
1 Copyright © 2012, Elsevier Inc. All rights reserved.

Chapter 4

Data-Level Parallelism in
Vector, SIMD, and GPU
Architectures

Computer Architecture
A Quantitative Approach, Fifth Edition

2 Copyright © 2012, Elsevier Inc. All rights reserved.

Introduction
!  SIMD architectures can exploit significant data-

level parallelism for:
!  matrix-oriented scientific computing
!  media-oriented image and sound processors

!  SIMD is more energy efficient than MIMD
!  Only needs to fetch one instruction per data operation
!  Makes SIMD attractive for personal mobile devices

!  SIMD allows programmer to continue to think
sequentially

Introduction

3 Copyright © 2012, Elsevier Inc. All rights reserved.

SIMD Parallelism
!  Vector architectures
!  SIMD extensions
!  Graphics Processor Units (GPUs)

!  For x86 processors:
!  Expect two additional cores per chip per year
!  SIMD width to double every four years
!  Potential speedup from SIMD to be twice that from

MIMD!

Introduction

4

Figure 4.1 Potential speedup via parallelism from MIMD, SIMD, and both MIMD and SIMD over time for x86
computers. This figure assumes that two cores per chip for MIMD will be added every two years and the
number of operations for SIMD will double every four years.

Speedup X86

5 Copyright © 2012, Elsevier Inc. All rights reserved.

Vector Architectures
!  Basic idea:

!  Read sets of data elements into “vector registers”
!  Operate on those registers
!  Disperse the results back into memory

!  Registers are controlled by compiler
!  Used to hide memory latency
!  Leverage memory bandwidth

Vector A
rchitectures

6 Copyright © 2012, Elsevier Inc. All rights reserved.

VMIPS
!  Example architecture: VMIPS

!  Loosely based on Cray-1
!  Vector registers

!  Each register holds a 64-element, 64 bits/element vector
!  Register file has 16 read ports and 8 write ports

!  Vector functional units
!  Fully pipelined
!  Data and control hazards are detected

!  Vector load-store unit
!  Fully pipelined
!  One word per clock cycle after initial latency

!  Scalar registers
!  32 general-purpose registers
!  32 floating-point registers

Vector A
rchitectures

7

Figure 4.2 The basic structure of a vector architecture, VMIPS. This processor has a scalar architecture just like
MIPS. There are also eight 64-element vector registers, and all the functional units are vector functional units.
This chapter defines special vector instructions for both arithmetic and memory accesses. The figure shows vector
units for logical and integer operations so that VMIPS looks like a standard vector processor that usually includes
these units; however, we will not be discussing these units. The vector and scalar registers have a significant
number of read and write ports to allow multiple simultaneous vector operations. A set of crossbar switches (thick
gray lines) connects these ports to the inputs and outputs of the vector functional units.

VMIPS Archit.

For a 64 x 64b register file
 64 x 64b elements
 128 x 32b elements
 256 x 16b elements
 512 x 8b elements

Vector architecture is
attractive both for scientific
and multimedia apps

8

Fig 4.3
VMIPS
ISA

VV:
vector – vector

VS:
vector – scalar

9 Copyright © 2012, Elsevier Inc. All rights reserved.

VMIPS Instructions
!  ADDVV.D: add two vectors
!  ADDVS.D: add a scalar to vector
!  LV/SV: vector load and vector store from address

!  Example: DAXPY
L.D F0,a ; load scalar a
LV V1,Rx ; load vector X
MULVS.D V2,V1,F0 ; vector-scalar multiply
LV V3,Ry ; load vector Y
ADDVV V4,V2,V3 ; add
SV Ry,V4 ; store the result

!  Requires 6 instructions vs. almost 600 for MIPS

Vector A
rchitectures

10 Copyright © 2012, Elsevier Inc. All rights reserved.

Vector Execution Time
!  Execution time depends on three factors:

