96.1% 97.2% 1.52
MG3D 95.1% 94.5% 1.00
FLOS52 91.5% 88.7% N/A
ARC3D 91.1% 92.0% 1.01
SPEC77 90.3% 90.4% 1.07
MDG 87.7% 94.2% 1.49
TRFD 69.8% 73.7% 1.67
DYFESM 68.8% 65.6% N/A
ADM 42.9% 59.6% 3.60
OCEAN 42.8% 91.2% 3.92
TRACK 14.4% 54.6% 2.52
SPICE 11.5% 79.9% 4.06

QCD 4.2% 75.1% 2.15




SIMD Extensions

= Media applications operate on data types narrower than
the native word size

= Example: disconnect carry chains to “partition” adder
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Instruction category Operands

Unsigned add/subtract Thirty-two 8-bit, sixteen 16-bit, eight 32-bit, or four 64-bit
Maximum/minimum Thirty-two 8-bit, sixteen 16-bit, eight 32-bit, or four 64-bit
Average ' Thirty-two 8-bit, sixteen 16-bit, eight 32-bit, or four 64-bit
Shift right/left Thirty-two 8-bit, sixteen 16-bit, eight 32-bit, or four 64-bit
Floating point Sixteen 16-bit, eight 32-bit, four 64-bit, or two 128-bit

w
Figure 4.8 Summary of typical SIMD multimedia support for 256-bit-wide opera-
tions. Note that the IEEE 754-2008 floating-point standard added half-precision (16-bit)
and quad-precision (128-bit) floating-point operations.




SIMD Extensions

= Limitations, compared to vector instructions:

= Number of data operands encoded into op code
= (no Vector Length Register) - addition of 100°s of new op
codes
= No sophisticated addressing modes (strided, scatter-
gather)

» fewer programs can be vectorized in SIMD extension
machines

= No mask registers

= =2 increased difficulty of programming in SIMD
assembly language
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SIMD Implementations

= Implementations:

= Intel MMX (1996)

» Eight 8-bit integer ops or four 16-bit integer ops
s Streaming SIMD Extensions (SSE) (1999)

» Eight 16-bit integer ops

= Four 32-bit integer/fp ops or two 64-bit integer/fp ops
= Advanced Vector Extensions (2010)

= Four 64-bit integer/fp ops
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= Operands must be consecutive and aligned memory
locations




SIMD Implementations

s Goal: accelerate carefully written libraries (rather than for
the compiler to generate them

= With so many flaws, why are SIMD so popular?
= HW changes: easy, low cost, low area
= No need of high memory BW (Vector)

= Fewer problems with virtual memory and page faults (short
vectors)
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Exmpl p284: SIMD Code

Example To give an idea of what multimedia instructions look like, assume we added
256-bit SIMD multimedia instructions to MIPS. We concentrate on floating-
point in this example. We add the suffix “40” on instructions that operate on
four double-precision operands at once. Like vector architectures, you can
think of a SIMD processor as having lanes, four in this case. MIPS SIMD will
reuse the floating-point registers as operands for 4D instructions, just as double-
precision reused single-precision registers in the original MIPS. This example
shows MIPS SIMD code for the DAXPY loop. Assume that the starting addresses
of X and Y are in Rx and Ry, respectively. Underline the changes to the MIPS
code for SIMD.

Anwser (next page)

The changes were replacing every MIPS double-precision instruction with its 4D
equivalent, increasing the increment from 8 to 32, and changing the registers
from F2 and F4 to F4 and F8 to get enough space in the register file for four
sequential double-precision operands. So that each SIMD lane would have its
own copy of the scalar a, we copied the value of FO into registers F1, F2, and F3.
(Real SIMD instruction extensions have an instruction to broadcast a value to all
other registers in a group.) Thus, the multiply does F4*F0, F5*F1, F6*F2, and
F7*F3. While not as dramatic as the 100x reduction of dynamic instruction band-
width of VMIPS, SIMD MIPS does get a 4x reduction: 149 versus 578 instruc-

m tions executed for MIPS. -
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Example SIMD Code

s Example DAXPY:

