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Introduction 
!  SIMD architectures can exploit significant data-

level parallelism for: 
!  matrix-oriented scientific computing 
!  media-oriented image and sound processors 

!  SIMD is more energy efficient than MIMD 
!  Only needs to fetch one instruction per data operation 
!  Makes SIMD attractive for personal mobile devices 

!  SIMD allows programmer to continue to think 
sequentially 

Introduction 
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SIMD Parallelism 
!  Vector architectures 
!  SIMD extensions 
!  Graphics Processor Units (GPUs) 

!  For x86 processors: 
!  Expect two additional cores per chip per year 
!  SIMD width to double every four years 
!  Potential speedup from SIMD to be twice that from 

MIMD! 

Introduction 
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Figure 4.1 Potential speedup via parallelism from MIMD, SIMD, and both MIMD and SIMD over time for x86 
computers. This figure assumes that two cores per chip for MIMD will be added every two years and the 
number of operations for SIMD will double every four years.  

Speedup X86 
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Vector Architectures 
!  Basic idea: 

!  Read sets of data elements into “vector registers” 
!  Operate on those registers 
!  Disperse the results back into memory 

!  Registers are controlled by compiler 
!  Used to hide memory latency 
!  Leverage memory bandwidth 

Vector A
rchitectures 



6 Copyright © 2012, Elsevier Inc. All rights reserved. 

VMIPS 
!  Example architecture:  VMIPS 

!  Loosely based on Cray-1 
!  Vector registers 

!  Each register holds a 64-element, 64 bits/element vector 
!  Register file has 16 read ports and 8 write ports 

!  Vector functional units 
!  Fully pipelined 
!  Data and control hazards are detected 

!  Vector load-store unit 
!  Fully pipelined 
!  One word per clock cycle after initial latency 

!  Scalar registers 
!  32 general-purpose registers 
!  32 floating-point registers 

Vector A
rchitectures 
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Figure 4.2 The basic structure of a vector architecture, VMIPS. This processor has a scalar architecture just like 
MIPS. There are also eight 64-element vector registers, and all the functional units are vector functional units. 
This chapter defines special vector instructions for both arithmetic and memory accesses. The figure shows vector 
units for logical and integer operations so that VMIPS looks like a standard vector processor that usually includes 
these units; however, we will not be discussing these units. The vector and scalar registers have a significant 
number of read and write ports to allow multiple simultaneous vector operations. A set of crossbar switches (thick 
gray lines) connects these ports to the inputs and outputs of the vector functional units.  

VMIPS Archit. 

For a 64 x 64b register file 
 64 x 64b elements 
 128 x 32b elements 
 256 x 16b elements 
 512 x 8b elements 

Vector architecture is 
attractive both for scientific 
and multimedia apps 
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Fig 4.3 
VMIPS 
ISA 

VV:  
vector – vector 

VS:  
vector – scalar  
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VMIPS Instructions 
!  ADDVV.D:  add two vectors 
!  ADDVS.D:  add a scalar to vector 
!  LV/SV:  vector load and vector store from address 

!  Example:  DAXPY 
L.D   F0,a   ; load scalar a 
LV   V1,Rx  ; load vector X 
MULVS.D  V2,V1,F0  ; vector-scalar multiply 
LV   V3,Ry  ; load vector Y 
ADDVV   V4,V2,V3  ; add 
SV   Ry,V4  ; store the result 

!  Requires 6 instructions vs. almost 600 for MIPS 

Vector A
rchitectures 
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Vector Execution Time 
!  Execution time depends on three factors: 

!  Length of operand vectors 
!  Structural hazards 
!  Data dependencies 

!  VMIPS functional units consume one element 
per clock cycle 
!  Execution time is approximately the vector length 

!  Convey 
!  Set of vector instructions that could potentially 

execute together 

Vector A
rchitectures 



11 Copyright © 2012, Elsevier Inc. All rights reserved. 

Chimes 
!  Sequences with read-after-write dependency 

hazards can be in the same convey via chaining  

!  Chaining 
!  Allows a vector operation to start as soon as the 

individual elements of its vector source operand 
become available 

!  Chime 
!  Unit of time to execute one convey 
!  m conveys executes in m chimes 
!  For vector length of n, requires m x n clock cycles 