!  Length of operand vectors
!  Structural hazards
!  Data dependencies

!  VMIPS functional units consume one element
per clock cycle
!  Execution time is approximately the vector length

!  Convey
!  Set of vector instructions that could potentially

execute together

Vector A
rchitectures

11 Copyright © 2012, Elsevier Inc. All rights reserved.

Chimes
!  Sequences with read-after-write dependency

hazards can be in the same convey via chaining

!  Chaining
!  Allows a vector operation to start as soon as the

individual elements of its vector source operand
become available

!  Chime
!  Unit of time to execute one convey
!  m conveys executes in m chimes
!  For vector length of n, requires m x n clock cycles

Vector A
rchitectures

12 Copyright © 2012, Elsevier Inc. All rights reserved.

Example
LV V1,Rx ;load vector X
MULVS.D V2,V1,F0 ;vector-scalar multiply
LV V3,Ry ;load vector Y
ADDVV.D V4,V2,V3 ;add two vectors
SV Ry,V4 ;store the sum

Convoys:
1 LV MULVS.D (V1 " chain)
2 LV ADDVV.D (struct. haz. LV convoys 1, 2)
3 SV (struct. haz. LV convoys 2, 3)

3 chimes, 2 FP ops per result, cycles per FLOP = 1.5
For 64 element vectors, requires 64 x 3 = 192 clock cycles

Vector A
rchitectures

13 Copyright © 2012, Elsevier Inc. All rights reserved.

Challenges
!  Start up time

!  Latency of vector functional unit
!  Assume the same as Cray-1

!  Floating-point add => 6 clock cycles
!  Floating-point multiply => 7 clock cycles
!  Floating-point divide => 20 clock cycles
!  Vector load => 12 clock cycles

!  Improvements:
!  > 1 element per clock cycle
!  Non-64 wide vectors
!  IF statements in vector code
!  Memory system optimizations to support vector processors
!  Multiple dimensional matrices
!  Sparse matrices
!  Programming a vector computer

Vector A
rchitectures

14 Copyright © 2012, Elsevier Inc. All rights reserved.

Multiple Lanes
!  Element n of vector register A is “hardwired” to element

n of vector register B
!  Allows for multiple hardware lanes

Vector A
rchitectures

15 Copyright © 2012, Elsevier Inc. All rights reserved.

Vector Length Register
!  Vector length not known at compile time?
!  Use Vector Length Register (VLR)
!  Use strip mining for vectors over the maximum length:

low = 0;
VL = (n % MVL); /*find odd-size piece using modulo op % */
for (j = 0; j <= (n/MVL); j=j+1) { /*outer loop*/

 for (i = low; i < (low+VL); i=i+1) /*runs for length VL*/
 Y[i] = a * X[i] + Y[i] ; /*main operation*/
 low = low + VL; /*start of next vector*/
 VL = MVL; /*reset the length to maximum vector length*/

}

Vector A
rchitectures

16 Copyright © 2012, Elsevier Inc. All rights reserved.

Vector Mask Registers
!  Consider:

 for (i = 0; i < 64; i=i+1)
 if (X[i] != 0)
 X[i] = X[i] – Y[i];

!  Use vector mask register to “disable” elements:
 LV V1,Rx ;load vector X into V1
 LV V2,Ry ;load vector Y
 L.D F0,#0 ;load FP zero into F0
 SNEVS.D V1,F0 ;sets VM(i) to 1 if V1(i)!=F0
 SUBVV.D V1,V1,V2 ;subtract under vector mask
 SV Rx,V1 ;store the result in X

!  GFLOPS rate decreases!
!  additional instructions executed

anyway (when vect mask reg is used)

Vector A
rchitectures

17 Copyright © 2012, Elsevier Inc. All rights reserved.

Memory Banks
!  Memory system must be designed to support high

bandwidth for vector loads and stores
!  Spread accesses across multiple banks

!  Control bank addresses independently
!  Load or store non sequential words
!  Support multiple vector processors sharing the same memory

!  Example:
!  32 processors, each generating 4 loads and 2 stores/cycle
!  Processor cycle time is 2.167 ns, SRAM cycle time is 15 ns
!  How many memory banks needed?