L.D
MOV
MOV
MOV
DADDIU
Loop:
MUL.4D
L.4D
ADD.4D
S.4D
DADDIU
DADDIU
DSUBU
BNEZ

FO,a

F1, FO

F2, FO

F3, FO
R4,Rx,#512
L.4D F4,0[Rx]
F4,F4,FO
F8,0[Ry]
F8,F8,F4
O[Ry],F8
Rx,Rx,#32
Ry,Ry,#32
R20,R4,Rx
R20,Loop

;load scalar a

;copy a into F1 for SIMD MUL
;copy a into F2 for SIMD MUL
;copy a into F3 for SIMD MUL
‘last address to load

Jload X][i], X[i+1], X[i+2], X[i+3]
;axX[i],axX[i+1],axX[i+2],axX[i+3]
Jload Y[i], Y[i+1], Y[i+2], Y[i+3]
;axX[i]+Y[i], ..., axX[i+3]+Y[i+3]
;store into Y[i], Y[i+1], Y[i+2], Y[i+3]
‘increment index to X

‘increment index to Y

;compute bound

;check if done
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Roofline Performance Model

s Basic idea:

= Plot peak floating-point throughput as a function of
arithmetic intensity

= Ties together floating-point performance and memory
performance for a target machine

= Arithmetic intensity
= Floating-point operations per byte read
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Examples

= Attainable GFLOPs/sec Min = (Peak Memory BW x
Arithmetic Intensity, Peak Floating Point Pert.)

Intel Core i7 920

056 A NEC SX-9 CPU 056 4 (Nehalem)
[&] (&)
® 128 102.4 GFLOP/s 2 128
g \'o/ g
o 64 q/& D L 64 42.66 GFLOP/s
O "bfo“e’% S a
Memory | & < 5 r
w w
bound ~g 16 5 16 RS
J\h\o\ a 8 D@
2 ~ o &
g 4 g 4
> 2 >

N a
CPU 72 1 2 4 8 16 18 1/4 12 1 2 4 8 16
bound Arithmetic intensity Arithmetic intensity
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Graphical Processing Units

= Given the hardware invested to do graphics well,
how can be supplement it to improve
performance of a wider range of applications?

syun Buissasold |eodiydels

s Basic idea:

= Heterogeneous execution model
« CPU is the host, GPU is the device

= Develop a C-like programming language for GPU
= Unify all forms of GPU parallelism as CUDA thread

s Programming model is “Single Instruction Multiple
Thread”




Threads and Blocks

= A thread is associated with each data element
= [hreads are organized into blocks
= Blocks are organized into a grid
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s GPU hardware handles thread management, not
applications or OS




NVIDIA GPU Architecture

= Similarities to vector machines:
= Works well with data-level parallel problems
= Scatter-gather transfers
= Mask registers
= Large reqister files

syun buisseosold |eaiydels)

= Differences:
= NoO scalar processor
s Uses multithreading to hide memory latency

= Has many functional units, as opposed to a few
deeply pipelined units like a vector processor




Example

= Multiply two vectors of length 8192

= Code that works over all elements is the grid

= Thread blocks break this down into manageable sizes
= 512 threads per block

s SIMD instruction executes 32 elements at a time
= Thus grid size = 16 blocks

= Block is analogous to a strip-mined vector loop with
vector length of 32

syun Buissasold |eodiydels

= Block is assigned to a multithreaded SIMD processor
by the thread block scheduler

s Current-generation GPUs (Fermi) have 7-15
multithreaded SIMD processors




Terminology

s [hreads of SIMD instructions
= Each has its own PC
= [hread scheduler uses scoreboard to dispatch
= No data dependencies between threads!
= Keeps track of up to 48 threads of SIMD instructions
« Hides memory latency
s [hread block scheduler schedules blocks to
SIMD processors

= Within each SIMD processor:
= 32 SIMD lanes
= Wide and shallow compared to vector processors

syun Buissasold |eodiydels
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MORGAN KAUFMANN