Vector A
rchitectures 
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Example 
LV   V1,Rx    ;load vector X 
MULVS.D  V2,V1,F0   ;vector-scalar multiply 
LV   V3,Ry    ;load vector Y 
ADDVV.D  V4,V2,V3   ;add two vectors 
SV   Ry,V4    ;store the sum 

Convoys: 
1   LV   MULVS.D  (V1 " chain ) 
2   LV   ADDVV.D  (struct. haz. LV convoys 1, 2) 
3   SV      (struct. haz. LV convoys 2, 3) 

3 chimes, 2 FP ops per result, cycles per FLOP = 1.5 
For 64 element vectors, requires 64 x 3 = 192 clock cycles 

Vector A
rchitectures 
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Challenges 
!  Start up time 

!  Latency of vector functional unit 
!  Assume the same as Cray-1 

!  Floating-point add => 6 clock cycles 
!  Floating-point multiply => 7 clock cycles 
!  Floating-point divide => 20 clock cycles 
!  Vector load => 12 clock cycles 

!  Improvements: 
!  > 1 element per clock cycle 
!  Non-64 wide vectors 
!  IF statements in vector code 
!  Memory system optimizations to support vector processors 
!  Multiple dimensional matrices 
!  Sparse matrices 
!  Programming a vector computer 

Vector A
rchitectures 
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Multiple Lanes 
!  Element n of vector register A is “hardwired” to element 

n of vector register B 
!  Allows for multiple hardware lanes 

Vector A
rchitectures 
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Vector Length Register 
!  Vector length not known at compile time? 
!  Use Vector Length Register (VLR) 
!  Use strip mining for vectors over the maximum length: 

low = 0; 
VL = (n % MVL); /*find odd-size piece using modulo op % */ 
for (j = 0; j <= (n/MVL); j=j+1) { /*outer loop*/ 

 for (i = low; i < (low+VL); i=i+1) /*runs for length VL*/ 
  Y[i] = a * X[i] + Y[i] ; /*main operation*/ 
 low = low + VL; /*start of next vector*/ 
 VL = MVL; /*reset the length to maximum vector length*/ 

} 

Vector A
rchitectures 
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Vector Mask Registers 
!  Consider: 

 for (i = 0; i < 64; i=i+1) 
  if (X[i] != 0) 
   X[i] = X[i] – Y[i]; 

!  Use vector mask register to “disable” elements: 
 LV   V1,Rx   ;load vector X into V1 
 LV   V2,Ry   ;load vector Y 
 L.D   F0,#0   ;load FP zero into F0 
 SNEVS.D  V1,F0   ;sets VM(i) to 1 if V1(i)!=F0 
 SUBVV.D  V1,V1,V2  ;subtract under vector mask 
 SV   Rx,V1   ;store the result in X 

!  GFLOPS rate decreases! 
!  additional instructions executed 

anyway (when vect mask reg is used) 

Vector A
rchitectures 
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Memory Banks 
!  Memory system must be designed to support high 

bandwidth for vector loads and stores 
!  Spread accesses across multiple banks 

!  Control bank addresses independently 
!  Load or store non sequential words 
!  Support multiple vector processors sharing the same memory 

!  Example: 
!  32 processors, each generating 4 loads and 2 stores/cycle 
!  Processor cycle time is 2.167 ns, SRAM cycle time is 15 ns 
!  How many memory banks needed? 

Vector A
rchitectures 
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# of memory banks of Cray T90 
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Stride 
!  Consider: 

 for (i = 0; i < 100; i=i+1) 
  for (j = 0; j < 100; j=j+1) { 
   A[i][j] = 0.0; 
   for (k = 0; k < 100; k=k+1) 
   A[i][j] = A[i][j] + B[i][k] * D[k][j]; 
  } 

!  Must vectorize multiplication of rows of B with columns of D 
!  Use non-unit stride 
!  Bank conflict (stall) occurs when the same bank is hit faster than 

bank busy time: 
!  #banks / LCM(stride,#banks) < bank busy time 

Vector A
rchitectures 
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Exmpl p 279 
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Gather-Scatter: Sparse Matrices 
!  Sparse vectors are usually stored in compacted form 