Vector A
rchitectures

18

of memory banks of Cray T90

19 Copyright © 2012, Elsevier Inc. All rights reserved.

Stride
!  Consider:

 for (i = 0; i < 100; i=i+1)
 for (j = 0; j < 100; j=j+1) {
 A[i][j] = 0.0;
 for (k = 0; k < 100; k=k+1)
 A[i][j] = A[i][j] + B[i][k] * D[k][j];
 }

!  Must vectorize multiplication of rows of B with columns of D
!  Use non-unit stride
!  Bank conflict (stall) occurs when the same bank is hit faster than

bank busy time:
!  #banks / LCM(stride,#banks) < bank busy time

Vector A
rchitectures

20

Exmpl p 279

21

Gather-Scatter: Sparse Matrices
!  Sparse vectors are usually stored in compacted form

!  Consider:

 for (i = 0; i < n; i=i+1)

 A[K[i]] = A[K[i]] + C[M[i]];

!  Where K and M designate non-zero elements of A and C
!  K and M: same size

!  Must be able to
!  gather: index vector allows loading to a dense vector

!  scatter: store back in memory in the expanded form (not compacted)

!  HW support to Gather-Scatter: present in all modern vector
processors. In VMIPS:
!  LVI (Load Vector Indexed – Gather)

!  SVI (Store Vector Indexed – Scatter)

V
ector A

rchitectures

22

Gather-Scatter: Sparse Matrices
!  Ra, Rc, Rk, Rm:

!  starting vector addresses

!  Use index vector:

 LV Vk, Rk ;load K

 LVI Va, (Ra+Vk) ;load A[K[]]

 LV Vm, Rm ;load M

 LVI Vc, (Rc+Vm) ;load C[M[]]

 ADDVV.D Va, Va, Vc ;add them

 SVI (Ra+Vk), Va ;store A[K[]]

V
ector A

rchitectures

for (i = 0; i < n; i=i+1)
 A[K[i]] = A[K[i]] + C[M[i]];

23 Copyright © 2012, Elsevier Inc. All rights reserved.

Programming Vec. Architectures
!  Compilers can provide feedback to programmers
!  Programmers can provide hints to compiler

Vector A
rchitectures

24 Copyright © 2012, Elsevier Inc. All rights reserved.

SIMD Extensions
!  Media applications operate on data types narrower than

the native word size
!  Example: disconnect carry chains to “partition” adder

S
IM

D
 Instruction S

et E
xtensions for M

ultim
edia

25 Copyright © 2012, Elsevier Inc. All rights reserved.

SIMD Extensions
!  Limitations, compared to vector instructions:

!  Number of data operands encoded into op code
!  (no Vector Length Register) " addition of 100´s of new op

codes

!  No sophisticated addressing modes (strided, scatter-
gather)

!  fewer programs can be vectorized in SIMD extension
machines

!  No mask registers
!  " increased difficulty of programming in SIMD

assembly language

S
IM

D
 Instruction S

et E
xtensions for M

ultim
edia

26 Copyright © 2012, Elsevier Inc. All rights reserved.

SIMD Implementations
!  Implementations:

!  Intel MMX (1996)
!  Eight 8-bit integer ops or four 16-bit integer ops

!  Streaming SIMD Extensions (SSE) (1999)
!  Eight 16-bit integer ops
!  Four 32-bit integer/fp ops or two 64-bit integer/fp ops

!  Advanced Vector Extensions (2010)
!  Four 64-bit integer/fp ops

!  Operands must be consecutive and aligned memory
locations

S
IM

D
 Instruction S

et E
xtensions for M

ultim
edia

27

SIMD Implementations
!  Goal: accelerate carefully written libraries (rather than for

the compiler to generate them
!  With so many flaws, why are SIMD so popular?