Terminoloqay

More descrip-  Closest old term  Official CUDA/
Type tive name outside of GPUs  NVIDIA GPU term  Book definition
Vectorizable Vectorizable Loop  Grid A vectorizable loop, executed on the GPU, made
" Loop up of one or more Thread Blocks (bodies of
§ vectorized loop) that can execute in parallel.
Body of Body of a Thread Block A vectorized loop executed on a multithreaded
Vectorized Loop  (Strip-Mined) SIMD Processor, made up of one or more threads
| Vectorized Loop of SIMD instructions. They can communicate via
£ Local Memory.
E. Sequence of One iteration of CUDA Thread A vertical cut of a thread of SIMD instructions
& SIMD Lane a Scalar Loop corresponding to one element executed by one

Operations SIMD Lane. Result is stored depending on mask
and predicate register.

E A Thread of Thread of Vector ~ Warp A traditional thread, but it contains just SIMD
s  SIMD Instructions instructions that are executed on a multithreaded
8 Instructions SIMD Processor. Results stored depending on a
g per-element mask.

g SIMD Vector Instruction  PTX Instruction A single SIMD instruction executed across SIMD

Instruction Lanes.

Multithreaded (Multithreaded) Streaming A multithreaded SIMD Processor executes

SIMD Vector Processor ~ Multiprocessor threads of SIMD instructions, independent of

Processor other SIMD Processors.

o

§ Thread Block Scalar Processor ~ Giga Thread Assigns multiple Thread Blocks (bodies of

? Scheduler Engine vectorized loop) to multithreaded SIMD

= Processors.

@  SIMD Thread Thread scheduler ~ Warp Scheduler Hardware unit that schedules and issues threads
@ Scheduler in a Multithreaded of SIMD instructions when they are ready to

g CPU execute; includes a scoreboard to track SIMD
& Thread execution.

SIMD Lane Vector Lane Thread Processor A SIMD Lane executes the operations in a thread
of SIMD instructions on a single element. Results
stored depending on mask.

GPU Memory  Main Memory Global Memory DRAM memory accessible by all multithreaded

@ SIMD Processors in a GPU.

s Private Stack or Thread Local Memory Portion of DRAM memory private to each SIMD
E Memory Local Storage (OS) Lane.

2  Local Memory  Local Memory Shared Memory Fast local SRAM for one multithreaded SIMD

g Processor, unavailable to other SIMD Processors.
£ SIMD Lane Vector Lane Thread Processor Registers in a single SIMD Lane allocated across

Registers Registers Registers a full thread block (body of vectorized loop).
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Example
= NVIDIA GPU has 32,768 registers

= Divided into lanes
= Each SIMD thread is limited to 64 registers
= SIMD thread has up to:

= 64 vector registers of 32 32-bit elements
= 32 vector registers of 32 64-bit elements

= Fermi has 16 physical SIMD lanes, each containing
2048 registers

syun buisseosold |eaiydels)




Example

Grid

Al 0]1=B[ 0 ]1*c[ 0 ]
ssmp (Al 1 J1=B[ 1 ]=*c[ 1 ]
Thread0 [ _ - - o

AL 31 1=8B[ 31 ]*c[ 31 ]

A[ 32 1=8B[ 32 ]*c[ 32 ]
ssmp (Al 33 ]=8B[ 33 ]*C[ 33 ]

Thread Threadl . . B B . .
Block Al 63 1=B[ 63 ]*C[ 63 ]
0 Al 64 ]=B[ 64 ] *C[ 64 ]

;[ 4.7-9]-B[4;9]:C[ 4;95

A[ 480] =B [ 480 ] * C[ 480 ]
SIMDI A[ 481 ] =B[ 481 ] *C[ 481 ]

5 - - - - - - -

A[ 5111 =B[ 511 ] *cC[ 511 ]

A[ 5121 =B[ 512 ] *C[ 512 ]

;[ 76_79] :8[76-79]*-C[ 76_795

A[ 7680] =B [7680 ] * C[ 7680 ]
ssMp | Al 7681] =B [7681 ] * C[ 7681 )]
Thread0 | _ . _ - N T

A[ 77111 =B [7711 ] * c[ 7711 ]

A[ 7712]1 =B [7712 ] * C[ 7712 ]
ssMp | Al 77131 =B [7713 ] * c[ 7713 ]

Thread Threadl » . . - . o
Block A[ 7743] =B [7743 ] * C[ 7743 ]
15 Al 7744] =B [ 7744 ] * C[ 7744 ]

;[ 81_59] =-s[81-59]*—c[ 81—59]—

A[ 8160] =B [8160 ] * C[ 8160 ]
SIMD . .