!  Consider: 

 for (i = 0; i < n; i=i+1) 

  A[K[i]] = A[K[i]] + C[M[i]]; 

!  Where K and M designate non-zero elements of A and C 
!  K and M: same size 

!  Must be able to 
!  gather: index vector allows loading to a dense vector 

!  scatter: store back in memory in the expanded form (not compacted) 

!  HW support to Gather-Scatter: present in all modern vector 
processors. In VMIPS:  
!  LVI (Load Vector Indexed – Gather)  

!  SVI (Store Vector Indexed – Scatter)  

V
ector A

rchitectures 
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Gather-Scatter: Sparse Matrices 
!  Ra, Rc, Rk, Rm:  

!  starting vector addresses 

!  Use index vector: 

 LV   Vk, Rk   ;load K 

 LVI  Va, (Ra+Vk)   ;load A[K[]] 

 LV   Vm, Rm   ;load M 

 LVI  Vc, (Rc+Vm)  ;load C[M[]] 

 ADDVV.D  Va, Va, Vc   ;add them 

 SVI  (Ra+Vk), Va   ;store A[K[]] 

V
ector A

rchitectures 

for (i = 0; i < n; i=i+1) 
        A[K[i]] = A[K[i]] + C[M[i]]; 



23 Copyright © 2012, Elsevier Inc. All rights reserved. 

Programming Vec. Architectures 
!  Compilers can provide feedback to programmers 
!  Programmers can provide hints to compiler 

Vector A
rchitectures 
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SIMD Extensions 
!  Media applications operate on data types narrower than 

the native word size 
!  Example:  disconnect carry chains to “partition” adder 

S
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SIMD Extensions 
!  Limitations, compared to vector instructions: 

!  Number of data operands encoded into op code 
!  (no Vector Length Register) " addition of 100´s of new op 

codes 

!  No sophisticated addressing modes (strided, scatter-
gather) 

!  fewer programs can be vectorized in SIMD extension 
machines 

!  No mask registers 
!  " increased difficulty of programming in SIMD 

assembly language 
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SIMD Implementations 
!  Implementations: 

!  Intel MMX (1996) 
!  Eight 8-bit integer ops or four 16-bit integer ops 

!  Streaming SIMD Extensions (SSE) (1999) 
!  Eight 16-bit integer ops 
!  Four 32-bit integer/fp ops or two 64-bit integer/fp ops 

!  Advanced Vector Extensions (2010) 
!  Four 64-bit integer/fp ops 

!  Operands must be consecutive and aligned memory 
locations 
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SIMD Implementations 
!  Goal: accelerate carefully written libraries (rather than for 

the compiler to generate them 
!  With so many flaws, why are SIMD so popular? 

!  HW changes: easy, low cost, low area  
!  No need of high memory BW (Vector) 
!  Fewer problems with virtual memory and page faults (short 

vectors) 
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Exmpl p284: SIMD Code 
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Example SIMD Code 
!  Example DAXPY: 

 L.D   F0,a   ;load scalar a 
 MOV  F1, F0   ;copy a into F1 for SIMD MUL 
 MOV  F2, F0   ;copy a into F2 for SIMD MUL 
 MOV  F3, F0   ;copy a into F3 for SIMD MUL 
 DADDIU  R4,Rx,#512  ;last address to load 

Loop:   L.4D F4,0[Rx]  ;load X[i], X[i+1], X[i+2], X[i+3] 
 MUL.4D  F4,F4,F0  ;a×X[i],a×X[i+1],a×X[i+2],a×X[i+3] 
 L.4D  F8,0[Ry]  ;load Y[i], Y[i+1], Y[i+2], Y[i+3] 
 ADD.4D  F8,F8,F4  ;a×X[i]+Y[i], ..., a×X[i+3]+Y[i+3] 
 S.4D  0[Ry],F8  ;store into Y[i], Y[i+1], Y[i+2], Y[i+3] 
 DADDIU  Rx,Rx,#32  ;increment index to X 
 DADDIU  Ry,Ry,#32  ;increment index to Y 
 DSUBU  R20,R4,Rx  ;compute bound 
 BNEZ  R20,Loop  ;check if done 
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Roofline Performance Model 
!  Basic idea: 