!  HW changes: easy, low cost, low area
!  No need of high memory BW (Vector)
!  Fewer problems with virtual memory and page faults (short

vectors)

S
IM

D
 Instruction S

et E
xtensions for M

ultim
edia

28

Exmpl p284: SIMD Code
S

IM
D

 Instruction S
et E

xtensions for M
ultim

edia

Anwser (next page)

29 Copyright © 2012, Elsevier Inc. All rights reserved.

Example SIMD Code
!  Example DAXPY:

 L.D F0,a ;load scalar a
 MOV F1, F0 ;copy a into F1 for SIMD MUL
 MOV F2, F0 ;copy a into F2 for SIMD MUL
 MOV F3, F0 ;copy a into F3 for SIMD MUL
 DADDIU R4,Rx,#512 ;last address to load

Loop: L.4D F4,0[Rx] ;load X[i], X[i+1], X[i+2], X[i+3]
 MUL.4D F4,F4,F0 ;a×X[i],a×X[i+1],a×X[i+2],a×X[i+3]
 L.4D F8,0[Ry] ;load Y[i], Y[i+1], Y[i+2], Y[i+3]
 ADD.4D F8,F8,F4 ;a×X[i]+Y[i], ..., a×X[i+3]+Y[i+3]
 S.4D 0[Ry],F8 ;store into Y[i], Y[i+1], Y[i+2], Y[i+3]
 DADDIU Rx,Rx,#32 ;increment index to X
 DADDIU Ry,Ry,#32 ;increment index to Y
 DSUBU R20,R4,Rx ;compute bound
 BNEZ R20,Loop ;check if done

S
IM

D
 Instruction S

et E
xtensions for M

ultim
edia

30 Copyright © 2012, Elsevier Inc. All rights reserved.

Roofline Performance Model
!  Basic idea:

!  Plot peak floating-point throughput as a function of
arithmetic intensity

!  Ties together floating-point performance and memory
performance for a target machine

!  Arithmetic intensity
!  Floating-point operations per byte read

S
IM

D
 Instruction S

et E
xtensions for M

ultim
edia

31 Copyright © 2012, Elsevier Inc. All rights reserved.

Examples
!  Attainable GFLOPs/sec Min = (Peak Memory BW ×

Arithmetic Intensity, Peak Floating Point Perf.)

S
IM

D
 Instruction S

et E
xtensions for M

ultim
edia

Memory
bound

CPU
bound

32 Copyright © 2012, Elsevier Inc. All rights reserved.

Graphical Processing Units
!  Given the hardware invested to do graphics well,

how can be supplement it to improve
performance of a wider range of applications?

!  Basic idea:
!  Heterogeneous execution model

!  CPU is the host, GPU is the device

!  Develop a C-like programming language for GPU
!  Unify all forms of GPU parallelism as CUDA thread
!  Programming model is “Single Instruction Multiple

Thread”

G
raphical P

rocessing U
nits

33 Copyright © 2012, Elsevier Inc. All rights reserved.

Threads and Blocks
!  A thread is associated with each data element
!  Threads are organized into blocks
!  Blocks are organized into a grid

!  GPU hardware handles thread management, not
applications or OS

G
raphical P

rocessing U
nits

34 Copyright © 2012, Elsevier Inc. All rights reserved.

NVIDIA GPU Architecture
!  Similarities to vector machines:

!  Works well with data-level parallel problems
!  Scatter-gather transfers
!  Mask registers
!  Large register files

!  Differences:
!  No scalar processor
!  Uses multithreading to hide memory latency
!  Has many functional units, as opposed to a few

deeply pipelined units like a vector processor

G
raphical P

rocessing U
nits

35 Copyright © 2012, Elsevier Inc. All rights reserved.

Example
!  Multiply two vectors of length 8192

!  Code that works over all elements is the grid
!  Thread blocks break this down into manageable sizes