: 1 A[ 8161] =B [8161 ] * C[ 8161 ]
]

8191] =B [8191 ] * C[ 8191
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Warp scheduler Scoreboard Q

Warp No. | Address | SIMD instructions | Operands? =

— Instruction . 1 42 \d.global.f64 Ready o
ORche 1 43 mul.f64 No o

3 95 shl.s32 Ready ]

1 3 96 add.s32 No -

8 11 Id.global.f64 Ready =

8 12 Id.global.f64 Ready g

E o

1 /)]

: : n

Instruction register 5

s s TR D I R D D B e Q@
SIMD Lanes C

1 0 i
Processors) a‘

Regi- | Reg | Reg | Reg | Reg | Reg | Reg | Reg | Reg | Reg | Reg | Reg | Reg | Reg | Reg | Reg
sters

TKx32 [1Kx32 [1Kx32 [1Kx32 [1Kx32 | 1Kx32 | 1Kx32 | 1Kx32 | 1Kx32 | 1Kx32 | 1Kx32 | 1Kx32 | 1IKx32 | 1Kx32 | 1Kx32 | 1Kx32

Load | Load | Load | Load | Load | Load | Load | Load | Load | Load | Load | Load | Load | Load | Load | Load
store | store | store | store | store | store | store | store | store | store | store | store | store | store | store | store
unit unit unit unit unit unit unit unit unit unit unit unit unit unit unit unit

Y )

Address coalescing unit Interconnection network
1 '
To Global
Local Memory
64 KB Memory

Figure 4.14 Simplified block diagram of a Multithreaded SIMD Processor. It has 16 SIMD lanes. The SIMD Thread
Scheduler has, say, 48 independent threads of SIMD instructions that it schedules with a table of 48 PCs.



Floor plan
of the
Fermi
GTX 480
GPU

GigaThread

L2 Cache

Figure 4.15. This diagram shows 16 multithreaded SIMD Processors. The Thread Block Scheduler is highlighted
on the left. The GTX 480 has 6 GDDRS5 ports, each 64 bits wide, supporting up to 6 GB of capacity. The Host

Interface is PCI Express 2.0 x 16. Giga Thread is the name of the scheduler that distributes thread blocks to
Multiprocessors, each of which has its own SIMD Thread Scheduler.
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Scheduling
of threads of
SIMD

Instructions

Figure 4.16. The scheduler selects a ready
thread of SIMD instructions and issues an
instruction synchronously to all the SIMD Lanes
executing the SIMD thread. Because threads of
SIMD instructions are independent, the scheduler
may select a different SIMD thread each time.

SIMD thread scheduler

Time
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SIMD thread 3 instruction 95
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SIMD thread 8 instruction 12
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Photo: Judy Schoohma‘ker
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NVIDIA Instruction Set Arch.

s |[SA is an abstraction of the hardware instruction

set

= ‘Parallel Thread Execution (PTX)”

= Uses virtual registers

= Translation to machine code is performed in software

= Example:

shl.s32 R8, blockldx, 9
add.s32 R8, R8, threadldx ;
|d.global.f64 RDO, [X+R8]
|d.global.f64 RD2, [Y+R8]
mul.f64 ROD, RDO, RD4
add.f64 ROD, RDO, RD2
st.global.f64 [Y+R8], RDO

; Thread Block ID * Block size (512 or 279)
R8 =i =my CUDA thread ID

; RDO = X][i]

; RD2 = Y][i]

; Product in RDO = RDO * RD4 (scalar a)

; Sum in RDO = RDO + RD2 (YT]i])

; Y[i] = sum (X[i]*a + Y]i])

syun buisseosold |eaiydels)