!  Plot peak floating-point throughput as a function of 
arithmetic intensity 

!  Ties together floating-point performance and memory 
performance for a target machine 

!  Arithmetic intensity 
!  Floating-point operations per byte read 
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Examples 
!  Attainable GFLOPs/sec Min = (Peak Memory BW × 

Arithmetic Intensity, Peak Floating Point Perf.) 
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Graphical Processing Units 
!  Given the hardware invested to do graphics well, 

how can be supplement it to improve 
performance of a wider range of applications? 

!  Basic idea: 
!  Heterogeneous execution model 

!  CPU is the host, GPU is the device 

!  Develop a C-like programming language for GPU 
!  Unify all forms of GPU parallelism as CUDA thread 
!  Programming model is “Single Instruction Multiple 

Thread” 
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Threads and Blocks 
!  A thread is associated with each data element 
!  Threads are organized into blocks 
!  Blocks are organized into a grid 

!  GPU hardware handles thread management, not 
applications or OS 
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NVIDIA GPU Architecture 
!  Similarities to vector machines: 

!  Works well with data-level parallel problems 
!  Scatter-gather transfers 
!  Mask registers 
!  Large register files 

!  Differences: 
!  No scalar processor 
!  Uses multithreading to hide memory latency 
!  Has many functional units, as opposed to a few 

deeply pipelined units like a vector processor 
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Example 
!  Multiply two vectors of length 8192 

!  Code that works over all elements is the grid 
!  Thread blocks break this down into manageable sizes 

!  512 threads per block 

!  SIMD instruction executes 32 elements at a time 
!  Thus grid size = 16 blocks 
!  Block is analogous to a strip-mined vector loop with 

vector length of 32 
!  Block is assigned to a multithreaded SIMD processor 

by the thread block scheduler 
!  Current-generation GPUs (Fermi) have 7-15 

multithreaded SIMD processors 
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Terminology 
!  Threads of SIMD instructions 

!  Each has its own PC 
!  Thread scheduler uses scoreboard to dispatch 
!  No data dependencies between threads! 
!  Keeps track of up to 48 threads of SIMD instructions 

!  Hides memory latency 

!  Thread block scheduler schedules blocks to 
SIMD processors 

!  Within each SIMD processor: 
!  32 SIMD lanes 
!  Wide and shallow compared to vector processors 
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Terminology 
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Example 
!  NVIDIA GPU has 32,768 registers 

!  Divided into lanes 
!  Each SIMD thread is limited to 64 registers 
!  SIMD thread has up to: 

!  64 vector registers of 32 32-bit elements 
!  32 vector registers of 32 64-bit elements 

!  Fermi has 16 physical SIMD lanes, each containing 
2048 registers 
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Floor plan 
of the 
Fermi 
GTX 480 
GPU 
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Figure 4.15. This diagram shows 16 multithreaded SIMD Processors. The Thread Block Scheduler is highlighted 
on the left. The GTX 480 has 6 GDDR5 ports, each 64 bits wide, supporting up to 6 GB of capacity. The Host 
Interface is PCI Express 2.0 x 16. Giga Thread is the name of the scheduler that distributes thread blocks to 
Multiprocessors, each of which has its own SIMD Thread Scheduler.  
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Scheduling 
of threads of 
SIMD 
instructions 
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Figure 4.16. The scheduler selects a ready 
thread of SIMD instructions and issues an 
instruction synchronously to all the SIMD Lanes 
executing the SIMD thread. Because threads of 
SIMD instructions are independent, the scheduler 
may select a different SIMD thread each time.  
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NVIDIA Instruction Set Arch. 
!  ISA is an abstraction of the hardware instruction 