!  512 threads per block

!  SIMD instruction executes 32 elements at a time
!  Thus grid size = 16 blocks
!  Block is analogous to a strip-mined vector loop with

vector length of 32
!  Block is assigned to a multithreaded SIMD processor

by the thread block scheduler
!  Current-generation GPUs (Fermi) have 7-15

multithreaded SIMD processors

G
raphical P

rocessing U
nits

36 Copyright © 2012, Elsevier Inc. All rights reserved.

Terminology
!  Threads of SIMD instructions

!  Each has its own PC
!  Thread scheduler uses scoreboard to dispatch
!  No data dependencies between threads!
!  Keeps track of up to 48 threads of SIMD instructions

!  Hides memory latency

!  Thread block scheduler schedules blocks to
SIMD processors

!  Within each SIMD processor:
!  32 SIMD lanes
!  Wide and shallow compared to vector processors

G
raphical P

rocessing U
nits

37 Copyright © 2012, Elsevier Inc. All rights reserved.

Terminology
G

raphical P
rocessing U

nits

38 Copyright © 2012, Elsevier Inc. All rights reserved.

Example
!  NVIDIA GPU has 32,768 registers

!  Divided into lanes
!  Each SIMD thread is limited to 64 registers
!  SIMD thread has up to:

!  64 vector registers of 32 32-bit elements
!  32 vector registers of 32 64-bit elements

!  Fermi has 16 physical SIMD lanes, each containing
2048 registers

G
raphical P

rocessing U
nits

39 Copyright © 2012, Elsevier Inc. All rights reserved.

Example
G

raphical P
rocessing U

nits

40

G
raphical P

rocessing U
nits

41

Floor plan
of the
Fermi
GTX 480
GPU

G
raphical P

rocessing U
nits

Figure 4.15. This diagram shows 16 multithreaded SIMD Processors. The Thread Block Scheduler is highlighted
on the left. The GTX 480 has 6 GDDR5 ports, each 64 bits wide, supporting up to 6 GB of capacity. The Host
Interface is PCI Express 2.0 x 16. Giga Thread is the name of the scheduler that distributes thread blocks to
Multiprocessors, each of which has its own SIMD Thread Scheduler.

42

Scheduling
of threads of
SIMD
instructions

G
raphical P

rocessing U
nits

Figure 4.16. The scheduler selects a ready
thread of SIMD instructions and issues an
instruction synchronously to all the SIMD Lanes
executing the SIMD thread. Because threads of
SIMD instructions are independent, the scheduler
may select a different SIMD thread each time.

43 Copyright © 2012, Elsevier Inc. All rights reserved.

NVIDIA Instruction Set Arch.
!  ISA is an abstraction of the hardware instruction

set
!  “Parallel Thread Execution (PTX)”
!  Uses virtual registers
!  Translation to machine code is performed in software
!  Example:
shl.s32 R8, blockIdx, 9 ; Thread Block ID * Block size (512 or 2ˆ9)
add.s32 R8, R8, threadIdx ; R8 = i = my CUDA thread ID
ld.global.f64 RD0, [X+R8] ; RD0 = X[i]
ld.global.f64 RD2, [Y+R8] ; RD2 = Y[i]
mul.f64 R0D, RD0, RD4 ; Product in RD0 = RD0 * RD4 (scalar a)
add.f64 R0D, RD0, RD2 ; Sum in RD0 = RD0 + RD2 (Y[i])
st.global.f64 [Y+R8], RD0 ; Y[i] = sum (X[i]*a + Y[i])

G
raphical P

rocessing U
nits

44 Copyright © 2012, Elsevier Inc. All rights reserved.

Conditional Branching
!  Like vector architectures, GPU branch hardware uses

internal masks
!  Also uses

!  Branch synchronization stack
!  Entries consist of masks for each SIMD lane
!  I.e. which threads commit their results (all threads execute)

!  Instruction markers to manage when a branch diverges into
multiple execution paths