Conditional Branching

m Like vector architectures, GPU branch hardware uses
Internal masks

m AlSo uses

= Branch synchronization stack
= Entries consist of masks for each SIMD lane
= |.e. which threads commit their results (all threads execute)
= Instruction markers to manage when a branch diverges into
multiple execution paths
= Push on divergent branch
= ...and when paths converge
= Act as barriers

syun Buissasold |eodiydels

= Pops stack

s Per-thread-lane 1-bit predicate register, specified by
programmer




Example

syun buisseosold |eaiydels)

if (X[i]!'=0)
X[i] = X[i] = Y[if;
else X[i] = Z][i];
|d.global.f64 RDO, [X+R8] ; RDO = X]i]
setp.neq.s32 P11, RDO, #0 ; P1 is predicate register 1
@!'P1, bra ELSE1, *Push ; Push old mask, set new mask bits
; if P1 false, go to ELSE1
|d.global.f64 RD2, [Y+R8] ; RD2 = YIi]
sub.f64 RDO, RDO, RD2 : Difference in RDO
st.global.f64 [X+R8], RDO ; X[i] = RDO
@P1, bra ENDIF1, *Comp , complement mask bits
; if P1 true, go to ENDIF1
ELSE1: |d.global.f64 RDO, [Z+R8] ; RDO = Z]i]

st.global.f64 [X+R8], RDO ; X[i] = RDO
ENDIF1: <next instruction>, *Pop , pop to restore old mask




NVIDIA GPU Memory Structures

s Each SIMD Lane has private section of off-chip DRAM
= "Private memory”

= Contains stack frame, spilling registers, and private
variables

syun Buissasold |eodiydels

s Each multithreaded SIMD processor also has
local memory

= Shared by SIMD lanes / threads within a block

= Memory shared by SIMD processors is GPU
Memory
= Host can read and write GPU memory




NVIDIA GPU Memory Structures

CUDA Thread

Per-CUDA Thread Private Memory |

Thread block

Per-Block
Local Memory

Grid 0 Sequence

A
\/

— — — Inter-Grid Synchronization — — — GPU Memory
Grid 1

A
\

Figure 4.18 GPU Memory structures. GPU Memory is shared by all Grids (vectorized
loops), Local Memory is shared by all threads of SIMD instructions within a thread block
(body of a vectorized loop), and Private Memory is private to a single CUDA Thread.
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Loop-Level Parallelism

s Focuses on determining whether data accesses in later
iterations are dependent on data values produced in
earlier iterations

= Loop-carried dependence

s Example 1:

for (i=999: i>=0; i=i-1)
x[i] = x[i] + s:

wsig||esed |oAa1-doo buidueyug pue bunosleq

= No loop-carried dependence




Loop-Level Parallelism

= Example 2:
for (i=0; i<100; i=i+1) {
Ali+1] = A[i] + C[i]; /* S1*/
B[i+1] = BI[i] + A[i+1]; /* S2 */

s S1 and S2 use values computed in previous
iteration

|]9|jeJed [eAe1-doo Buioueyug pue bunosle

s S2 uses value computed by S1 in same iteration g




Loop-Level Parallelism

s Example 3:
for (i=0; i<100; i=i+1) {
Ali] = A[i] + B[i]; /* S1*/
B[i+1] = C[i] + D[i]; /* S2 */
}

m S1 uses value computed by S2 in previous iteration but dependence
Is not circular so loop is parallel

= [ransform to:
A[0] = A[O] + B[O];
for (i=0; i<99; i=i+1) {
B[i+1] = CI[i] + D[il;
Ali+1] = A[i+1] + BJ[i+1];

wsig||esed |oAa1-doo buidueyug pue bunosleq

}
B[100] = C[99] + D[99]:




Loop-Level Parallelism

= Example 4.
for (i=0;i<100;i=i+1) {
Ali] = BI[i] + CIi];
DIi] = Ali] * E[I];
}

= Example 5:
for (i=1;i<100;i=i+1) {
Y[i] = Y[i-1] + Y]il;

wsig||esed |oAa1-doo buidueyug pue bunosleq

}