set 
!  “Parallel Thread Execution (PTX)” 
!  Uses virtual registers 
!  Translation to machine code is performed in software 
!  Example: 
shl.s32  R8, blockIdx, 9  ; Thread Block ID * Block size (512 or 2ˆ9) 
add.s32  R8, R8, threadIdx ; R8 = i = my CUDA thread ID 
ld.global.f64  RD0, [X+R8]  ; RD0 = X[i] 
ld.global.f64  RD2, [Y+R8]  ; RD2 = Y[i] 
mul.f64 R0D, RD0, RD4  ; Product in RD0 = RD0 * RD4 (scalar a) 
add.f64 R0D, RD0, RD2  ; Sum in RD0 = RD0 + RD2 (Y[i]) 
st.global.f64 [Y+R8], RD0  ; Y[i] = sum (X[i]*a + Y[i]) 
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Conditional Branching 
!  Like vector architectures, GPU branch hardware uses 

internal masks 
!  Also uses 

!  Branch synchronization stack 
!  Entries consist of masks for each SIMD lane 
!  I.e. which threads commit their results (all threads execute) 

!  Instruction markers to manage when a branch diverges into 
multiple execution paths 

!  Push on divergent branch 
!  …and when paths converge 

!  Act as barriers 
!  Pops stack 

!  Per-thread-lane 1-bit predicate register, specified by 
programmer 
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Example 
 if (X[i] != 0)   
  X[i] = X[i] – Y[i]; 
 else X[i] = Z[i]; 

 ld.global.f64  RD0, [X+R8]   ; RD0 = X[i] 
 setp.neq.s32  P1, RD0, #0   ; P1 is predicate register 1 
 @!P1, bra  ELSE1, *Push   ; Push old mask, set new mask bits 
      ; if P1 false, go to ELSE1 
 ld.global.f64  RD2, [Y+R8]   ; RD2 = Y[i] 
 sub.f64  RD0, RD0, RD2   ; Difference in RD0 
 st.global.f64  [X+R8], RD0   ; X[i] = RD0 
 @P1, bra  ENDIF1, *Comp   ; complement mask bits 
      ; if P1 true, go to ENDIF1 

ELSE1:   ld.global.f64 RD0, [Z+R8]  ; RD0 = Z[i] 
   st.global.f64 [X+R8], RD0  ; X[i] = RD0 

ENDIF1:  <next instruction>, *Pop  ; pop to restore old mask 
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NVIDIA GPU Memory Structures 
!  Each SIMD Lane has private section of off-chip DRAM 

!  “Private memory” 
!  Contains stack frame, spilling registers, and private 

variables 
!  Each multithreaded SIMD processor also has 

local memory 
!  Shared by SIMD lanes / threads within a block 

!  Memory shared by SIMD processors is GPU 
Memory 
!  Host can read and write GPU memory 
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NVIDIA GPU Memory Structures 
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Loop-Level Parallelism 
!  Focuses on determining whether data accesses in later 

iterations are dependent on data values produced in 
earlier iterations 
!  Loop-carried dependence 

!  Example 1: 
 for (i=999; i>=0; i=i-1) 
  x[i] = x[i] + s; 

!  No loop-carried dependence 
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Loop-Level Parallelism 
!  Example 2: 

 for (i=0; i<100; i=i+1) { 
  A[i+1] = A[i] + C[i]; /* S1 */ 
  B[i+1] = B[i] + A[i+1]; /* S2 */ 
 } 

!  S1 and S2 use values computed in previous 
iteration 

!  S2 uses value computed by S1 in same iteration 
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Loop-Level Parallelism 
!  Example 3: 

 for (i=0; i<100; i=i+1) { 
  A[i] = A[i] + B[i]; /* S1 */ 
  B[i+1] = C[i] + D[i]; /* S2 */ 
 } 

!  S1 uses value computed by S2 in previous iteration but dependence 
is not circular so loop is parallel 

!  Transform to: 
 A[0] = A[0] + B[0]; 
 for (i=0; i<99; i=i+1) { 
  B[i+1] = C[i] + D[i]; 
  A[i+1] = A[i+1] + B[i+1]; 
 } 
 B[100] = C[99] + D[99]; 
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Loop-Level Parallelism 
!  Example 4: 

 for (i=0;i<100;i=i+1)  { 
  A[i] = B[i] + C[i]; 
  D[i] = A[i] * E[i]; 
 } 

!  Example 5: 
 for (i=1;i<100;i=i+1)  { 
  Y[i] = Y[i-1] + Y[i]; 
 } 
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