!  Push on divergent branch
!  …and when paths converge

!  Act as barriers
!  Pops stack

!  Per-thread-lane 1-bit predicate register, specified by
programmer

G
raphical P

rocessing U
nits

45 Copyright © 2012, Elsevier Inc. All rights reserved.

Example
 if (X[i] != 0)
 X[i] = X[i] – Y[i];
 else X[i] = Z[i];

 ld.global.f64 RD0, [X+R8] ; RD0 = X[i]
 setp.neq.s32 P1, RD0, #0 ; P1 is predicate register 1
 @!P1, bra ELSE1, *Push ; Push old mask, set new mask bits
 ; if P1 false, go to ELSE1
 ld.global.f64 RD2, [Y+R8] ; RD2 = Y[i]
 sub.f64 RD0, RD0, RD2 ; Difference in RD0
 st.global.f64 [X+R8], RD0 ; X[i] = RD0
 @P1, bra ENDIF1, *Comp ; complement mask bits
 ; if P1 true, go to ENDIF1

ELSE1: ld.global.f64 RD0, [Z+R8] ; RD0 = Z[i]
 st.global.f64 [X+R8], RD0 ; X[i] = RD0

ENDIF1: <next instruction>, *Pop ; pop to restore old mask

G
raphical P

rocessing U
nits

46 Copyright © 2012, Elsevier Inc. All rights reserved.

NVIDIA GPU Memory Structures
!  Each SIMD Lane has private section of off-chip DRAM

!  “Private memory”
!  Contains stack frame, spilling registers, and private

variables
!  Each multithreaded SIMD processor also has

local memory
!  Shared by SIMD lanes / threads within a block

!  Memory shared by SIMD processors is GPU
Memory
!  Host can read and write GPU memory

G
raphical P

rocessing U
nits

47 Copyright © 2012, Elsevier Inc. All rights reserved.

NVIDIA GPU Memory Structures
G

raphical P
rocessing U

nits

48 Copyright © 2012, Elsevier Inc. All rights reserved.

Loop-Level Parallelism
!  Focuses on determining whether data accesses in later

iterations are dependent on data values produced in
earlier iterations
!  Loop-carried dependence

!  Example 1:
 for (i=999; i>=0; i=i-1)
 x[i] = x[i] + s;

!  No loop-carried dependence

D
etecting and E

nhancing Loop-Level P
arallelism

49 Copyright © 2012, Elsevier Inc. All rights reserved.

Loop-Level Parallelism
!  Example 2:

 for (i=0; i<100; i=i+1) {
 A[i+1] = A[i] + C[i]; /* S1 */
 B[i+1] = B[i] + A[i+1]; /* S2 */
 }

!  S1 and S2 use values computed in previous
iteration

!  S2 uses value computed by S1 in same iteration

D
etecting and E

nhancing Loop-Level P
arallelism

50 Copyright © 2012, Elsevier Inc. All rights reserved.

Loop-Level Parallelism
!  Example 3:

 for (i=0; i<100; i=i+1) {
 A[i] = A[i] + B[i]; /* S1 */
 B[i+1] = C[i] + D[i]; /* S2 */
 }

!  S1 uses value computed by S2 in previous iteration but dependence
is not circular so loop is parallel

!  Transform to:
 A[0] = A[0] + B[0];
 for (i=0; i<99; i=i+1) {
 B[i+1] = C[i] + D[i];
 A[i+1] = A[i+1] + B[i+1];
 }
 B[100] = C[99] + D[99];

D
etecting and E

nhancing Loop-Level P
arallelism

51 Copyright © 2012, Elsevier Inc. All rights reserved.

Loop-Level Parallelism
!  Example 4:

 for (i=0;i<100;i=i+1) {
 A[i] = B[i] + C[i];
 D[i] = A[i] * E[i];
 }

!  Example 5:
 for (i=1;i<100;i=i+1) {
 Y[i] = Y[i-1] + Y[i];
 }

D
etecting and E

nhancing Loop-Level P
arallelism

